Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1977 Oct 1;75(1):104–118. doi: 10.1083/jcb.75.1.104

Osteoclast cell-surface changes during the egg-laying cycle in Japanese quail

SC Miller
PMCID: PMC2111558  PMID: 914893

Abstract

The medullary bone serves as a source of labile calcium mobilized during calcification of the egg shell in birds. Quantitative histological methods demonstrate that the numbers of medullary bone osteoclasts and nuclei per osteoclast remain unchanged during the egg cycle in the Japanese quail (Coturnix). Therefore, cyclic changes in bone resorption cannot be explained by modulations of osteoclasts from and into other bone cells, a mechanism previously suggested for certain species of birds. Rather, dramatic changes in osteoclast cell-surface features occur during the egg cycle, which might account for cyclic variations in resorptive activity. During egg shell calcification, osteoclasts with ruffled borders are closely apposed to bone surfaces; the cytoplasm is rich in vacuoles that contain mineral crystals and seem to derive from the ruffled border. At the completion of egg shell calcification, the ruffled borders and vacuoles move away from the bone surface, although the osteoclast remains attached to the bone along the filamentous or "clear" zone. Associated with the disappearance of the ruffled borders is the appearance of extensive interdigitated cell processes along the peripheral surface of the osteoclast away from the bone. These unusual structures, which may serve as a reservoir of membrane, largely disappear when ruffled borders and associated structures reappear. Therefore, in these hens, the osteoclasts modulate their cell surface rather than their population during the egg cycle.

Full Text

The Full Text of this article is available as a PDF (6.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLOOM M. A., DOMM L. V., NALBANDOV A. V., BLOOM W. Medullary bone of laying chickens. Am J Anat. 1958 May;102(3):411–453. doi: 10.1002/aja.1001020304. [DOI] [PubMed] [Google Scholar]
  2. Bonucci E. The organic-inorganic relationships in bone matrix undergoing osteoclastic resorption. Calcif Tissue Res. 1974;16(1):13–36. doi: 10.1007/BF02008210. [DOI] [PubMed] [Google Scholar]
  3. CAMERON D. A. The fine structure of bone and calcified cartilage. A critical review of the contribution of electron microscopy to the understading of osteogenesis. Clin Orthop Relat Res. 1963;26:199–228. [PubMed] [Google Scholar]
  4. Candlish J. K., Taylor T. G. The response-time to the parathyroid hormone in the laying fowl. J Endocrinol. 1970 Sep;48(1):143–144. doi: 10.1677/joe.0.0480143. [DOI] [PubMed] [Google Scholar]
  5. Carson F. L., Martin J. H., Lynn J. A. Formalin fixation for electron microscopy: a re-evaluation. Am J Clin Pathol. 1973 Mar;59(3):365–373. doi: 10.1093/ajcp/59.3.365. [DOI] [PubMed] [Google Scholar]
  6. Dacke C. G., Boelkins J. N., Smith W. K., Kenny A. D. Plasma calcitonin levels in birds during the ovulation cycle. J Endocrinol. 1972 Aug;54(2):369–370. doi: 10.1677/joe.0.0540369. [DOI] [PubMed] [Google Scholar]
  7. FISCHMAN D. A., HAY E. D. Origin of osteoclasts from mononuclear leucocytes in regenerating newt limbs. Anat Rec. 1962 Aug;143:329–337. doi: 10.1002/ar.1091430402. [DOI] [PubMed] [Google Scholar]
  8. Göthlin G., Ericsson J. L. Fine structural localization of acid phosphomonoesterase in the brush border region of osteoclasts. Histochemie. 1971;28(4):337–344. doi: 10.1007/BF00702639. [DOI] [PubMed] [Google Scholar]
  9. Holtrop M. E., Raisz L. G., Simmons H. A. The effects of parathyroid hormone, colchicine, and calcitonin on the ultrastructure and the activity of osteoclasts in organ culture. J Cell Biol. 1974 Feb;60(2):346–355. doi: 10.1083/jcb.60.2.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. JEE W. S., NOLAN P. D. ORIGIN OF OSTEOCLASTS FROM THE FUSION OF PHAGOCYTES. Nature. 1963 Oct 19;200:225–226. doi: 10.1038/200225a0. [DOI] [PubMed] [Google Scholar]
  11. Kallio D. M., Garant P. R., Minkin C. Ultrastructural effects of calcitonin on osteoclasts in tissue culture. J Ultrastruct Res. 1972 May;39(3):205–216. doi: 10.1016/s0022-5320(72)90017-2. [DOI] [PubMed] [Google Scholar]
  12. King G. J., Holtrop M. E. Actin-like filaments in bone cells of cultured mouse calvaria as demonstrated by binding to heavy meromyosin. J Cell Biol. 1975 Aug;66(2):445–451. doi: 10.1083/jcb.66.2.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lucht U. Effects of calcitonin on osteoclasts in vivo. An ultrastructural and histochemical study. Z Zellforsch Mikrosk Anat. 1973 Nov 23;145(1):75–87. doi: 10.1007/BF00307190. [DOI] [PubMed] [Google Scholar]
  14. MUELLER W. J., SCHRAER R., SCHRAER H. CALCIUM METABOLISM AND SKELETAL DYNAMICS OF LAYING PULLETS. J Nutr. 1964 Sep;84:20–26. doi: 10.1093/jn/84.1.20. [DOI] [PubMed] [Google Scholar]
  15. Malkani K., Luxembourger M. M., Rebel A. Cytoplasmic modifications at the contact zone of osteoclasts and calcified tissue in the diaphyseal growing plate of foetal guinea-pig tibia. Calcif Tissue Res. 1973 Mar 12;11(3):258–264. doi: 10.1007/BF02547225. [DOI] [PubMed] [Google Scholar]
  16. Matthews J. L., Martin J. H., Race G. J., Collins E. J. Giant-cell centrioles. Science. 1967 Mar 17;155(3768):1423–1424. doi: 10.1126/science.155.3768.1423. [DOI] [PubMed] [Google Scholar]
  17. Miller S. C., Jee W. S. Ethane-1-hydroxy-1, 1-diphosphonate (EHDP). Effects on growth and modeling of the rat tibia. Calcif Tissue Res. 1975 Sep 5;18(3):215–231. doi: 10.1007/BF02546241. [DOI] [PubMed] [Google Scholar]
  18. Miller S. C., Jee W. S., Kimmel D. B., Woodbury L. Ethane-1-hydroxy-1, 1-diphosphonate (EHDP) effects on incorporation and accumulation of osteoclast nuclei. Calcif Tissue Res. 1977 Feb 11;22(3):243–252. doi: 10.1007/BF02010363. [DOI] [PubMed] [Google Scholar]
  19. SCOTT B. L., PEASE D. C. Electron microscopy of the epiphyseal apparatus. Anat Rec. 1956 Dec;126(4):465–495. doi: 10.1002/ar.1091260405. [DOI] [PubMed] [Google Scholar]
  20. Scott B. L. The occurrence of specific cytoplasmic granules in the osteoclast. J Ultrastruct Res. 1967 Aug 30;19(5):417–431. doi: 10.1016/s0022-5320(67)80071-6. [DOI] [PubMed] [Google Scholar]
  21. Taylor T. G., Belanger L. F. The mechanism of bone resorption in laying hens. Calcif Tissue Res. 1969;4(2):162–173. doi: 10.1007/BF02279117. [DOI] [PubMed] [Google Scholar]
  22. Walker D. G. Control of bone resorption by hematopoietic tissue. The induction and reversal of congenital osteopetrosis in mice through use of bone marrow and splenic transplants. J Exp Med. 1975 Sep 1;142(3):651–663. doi: 10.1084/jem.142.3.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. YOUNG R. W. Cell proliferation and specialization during endochondral osteogenesis in young rats. J Cell Biol. 1962 Sep;14:357–370. doi: 10.1083/jcb.14.3.357. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES