Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Jun 1;93(3):576–582. doi: 10.1083/jcb.93.3.576

Rat monoclonal antitubulin antibodies derived by using a new nonsecreting rat cell line

PMCID: PMC2112140  PMID: 6811596

Abstract

Hybrid myeloma cell lines secreting monoclonal antibodies to tubulin have been prepared using rat myelomas and spleen cells from rats immunized with yeast tubulin. A comparison between the results obtained with the rat myeloma Y3-Ag 1.2.3., which secretes a light chain, and a new line, YB2/O, which does not, shows that they are both excellent parental lines and that the second produces hybrids with no myeloma chain components. The antitubulin antibodies in the serum of rats bearing two of the hybrid myeloma tumors gave titers of up to 1:10(6) from which large amounts of monoclonal antibodies could be easily purified. They recognized tubulin from yeast as well as from birds and mammals. The two antibodies gave clear immunofluorescent staining of yeast mitotic spindles as well as the interphase microtubule network of tissue culture cells. Some difference in the pattern of immunofluorescence staining of yeast cells and nuclei was observed between the two antibodies. The purified antibodies could be conjugated to colloidal gold particles and used for direct labeling of yeast microtubules for electron microscopy.

Full Text

The Full Text of this article is available as a PDF (803.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhattacharyya B., Volff J. Membrane-bound tubulin in brain and thyroid tissue. J Biol Chem. 1975 Oct 10;250(19):7639–7646. [PubMed] [Google Scholar]
  2. Brinkley B. R., Fistel S. H., Marcum J. M., Pardue R. L. Microtubules in cultured cells; indirect immunofluorescent staining with tubulin antibody. Int Rev Cytol. 1980;63:59–95. doi: 10.1016/s0074-7696(08)61757-x. [DOI] [PubMed] [Google Scholar]
  3. Byers B., Goetsch L. Duplication of spindle plaques and integration of the yeast cell cycle. Cold Spring Harb Symp Quant Biol. 1974;38:123–131. doi: 10.1101/sqb.1974.038.01.016. [DOI] [PubMed] [Google Scholar]
  4. Clark M. R., Milstein C. Expression of spleen cell immunoglobulin phenotype in hybrids with myeloma cell lines. Somatic Cell Genet. 1981 Nov;7(6):657–666. doi: 10.1007/BF01538755. [DOI] [PubMed] [Google Scholar]
  5. Cotton R. G., Milstein C. Letter: Fusion of two immunoglobulin-producing myeloma cells. Nature. 1973 Jul 6;244(5410):42–43. doi: 10.1038/244042a0. [DOI] [PubMed] [Google Scholar]
  6. De Brabander M., De Mey J., Joniau M., Geuens S. Immunocytochemical visualization of microtubules and tubulin at the light- and electron-microscopic level. J Cell Sci. 1977 Dec;28:283–301. doi: 10.1242/jcs.28.1.283. [DOI] [PubMed] [Google Scholar]
  7. De Mey J., Moeremans M., Geuens G., Nuydens R., De Brabander M. High resolution light and electron microscopic localization of tubulin with the IGS (immuno gold staining) method. Cell Biol Int Rep. 1981 Sep;5(9):889–899. doi: 10.1016/0309-1651(81)90204-6. [DOI] [PubMed] [Google Scholar]
  8. Dentler W. L., Granett S., Rosenbaum J. L. Ultrastructural localization of the high molecular weight proteins associated with in vitro-assembled brain microtubules. J Cell Biol. 1975 Apr;65(1):237–241. doi: 10.1083/jcb.65.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eckert B. S., Snyder J. A. Combined immunofluorescence and high-voltage electron microscopy of cultured mammalian cells, using an antibody that binds to glutaraldehyde-treated tubulin. Proc Natl Acad Sci U S A. 1978 Jan;75(1):334–338. doi: 10.1073/pnas.75.1.334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fuller G. M., Brinkley B. R., Boughter J. M. Immunofluorescence of mitotic spindles by using monospecific antibody against bovine brain tubulin. Science. 1975 Mar 14;187(4180):948–950. doi: 10.1126/science.1096300. [DOI] [PubMed] [Google Scholar]
  11. Galfrè G., Milstein C. Preparation of monoclonal antibodies: strategies and procedures. Methods Enzymol. 1981;73(Pt B):3–46. doi: 10.1016/0076-6879(81)73054-4. [DOI] [PubMed] [Google Scholar]
  12. Galfrè G., Milstein C., Wright B. Rat x rat hybrid myelomas and a monoclonal anti-Fd portion of mouse IgG. Nature. 1979 Jan 11;277(5692):131–133. doi: 10.1038/277131a0. [DOI] [PubMed] [Google Scholar]
  13. Gozes I., Littauer U. Z., Geiger B., Fuchs S. Immunochemical determination of tubulin. FEBS Lett. 1977 Jan 15;73(1):109–114. [PubMed] [Google Scholar]
  14. Hiller G., Weber K. Radioimmunoassay for tubulin: a quantitative comparison of the tubulin content of different established tissue culture cells and tissues. Cell. 1978 Aug;14(4):795–804. doi: 10.1016/0092-8674(78)90335-5. [DOI] [PubMed] [Google Scholar]
  15. Ito A., Palade G. E. Presence of NADPH-cytochrome P-450 reductase in rat liver Golgi membranes. Evidence obtained by immunoadsorption method. J Cell Biol. 1978 Nov;79(2 Pt 1):590–597. doi: 10.1083/jcb.79.2.590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kilmartin J. V. Purification of yeast tubulin by self-assembly in vitro. Biochemistry. 1981 Jun 9;20(12):3629–3633. doi: 10.1021/bi00515a050. [DOI] [PubMed] [Google Scholar]
  17. Kowit J. D., Fulton C. Purification and properties of flagellar outer doublet tubulin from Naegleria gruberi and a radioimmune assay for tubulin. J Biol Chem. 1974 Jun 10;249(11):3638–3646. [PubMed] [Google Scholar]
  18. Köhler G., Milstein C. Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion. Eur J Immunol. 1976 Jul;6(7):511–519. doi: 10.1002/eji.1830060713. [DOI] [PubMed] [Google Scholar]
  19. Lachmann P. J., Oldroyd R. G., Milstein C., Wright B. W. Three rat monoclonal antibodies to human C3. Immunology. 1980 Nov;41(3):503–515. [PMC free article] [PubMed] [Google Scholar]
  20. Le Guern C., Pradelles P., Dray F. Radioimmunoassay for tubulin detection. FEBS Lett. 1977 Dec 1;84(1):97–100. doi: 10.1016/0014-5793(77)81065-x. [DOI] [PubMed] [Google Scholar]
  21. Morgan J. L., Holladay C. R., Spooner B. S. Species-dependent immunological differences between vertebrate brain tubulins. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1414–1417. doi: 10.1073/pnas.75.3.1414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Murphy D. B., Vallee R. B., Borisy G. G. Identity and polymerization-stimulatory activity of the nontubulin proteins associated with microtubules. Biochemistry. 1977 Jun 14;16(12):2598–2605. doi: 10.1021/bi00631a004. [DOI] [PubMed] [Google Scholar]
  23. Osborn M., Weber K. Cytoplasmic microtubules in tissue culture cells appear to grow from an organizing structure towards the plasma membrane. Proc Natl Acad Sci U S A. 1976 Mar;73(3):867–871. doi: 10.1073/pnas.73.3.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ostlund R. E., Jr, Leung J. T., Kipnis D. M. Myosins of secretory tissues. J Cell Biol. 1978 Jun;77(3):827–836. doi: 10.1083/jcb.77.3.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Peterson J. B., Gray R. H., Ris H. Meiotic spindle plaques in Saccharomyces cerevisiae. J Cell Biol. 1972 Jun;53(3):837–841. doi: 10.1083/jcb.53.3.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Querinjean P., Bazin H., Beckers A., Deckers C., Heremans J. F., Milstein C. Transplantable immunoglobulin-secreting tumours in rats. Purification and chemical characterization of four kappa chains from LOU-Wsl rats. Eur J Biochem. 1972 Dec 4;31(2):354–359. doi: 10.1111/j.1432-1033.1972.tb02540.x. [DOI] [PubMed] [Google Scholar]
  27. ROZIJN T. H., TONINO G. J. STUDIES ON THE YEAST NUCLEUS. I. THE ISOLATION OF NUCLEI. Biochim Biophys Acta. 1964 Sep 11;91:105–112. doi: 10.1016/0926-6550(64)90174-4. [DOI] [PubMed] [Google Scholar]
  28. Schliwa M., Euteneuer U., Bulinski J. C., Izant J. G. Calcium lability of cytoplasmic microtubules and its modulation by microtubule-associated proteins. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1037–1041. doi: 10.1073/pnas.78.2.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Silflow C. D., Rosenbaum J. L. Multiple alpha- and beta-tubulin genes in Chlamydomonas and regulation of tubulin mRNA levels after deflagellation. Cell. 1981 Apr;24(1):81–88. doi: 10.1016/0092-8674(81)90503-1. [DOI] [PubMed] [Google Scholar]
  30. Van De Water L., 3rd, Olmsted J. R. Quantitation and characterization of antibody binding to tubulin. J Biol Chem. 1978 Sep 10;253(17):5980–5984. [PubMed] [Google Scholar]
  31. Weber K., Rathke P. C., Osborn M. Cytoplasmic microtubular images in glutaraldehyde-fixed tissue culture cells by electron microscopy and by immunofluorescence microscopy. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1820–1824. doi: 10.1073/pnas.75.4.1820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Weber K., Wehland J., Herzog W. Griseofulvin interacts with microtubules both in vivo and in vitro. J Mol Biol. 1976 Apr 25;102(4):817–829. doi: 10.1016/0022-2836(76)90293-x. [DOI] [PubMed] [Google Scholar]
  33. Williams A. F. Differentiation antigens of the lymphocyte cell surface. Contemp Top Mol Immunol. 1977;6:83–116. doi: 10.1007/978-1-4684-2841-4_3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES