Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Oct 1;95(1):170–178. doi: 10.1083/jcb.95.1.170

Rod substructure in cyanobacterial phycobilisomes: phycoerythrin assembly in synechocystis 6701 phycobilisomes

PMCID: PMC2112362  PMID: 6815203

Abstract

Synechocystis 6701 phycobilisomes consist of a core of three cylindrical elements in an equilateral array from which extend in a fanlike manner six rods, each made up of three to four stacked disks. Previous studies (see Gingrich, J. C., L. K. Blaha, and A. N. Glazer, 1982. J. Cell Biol. 92:261-268) have shown that the rods consist of four disk-shaped complexes of biliproteins with "linker" polypeptides of 27-, 33.5-, 31.5-, and 30.5-kdaltons, listed in order starting with the disk proximal to the core: phycocyanin (alpha beta)6-27 kdalton, phycocyanin (alpha beta)6-33.5 kdalton, phycoerythrin (alpha beta)6- 31.5 kdalton, phycoerythrin (alpha beta)6-30.5 kdalton, where alpha beta is the monomer of the biliprotein. Phycoerythrin complexes of the 31.5- and 30.5-kdalton polypeptides were isolated in low salt. In 0.05 M K-phosphate-1 mM EDTA at pH 7.0, these complexes had the average composition (alpha beta)2-31.5 and (alpha beta)-30.5 kdalton polypeptide, respectively. Peptide mapping of purified 31.5- and 30.5- kdalton polypeptides showed that they differed significantly in primary structure. In 0.65 M Na-K-phosphate at pH 8, these phycoerythrin complexes formed rods of stacked disks of composition (alpha beta)6- 31.5 or (alpha beta)6-30.5 kdaltons. For the (alpha beta)-30.5 kdalton complex, the yield of rod assemblies was variable and the self- association of free phycoerythrin to smaller aggregates was an important competing reaction. Complementation experiments were performed with incomplete phycobilisomes from Synechocystis 6701 mutant strain CM25. These phycobilisomes are totally lacking in phycoerythrin and the 31.5- and 30.5-kdalton polypeptides, but have no other apparent structural defects. In high phosphate at pH 8, the phycoerythrin-31.5- kdalton complex formed disk assemblies at the end of the rod substructures of CM25 phycobilisomes whereas no interaction with the phycoerythrin-30.5 kdalton complex was detected. In mixtures of both the phycoerythrin-31.5 and -30.5 kdalton complexes with CM25 phycobilisomes, both complexes were incorporated at the distal ends of the rod substructures. The efficiency of energy transfer from the added phycoerythrin in complemented phycobilisomes was approximately 96%. The results show that the ordered assembly of phycoerythrin complexes seen in phycobilisomes is reproduced in the in vitro assembly process.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Edgar R. S., Wood W. B. Morphogenesis of bacteriophage T4 in extracts of mutant-infected cells. Proc Natl Acad Sci U S A. 1966 Mar;55(3):498–505. doi: 10.1073/pnas.55.3.498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Gantt E., Lipschultz C. A. Energy transfer in phycobilisomes from phycoerythrin to allophycocyanin. Biochim Biophys Acta. 1973 Apr 5;292(3):858–861. doi: 10.1016/0005-2728(73)90036-4. [DOI] [PubMed] [Google Scholar]
  3. Gantt E., Lipschultz C. A. Phycobilisomes of Porphyridium cruentum. I. Isolation. J Cell Biol. 1972 Aug;54(2):313–324. doi: 10.1083/jcb.54.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gingrich J. C., Blaha L. K., Glazer A. N. Rod substructure in cyanobacterial phycobilisomes: analysis of Synechocystis 6701 mutants low in phycoerythrin. J Cell Biol. 1982 Feb;92(2):261–268. doi: 10.1083/jcb.92.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Glazer A. N., Williams R. C., Yamanaka G., Schachman H. K. Characterization of cyanobacterial phycobilisomes in zwitterionic detergents. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6162–6166. doi: 10.1073/pnas.76.12.6162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kikuchi Y., King J. Genetic control of bacteriophage T4 baseplate morphogenesis. III. Formation of the central plug and overall assembly pathway. J Mol Biol. 1975 Dec 25;99(4):695–716. doi: 10.1016/s0022-2836(75)80180-x. [DOI] [PubMed] [Google Scholar]
  7. King J., Griffin-Shea R., Fuller M. T. Scaffolding proteins and the genetic control of virus shell assembly. Q Rev Biol. 1980 Dec;55(4):369–393. doi: 10.1086/411981. [DOI] [PubMed] [Google Scholar]
  8. Ley A. C., Butler W. L. Isolation and Function of Allophycocyanin B of Porphyridium cruentum. Plant Physiol. 1977 May;59(5):974–980. doi: 10.1104/pp.59.5.974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lundell D. J., Williams R. C., Glazer A. N. Molecular architecture of a light-harvesting antenna. In vitro assembly of the rod substructures of Synechococcus 6301 phycobilisomes. J Biol Chem. 1981 Apr 10;256(7):3580–3592. [PubMed] [Google Scholar]
  10. Lundell D. J., Yamanaka G., Glazer A. N. A terminal energy acceptor of the phycobilisome: the 75,000-dalton polypeptide of Synechococcus 6301 phycobilisomes--a new biliprotein. J Cell Biol. 1981 Oct;91(1):315–319. doi: 10.1083/jcb.91.1.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  12. Siegelman H. W., Wieczorek G. A., Turner B. C. Preparation of calcium phosphate for protein chromatography. Anal Biochem. 1965 Dec;13(3):402–404. doi: 10.1016/0003-2697(65)90332-5. [DOI] [PubMed] [Google Scholar]
  13. Tandeau de Marsac N. Occurrence and nature of chromatic adaptation in cyanobacteria. J Bacteriol. 1977 Apr;130(1):82–91. doi: 10.1128/jb.130.1.82-91.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Williams R. C., Fisher H. W. Electron microscopy of tobacco mosaic virus under conditions of minimal beam exposure. J Mol Biol. 1970 Aug 28;52(1):121–123. doi: 10.1016/0022-2836(70)90181-6. [DOI] [PubMed] [Google Scholar]
  15. Williams R. C., Gingrich J. C., Glazer A. N. Cyanobacterial phycobilisomes. Particles from Synechocystis 6701 and two pigment mutants. J Cell Biol. 1980 Jun;85(3):558–566. doi: 10.1083/jcb.85.3.558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Yamanaka G., Glazer A. N., Williams R. C. Cyanobacterial phycobilisomes. Characterization of the phycobilisomes of Synechococcus sp. 6301. J Biol Chem. 1978 Nov 25;253(22):8303–8310. [PubMed] [Google Scholar]
  17. Yu M. H., Glazer A. N., Williams R. C. Cyanobacterial phycobilisomes. Phycocyanin assembly in the rod substructures of anabaena variabilis phycobilisomes. J Biol Chem. 1981 Dec 25;256(24):13130–13136. [PubMed] [Google Scholar]
  18. de Marsac N. T., Cohen-bazire G. Molecular composition of cyanobacterial phycobilisomes. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1635–1639. doi: 10.1073/pnas.74.4.1635. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES