
Membrane-associated Actin from the Microvillar 

Membranes of Ascites Tumor Cells 

KERMIT L. CARRAWAY, ROBERT F. CERRA, GOEH JUNG and 
CORALIE A. CAROTHERS CARRAWAY 
Department of Biochemistry, Oklahoma State University, Stillwater, Oklahoma 74078; and Departments 
of Anatomy, Oncology, and Biochemistry, University of Miami School of Medicine, Miami, 
Florida 33101 

AaSTRACT A membrane fraction (MF2) has been purif ied from isolated microvil l i  of the MAT- 
CI subline of the 13762 rat mammary ascites adenocarcinoma under condit ions which cause 
F-actin depolymerization. This membrane preparation contains actin as a major component, 
although no fi lamentous structures are observed by transmission electron microscopy. Mem- 
branes were extracted with a Triton X-100-containing actin-stabil izing buffer (S buffer) or 
actin-destabil izing buffer (D buffer). In D buffer > 90% of metabolically labeled protein and 
glycoprotein was extracted, and 80-90% of these labeled species was extracted in S buffer. 
When S buffer extracts of MF2 were fractionated by either gel f i l tration on Sepharose 6 B or 
rate-zonal sucrose density gradient centrifugation, most of the actin was found to be inter- 
mediate in size between G- and F-actin. In D buffer most of the MF2 actin behaved as G-actin. 
Extraction and gel f i l tration of intact microvil l i  in S buffer also showed the presence of the 
intermediate form of actin, indicating that it did not arise during membrane preparation. When 
[aSS]methionine-labeled G-actin from ascites cells was added to S buffer extracts of MF2 and 
chromatographed, all of the radioactivity chromatographed as G-actin, indicating that the 
intermediate form of actin did not result from an association of G-actin molecules during 
extraction or chromatography. The results of this study suggest that the microvil lar membrane 
fraction is enriched in an intermediate form of actin smaller than F-actin and larger than G- 
actin. 

Actin is a ubiquitous component of mammalian cells, involved 
in muscle contraction and implicated in cell shape (1) and 
motility (2) and cell surface organization (3) in nonmuscle 
cells. Actin is known to exist in two different states: G-actin, 
the globular, soluble form, and F-actin, the fdamentous, polym- 
erized form, which predominates in muscle. In non.muscle cells 
G-actin is found in cell extracts and can be quantified by 
electrophoresis after sedimentation of insoluble actin (4) or by 
analysis of its inhibition of DNase (5). The insoluble actin 
exists in several forms, as bundles of filaments in stress fibers, 
cores of  brush border microvilli, and as meshworks of fdaments 
(6). However, actin is also found associated with membranes 
in an insoluble form (7-10). In the case of the erythrocyte, 
membrane actin is present as a significant component, but no 
F-actin-like fdaments can be observed by electron microscopy 
(11). Based on the ability of actin-containing extracts to accel- 
erate G-actin polymerization by nucleation (12), the postula- 
tion has been made that erythrocyte actin exists as oligomeric 
units (12, 13), possibly similar to short lengths of  F-actin. 
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Direct observation of  the actin oligomers has not been possible, 
because the erythrocyte actin is present as a macromolecular 
complex with the erythrocyte cytoskeletal protein spectrin (14). 

In attempting to understand the nature and roles of the 
membrane-cytoskeleton interaction, we have been studying 
microvilli isolated from ascites tumor cells (15). Membranes 
isolated from the microvilli under conditions which depo- 
lymerize F-actin still contain actin as a major component but 
do not have fdamentous structures observable by electron 
microscopy (Carraway, Cerra, Bell, and Carraway. Manuscript 
submitted for publication.) In this communication we present 
biochemical evidence that much of  the membrane-associated 
actin is present in a form intermediate in size between G- and 
F-actin. 

MATERIALS AND METHODS 

Preparation and Labeling o f  Cells and Microvi l l i  
The 13762 MAT-CI ascites rat mammary adenocarcinoma cells were main- 

tained and metabolically labeled as previously described (16). For labeling in 
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vivo 12.5 mCi of [~4C]glucosamine (50-60 mCi/mmol) or [:~H]leucine (100 mCi/  
mmol) were injected into the peritoneal cavity 16 h before isolation of the cells. 
Branched microvini were isolated from these ceils by a modification of the 
method previously described (15), using differential centrifugation (Carraway et 
al. Manuscript submitted for publication.) After shearing of microvilli from cells 
by passage through a syringe needle (l 5), the suspensions were centrifuged at 750 
g for 5 rain to remove cell bodies. Microvilli were then pelleted by centrifugation 
at 48,000 g for 40 min and washed twice. Morphological and biochemical 
examinations (15) indicated that these preparations were not significantly differ- 
ent from those isolated by Percoll centrifugation ( 15 ), except that there were more 
intact branched structures and the yield was greatly increased (Carraway et al. 
Manuscript submitted for publication.). 

Preparation of Microvillar Membranes 
For preparation of microvillar membranes the microvilli were incubated for 

30 min at room temperature in 5 mM glycine, I mM EDTA, 5 mM mercapto- 
ethanol (pH 9.5) to depolymerize actin filaments and extract actin and actin- 
binding proteins (9), then homogenized in a tight Dounce homogenizer (20-30 
strokes). Residual microviili and large fragments were removed by centrifugation 
at 10,000 g for 15 min. The membrane fraction (MF2) was isolated by centrifu- 
gation at 150,000 g for 60 min. Membranes could be further purified by density 
gradient centrifugation, the major fraction banding at a density corresponding to 
45% sucrose. Additional extraction of MF2 with glycine-EDTA-mercaptoethanol, 
which produces leaky membranes, did not extract significant amounts of actin or 
other proteins. 

Analytical Procedures 
Quantification of G- and F-actin was performed by the DNase inhibition 

assay of Blikstad et al. (5). SDS PAGE was performed by the method of King 
and Laemmli (17) using 5-12% gradient gels. Chromatography was performed in 
0.75 x 60 cm columns equilibrated with actin-stabilizing buffer (S buffer, 5 mM 
Tris, 0.15 M NaCI, 2 mM MgC12, 0.2 mM ATP, 0.2 mM dithioerythritol, 0.5% 
Triton X-100 and 0.01 mM phenylmethylsulfonyl fluoride [PMSF], pH 7.6) or 
actin-destabilizing buffer (D buffer, 0.75 M guanidine HCI, 0.5 M sodium acetate, 
0.5 mM CaCI2, 0.5 mM ATP, 0.5% Triton X-100, 0.01 mM PMSF, pH 7.6) (18). 
Sucrose density sedimentation was performed on a 5-20% linear sucrose gradient 
centrifuged at 130,000 g for 40 h. Two dimensional isoelectric focusing-SDS 
PAGE (IEF-SDS PAGE) was performed in the laboratory of Dr. Robert Rubin 
(University of Miami School of Medicine, Miami, FL) by a previously published 
procedure (19). 

The myosin affinity technique was performed according to the procedure of 
Koch and Smith (20), using rabbit muscle myosin for precipitation and rabbit 
muscle F-actin for controls. For quantitative analysis cells labeled with [~SS]- 
methionine were used for preparation of MF2 fractions. The myosin precipitates 
were subjected to SDS PAGE, and the bands for actin and the 58,000-dalton 
component were excised and counted. 

vesicles heterogeneous in size. Although actin was the major 
component by SDS PAGE (Fig. 1) and 2D IEF SDS PAGE 
(data not shown) of the MF2 preparations, no structures resem- 
bling micro filaments were observed by electron microscopy 
(Carraway et al. Manuscript submitted for publication.). Even 
if  small numbers of  microfilaments were present and unob- 
served, they would be too few to account for the abundance of 
actin. However, filamentous actin is often destroyed by con- 
ditions used for preparation of membrane samples for electron 
microscopy (22). Therefore, we decided to use biochemical 
methods to investigate the nature of the MF2 actin. 

Several experiments indicate that MF2 actin is not merely 
trapped in the vesicles. When MF2 preparations were treated 
with GEM buffer under conditions that make vesicles leaky, 
no release of  actin was observed. More conclusively, when 
MF2 preparations were treated with 0.1-0.2% Triton X-100 in 
phosphate-buffered saline (PBS) or GEM buffer at 25 °C under 
conditions that release >80% of the membrane glycoproteins 
(determined by glucosamine label), only 10-20% of the MF2 
actin was released. 

The second major component of  the MF2 fraction was a 
58,000-dalton polypeptide (58 kd) which is present in branched 

Preparation of [ 3~S]Methionine-labeled Actin 

and Incubation with S-Buffer Extracts 
MAT-C1 cells were washed in McCoy's modified medium plus 20% calf serum 

and incubated with 350 mCi[~SS]methionine in 20 ml of medium for 1 h at 37°C. 
Microvilli were isolated and solubilized in D buffer and the extracts chromato- 
graphed over Sepbadex G-150 in D buffer. Fractions containing predominantly 
actin were pooled, concentrated/dialyzed against S buffer, and added to MF2 
solubilized in S buffer. The resulting solution was chromatographed on Sepharose 
6B and fractions monitored for radioactivity and by SDS PAGE. 

RESULTS 

Membrane Preparation and Extraction 
Microvilli can be isolated from 13762 MAT-CI mammary 

ascites tumor cells by a gentle shearing procedure followed by 
centrifugation (15). Microvillar membranes (MF2) were iso- 
lated from microvilli by homogenization in glycine, EDTA, 
mercaptoethanol, pH 9.5 (GEM buffer), and centrifugation. 
This is a modification of the procedure used to extract spectrin- 
actin from erythrocyte membranes (11, 21) and actin and 
associated proteins from ascites cell surface envelopes (9) and 
was designed to solubilize the actin microfilaments which form 
the core of  the microvilli. Transmission electron microscopy of 
thin sections of MF2 preparations indicated a population of 

FIGURE 1 Dodecyl sulfate PAGE of MAT-CI intact cells (A), micro- 
villi (B), and MF2 (C) showing actin (ACT) as a major component of 
MF2 along with the 58,000 dalton polypeptide. Lanes A and B 
contain ~40#g protein; lane C, 20#g. Molecular weights of standard 
proteins are shown to the left of the gel (x  103). 
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microvilli of the MAT-CI ascites subline of this mammary 
tumor. This protein is essentially completely insoluble when 
microvilli are extracted with 0.2% Triton in phosphate-buffered 
saline (Carraway et al. Manuscript submitted for publication.). 
A number of other more minor polypeptide components are 
present in the MF2 fraction, but are not readily observable 
unless gels are more heavily loaded than that in Fig. I. These 
include the major microvillar glycoproteins ASGP-I and 
ASGP-2, which stain poorly with Coomassie Blue (23). 

When the DNase inhibition assay of Blikstad et al. (5) was 
used to assess the state of the actin in MF2, the results predicted 
a ratio of F-actin to G-actin of l. l-1.6. However, since neither 
F- nor G-actin had been observed in these preparations, we 
examined the actin by fractionation procedures to determine 
the size of the membrane-associated actin. For the fractionation 
attempts we chose the buffer systems used by Strauch, et al. 
(18). The S buffer was designed to prevent interconversion of 
G- and F-actin, and the D buffer depolymerizes F-actin to give 
G-actin (5). Both buffers contain Triton X-100 for membrane 
solubilization. 

When MF2 was extracted under these conditions, >90% of 
metabolically labeled leucine- or glucosamine-containing 
moieties were extracted from the membranes in D buffer and 
80-95% in S buffer with >90% recoveries of label for both 
buffers. Electrophoretic analysis on dodecyl sulfate gels indi- 
cate that >80% of the MF2 actin was solubilized (not sedi- 
mented at 150,000 g for 1 h) in S buffer and >90% in D buffer. 
In contrast, a substantial fraction of actin sedimented from 
intact microvilli treated with S buffer but not D buffer, results 
which are consistent with the observation of microf'flaments in 
microvilli but not in MF2. The 58-kd polypeptide was not 
solubilized by the S buffer, but was completely soluble in D 
buffer. These results indicate that both S and D buffers release 
actin in a soluble form, in contrast to the behavior with Triton 
in PBS. Since S buffer is supposed to retard depolymerization 
of F-actin, the extracts were examined by fractionation tech- 
niques to determine the nature of the solubilized actin. 

Fractionation of Extracts 

MF2 preparations solubilized in S and D buffers were frac- 
tionated by rate-zonal ultracentrifugation on sucrose density 
gradients. The radioactivity profiles from the gradients were 
monitored (Fig. 2), and fractions from the gradients were 
analyzed by SDS PAGE. Rabbit muscle G- and F-actin were 
ultracentrifuged on similar gradients in S buffer, and rabbit 
muscle G-actin was run in D buffer. In S buffer essentially all 
of the rabbit muscle G-actin was found near the top of the 
gradient in fractions 1 and 2 (Fig. 2A). The F-actin in S buffer 
was all found at the bottom of the gradient. None was observed 
in other fractions. In contrast, the MF2 actin in S buffer was 
found primarily in fractions 3 and 4 within the gradient (Fig. 
3A). These results suggest that the MF2 actin in S buffer is 
intermediate in size between G and F-actin. In D buffer the 
rabbit muscle G-actin is found in fractions 1 and 2 of the 
gradient. The MF2 actin in D buffer is also found primarily in 
fractions 1 and 2 (Fig. 3B), indicating that MF2 actin is 
converted to G-actin in D buffer. There is some trailing into 
the gradient, however, suggesting that depolymerization may 
not be complete under the conditions used. 

In S buffer the 58-kd polypeptide was found near the bottom 
of the gradient, together with a small amount of actin (10--20% 
of total). In D buffer 58 kd was soluble and was found in the 
first two gradient fractions. 
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FIGURE 2 Sucrose density gradient centrifugation of leucine-la- 
beled MF2 solubilized in S buffer (A) or D buffer (B). MF2 (0.5 mg 
protein per mi) was extracted for 15 rain at room temperature in S 
or D buffer, applied to a 5-20% sucrose gradient and centrifuged at 
22,000 rpm for 40 h in a SW 27.1 rotor (Beckman Instruments, 
Richmond, CAL Fractions were counted, pooled as shown, dialyzed, 
and electrophoresed. The numbers on the bars on A and B indicate 
fractions applied to the corresponding numbered gel lanes in Fig. 
3A and 13, respectively. Rabbit muscle G-actin in S buffer (---@---) 
was run as a standard on a gradient similar to A. The standard 
gradient was monitored by electrophoresis and gel scanning. Each 
experimental gradient was run three times with the same results. 
The dashed lines indicate sucrose concentration. The open arrows 
show the migration positions on the gradient for rabbit muscle G- 
and f-actin in separate experiments. The F- and G-actin were not 
detected in other regions of the gradient, indicating that they did 
not change during the incubation in S buffer or centrifugation. 

The results, from gradient fractionation of solubilized MF2, 
suggest the presence in S buffer of a form of actin intermediate 
in size between G- and F-actin. To confirm this result, extracts 
were chromatographed on Sepharose 6B and monitored by 
counting (data not shown) and SDS PAGE. The gels were 
scanned and the elution profiles for actin and 58 kd plotted 
from the results (Fig. 4). Rabbit muscle G- and F-actin were 
analyzed under identical conditions (Fig. 4). Most of the MF2 
actin in S buffer eluted at a volume intermediate between G- 
and F-actin. About 30% of the actin coeluted with G-actin. 
Since this is a greater amount than found by ultracentrifuga- 
tion, some of the intermediate actin may be breaking down 
during the time required for chromatography. Rabbit muscle 
F-actin was eluted at the void volume in S buffer. No actin 
was observed included within the column in this experiment, 



the void volume of the column. It is not shown on the profile 
because of difficulties in quantitating the small amounts present 
across the peak. 

When MF2 was solubilized and chromatographed in D 
buffer (Fig. 4 B), the actin eluted at a volume corresponding to 
that of rabbit muscle G-actin in D buffer (Fig. 4 B) as would 
be expected from the previous observations on the depolym- 
erization of actin in this buffer (5). These results are consistent 
with the findings of Strauch et al. (18) concerning the stability 
of G- and F-actin in S buffer. 

To assure that the presence of the intermediate actin did not 
result from degradation of F-actin during the membrane prep- 
aration in GEM buffer, microvilli were subjected to gel filtra- 
tion in S buffer. As shown in Fig. 5, F-actin is observed as a 
substantial component of the microvilli, as expected, along 
with the intermediate form of actin and some G-actin. 

FIGURE 3 Dodecyl sulfate polyacrylamide gel electrophoresis of 
fractions from the gradient in Fig. 2 of samples centrifuged in S 
buffer (A) or D buffer (B). Aliquots from gradient fractions were 
dialyzed into dodecyl sulfate in buffer before applying to gels. The 
lanes with the heaviest stain contain -20/Lg protein. Fractions after 
fraction 9 from the elution profile in Fig. 2 did not contain detectable 
proteins other than small amounts of actin. The arrowheads to the 
right of the gel mark the positions of actin (lower) and the 58,000 
dalton polypeptide (upper); S indicates a lane containing standards. 
The two heaviest bands are ovalbumin (lower) and bovine serum 
albumin (upper). 

indicating that no substantial breakdown of F-actin is occurring 
under the conditions used. A small amount of MF2 actin 
( -  10%) was observed together with 58 kd eluting slightly after 
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FIOURE 4 Elution profile from Sepharose 6B of actin ( ) and the 
58 dalton polypeptide (- - -) chromatographed in S buffer (A) or D 
buffer (B). MF2 (0.5 mg protein per ml) was solubilized as for Fig. 2 
and applied directly to a Sepharose 6B column. Column fractions 
were monitored by dodecyl sulfate PAGE. Elution profiles for rabbit 
muscle F-actin ( . . . .  ) and G-actin ( - - . - - )  in S buffer are shown as 
standards for comparisons in A. These samples were run in S buffer 
with ~0.1 mg/ml actin applied to each column. The columns were 
monitored by dodecyl sulfate electrophoresis and the gels were 
scanned. The protein eluted in each fraction is plotted as arbitrary 
units for each chromatographic run. Since actin represents ~20% of 
the protein in the membranes, the amount of actin in the standards 
is approximately the same as the actin in the chromatographed, 
solubilized membranes. This equivalence was borne out by the 
similarity of staining densities (data not shown) on dodecyl su(fate 
gels of the membranes and standard actin bands. The open arrows 
in A show the void (Vo) and retained (Vr) volumes. The closed 
arrows show elution volumes for ferritin (Fe) and aldolase (A). The 
open arrows in B show the void (Vo) and retained (Vr) volumes. 
The closed arrow shows the elution volume of G-actin in D buffer. 
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FIGURE 6 Analysis of gradient fractions by 2-dimensional isoelec- 
tric focusing dodecyl sulfate electrophoresis for identif ication of 
actin. Gels A, B, and C show fractions corresponding to lanes 2, 3, 
and 4 of Fig. 3A. ]-he doublet  in the center of the gel corresponds 
exactly to actin isolated from these cells and to actin observed in 
other nonmuscle cells. 

FIGURE 5 Gel fi ltration of leucine-labeled microvil l i  in S buffer. 
Fractions marked 1-9 in the profile (A) correspond to gel lanes 1-9 
(B). Arrowheads marked by F and G in the profile correspond to the 
elut ion volumes of rabbit muscle F- and G-actin, respectively. The 
experimental protocol was the same as used for Fig. 4, except that 
microvill i were used rather than MF2. 

Identification of Actin 

To establish that the 43,000 dalton polypeptide from the 
gradients and columns was actually actin, samples from the 
appropriate sucrose density gradients and gel filtration eluates 
were examined by 2-D IEF-SDS PAGE. A first dimension 
doublet of molecular weight 43,000, presumably fl- and 7- 
actins, was observed as the predominant polypeptide in all 
instances (Fig. 6 is shown as an example). This doublet was 
identical to the actin doublet in intact ascites cells. Although a 
number of minor polypeptides were found in fractions contain- 
ing intermediate actin, none of the major species were observed 
to coincide with intermediate actin in both elution behavior on 

gel filtration and migration on the gradient. Some of  them 
showed different behavior relative to actin on the gradient and 
column. This is not too surprising, since both gel filtration and 
sedimentation are complex functions of the sizes and shapes of 
the molecules. An example of  this behavior is shown by 58 kd, 
which behaves in D buffer as if it is slightly larger than actin 
by gel filtration and slightly smaller by sedimentation. 

The polypeptides observed in MF2 fractions with interme- 
diate actin were also observed in microvilli. Thus, it is unlikely 
that they are proteolytic fragments generated during the prep- 
arations. We have not observed any polypeptide in the appro- 
priate quantity and with the appropriate behavior in S buffer 
to suggest a direct association with the intermediate actin. 
However, to establish unequivocally the presence or absence 
of other actin binding proteins, particularly small polypeptides, 
will require purification of the intermediate actin. 

Recombination with [ 355]G-Actin 

Another possible explanation for the presence of an inter- 
mediate form of actin is that monomeric actin has become 
associated into oligomers during extraction or fractionation, 
possibly under the influence of some factor in the extract. To 
test this possibility G-actin was prepared from microvilli of 
cells labeled with [35S]methionine. The actin was purified by 
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gel filtration in D buffer on Sephadex G-150. It was shown by 
sedimentation analysis to be capable of polymerization in KC1. 
The radioactive actin was dialyzed into S buffer, mixed with 
MF2 extract in S buffer and chromatographed on Sepharose 
6B in the same buffer. The eluate was analyzed by electropho- 
resis to identify the components of the radioactive peaks. The 
radioactivity was eluted almost entirely at a volume corre- 
sponding to G-actin. Essentially none was found at the volume 
of elution of  the intermediate form of actin. A small amount of 
actin radioactivity was present near the void volume, eluting 
with the 58-kd polypeptide, suggesting a possible association 
of actin with this polypeptide. The failure ofactin to polymerize 
in S buffer under our extraction conditions is consistent with 
the observed critical concentration of rabbit muscle actin in S 
buffer (18). 

Myosin Affinity Analysis 
Because of the possibility that MF2 polymeric actin might 

be breaking down to oligomers during the chromatography or 
density gradient centrifugation, the myosin affinity technique 
was used to assay for F-actin in S buffer-solubilized, methio- 
nine-labeled MF2. Supernates of MF2, solubilized in S buffer, 
contained ~80% of the total MF2 actin, but only 10% of  the 
supernate actin was precipitated by myosin. In contrast, the 
pellet from MF2 in S buffer contained 20% of the MF2 actin, 
70% of which was precipitated by myosin. When unfractionated 
MF2 in S buffer was assayed after only a 15-min incubation in 
the buffer, ~30% of  the actin was precipitated. Interestingly, 
the 58-kd polypeptide was precipitated with the myosin from 
both the unfractionated MF2 in S buffer and the pellet in S 
buffer, suggesting that it is associated with the actin. 

DISCUSSION 

Actin is one of the two major protein components of the 
microvillar membranes of the MAT-C1 ascites tumor cells. The 
inability to release the actin by hypotonic or detergent treat- 
ments which render the membranes soluble or leaky indicates 
that the actin is not simply soluble actin trapped in membrane 
vesicles. Several lines of evidence indicate that most of the 
membrane-associated actin is not F-actin. (a) No microfda- 
ments have been observed in thin sections of the membranes 
by transmission electron microscopy. (b) Membrane actin sol- 
ubilized in S buffer is eluted predominantly within the retarded 
volume of the column, far from the elution volume of rabbit 
muscle F-actin. (c) The soluble membrane actin did not sedi- 
ment with rabbit muscle F-actin upon rate-zonal density gra- 
dient centrifugation. (d) Rabbit muscle F-actin was stable in S 
buffer under the chromatography and centrifugation condi- 
tions used. (e) The soluble membrane actin did not bind to 
myosin in the myosin affinity assay. 

Several additional lines of  evidence indicate that the mem- 
brane-associated actin is not formed as a result of self-associ- 
ation of monomeric actin in S buffer. (a) Although some of the 
actin fractionated by gel filtration or ultracentrifugation ap- 
pears to be monomeric in S buffer, most of  the actin appears 
larger. (b) Rabbit muscle G-actin is stable under the fraction- 
ation conditions in S buffer. (c) The critical concentration for 
polymerization of G-actin in S buffer (18) is substantially 
higher than the concentration of actin used in our experiments. 
(d) Mixing experiments with [3~S]G-actin showed no evidence 
of oligomerization. It is clear that the intermediate form of 
actin does not arise as a consequence of the membrane isola- 
tion, since it is present in microvilli, which are obtained in 

sealed form by gentle sheafing of the ceils (Carraway et al. 
Manuscript submitted for publication.). 

Several explanations can be offered for the observed inter- 
mediate size of actin: association of monomeric actin with other 
proteins; an alteration in the conformation of monomeric actin; 
or the existence of the actin in an oligomeric state smaller than 
F-actin. Association of  actin with other proteins is an unlikely 
explanation, because no other polypeptides are observed by 
electrophoresis in sufficient amount to account for the increase 
in size by such an association. An alteration in the conforma- 
tion of actin to produce a molecule with an expanded Stokes 
radius also seems unlikely, since the intermediate form of actin 
is also observed by sucrose density gradient centrifugation. 
Moreover, it would be expected that actin would be more likely 
to assume an expanded conformation in D buffer, which 
contains guanidine hydrochloride, than in S buffer. Thus, we 
feel that the most likely explanation for the actin behavior is 
the presence of oligomers. It is not possible to state unequivo- 
cally that the actin associated with the membrane is the same 
size as the oligomers observed by fractionation, since multi- 
meric membrane actin might be less stable than F-actin to S 
buffer. However, it is clear that most, if not all, of the mem- 
brane actin is different from F-actin or G-actin. 

The postulation of oligomers explains the results in the 
DNase assay, if it is assumed that oligomers inhibit DNase, 
but to a lesser extent than G-actiu. However, such behavior 
raises questions about the ability of the DNase assay to deter- 
mine G- or F-actin in samples containing membranes or any 
oligomeric actin. The presence of oligomeric actin would con- 
found the results, making the interpretations of G / F  ratios 
unreliable, as noted for the microvillar membranes. 

Our results raise questions about the exact nature of mem- 
brane-associated actin and how it is associated with the mem- 
brane. The actin is very resistant to extraction under conditions 
which remove F-actin and extract actin from erythrocyte mem- 
branes. It is interesting to note that the conditions (D buffer) 
which converted the actin to a monomeric form also solubilized 
the 58-kd polypeptide, suggesting that these proteins may be 
associated. Moreover, the actin that is not solubilized by S 
buffer is eluted near the void volume of the Sepharose 6B 
column with the 58-kd component. The nature of this actin is 
also uncertain. Additional studies are underway to define the 
properties of the 58-kd component, its association with the 
membrane and its relationship to actin. Further studies on the 
intermediate form of actin are in progress to determine its 
physical and chemical properties as well as its relationship to 
the membrane and to the actin microfilaments of the microvilli. 
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