Abstract
Muscle fibers are maintained in culture in a fully contractile state and are relaxed by the addition of 10(-7) M tetrodotoxin (TTX). This toxin binds to muscle membrane Na+- channels, abolishes spontaneous contractions and causes failure of the fiber to accumulate myosin heavy chains. These effects are reversible on removal of TTX. Synthesis and accumulation kinetics have been obtained for myofibrillar and for cytoplasmic filament proteins in normal, active muscle and in TTX- relaxed muscle fibers in culture. In relaxed fibers the synthesis of most proteins remained normal or slightly elevated. However, the accumulation of all myofibrillar proteins examined was markedly inhibited in TTX-treated cultures, whereas the accumulation of cytoplasmic filament proteins was normal or slightly elevated. Myofibrillar proteins examined were alpha-actin, troponin-C, myosin fast light chain 1, myosin fast light chain 2, alpha, beta-tropomyosins and the phosphorylated forms of tropomyosin and fast light chain 2. Cytoplasmic filament proteins studied were vimentin, alpha, beta-desmin and beta, alpha-actin. We also examined the synthesis and accumulation of six unidentified muscle-specific proteins and nine unidentified nonmuscle-specific proteins. Most of these proteins showed a normal accumulation pattern in TTX-relaxed fibers. We concluded that muscle fibers made inactive by TTX display an increased instability of all myofibrillar proteins while cytoplasmic filament proteins and cytoplasmic proteins in general are relatively unaffected. We suggest that TTX interferes, in a manner as yet unidentified, with assembly and normal stability of myofibrils. Decreased assembly and/or increased instability of myofibrils would lead to increased rates of myofibrillar protein degradation.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Brevet A., Pinto E., Peacock J., Stockdale F. E. Myosin synthesis increased by electrical stimulation of skeletal muscle cell cultures. Science. 1976 Sep 17;193(4258):1152–1154. doi: 10.1126/science.959833. [DOI] [PubMed] [Google Scholar]
- Catterall W. A. Pharmacologic properties of voltage-sensitive sodium channels in chick muscle fibers developing in vitro. Dev Biol. 1980 Jul;78(1):222–230. doi: 10.1016/0012-1606(80)90331-0. [DOI] [PubMed] [Google Scholar]
- Chamberlain J. P. Fluorographic detection of radioactivity in polyacrylamide gels with the water-soluble fluor, sodium salicylate. Anal Biochem. 1979 Sep 15;98(1):132–135. doi: 10.1016/0003-2697(79)90716-4. [DOI] [PubMed] [Google Scholar]
- Cohen S. A., Fischbach G. D. Regulation of muscle acetylcholine sensitivity by muscle activity in cell culture. Science. 1973 Jul 6;181(4094):76–78. doi: 10.1126/science.181.4094.76. [DOI] [PubMed] [Google Scholar]
- Collins J. H., Potter J. D., Horn M. J., Wilshire G., Jackman N. The amino acid sequence of rabbit skeletal muscle troponin C: gene replication and homology with calcium-binding proteins from carp and hake muscle. FEBS Lett. 1973 Nov 1;36(3):268–272. doi: 10.1016/0014-5793(73)80388-6. [DOI] [PubMed] [Google Scholar]
- Croop J., Dubyak G., Toyama Y., Dlugosz A., Scarpa A., Holtzer H. Effects of 12-O-tetradecanoyl-phorbol-13-acetate on Myofibril integrity and Ca2+ content in developing myotubes. Dev Biol. 1982 Feb;89(2):460–474. doi: 10.1016/0012-1606(82)90334-7. [DOI] [PubMed] [Google Scholar]
- Fellini S. A., Holtzer H. The localization of skeletal light meromyosin in cells of myogenic cultures. Differentiation. 1976 Aug 3;6(2):71–74. doi: 10.1111/j.1432-0436.1976.tb01471.x. [DOI] [PubMed] [Google Scholar]
- Gard D. L., Bell P. B., Lazarides E. Coexistence of desmin and the fibroblastic intermediate filament subunit in muscle and nonmuscle cells: identification and comparative peptide analysis. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3894–3898. doi: 10.1073/pnas.76.8.3894. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gard D. L., Lazarides E. The synthesis and distribution of desmin and vimentin during myogenesis in vitro. Cell. 1980 Jan;19(1):263–275. doi: 10.1016/0092-8674(80)90408-0. [DOI] [PubMed] [Google Scholar]
- Garrels J. I., Gibson W. Identification and characterization of multiple forms of actin. Cell. 1976 Dec;9(4 Pt 2):793–805. doi: 10.1016/0092-8674(76)90142-2. [DOI] [PubMed] [Google Scholar]
- Garrels J. I. Two dimensional gel electrophoresis and computer analysis of proteins synthesized by clonal cell lines. J Biol Chem. 1979 Aug 25;254(16):7961–7977. [PubMed] [Google Scholar]
- Granger B. L., Lazarides E. Desmin and vimentin coexist at the periphery of the myofibril Z disc. Cell. 1979 Dec;18(4):1053–1063. doi: 10.1016/0092-8674(79)90218-6. [DOI] [PubMed] [Google Scholar]
- Granger B. L., Lazarides E. The existence of an insoluble Z disc scaffold in chicken skeletal muscle. Cell. 1978 Dec;15(4):1253–1268. doi: 10.1016/0092-8674(78)90051-x. [DOI] [PubMed] [Google Scholar]
- Ishikawa H., Bischoff R., Holtzer H. Mitosis and intermediate-sized filaments in developing skeletal muscle. J Cell Biol. 1968 Sep;38(3):538–555. doi: 10.1083/jcb.38.3.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishiura S., Sugita H., Suzuki K., Imahori K. Studies of a calcium-activated neutral protease from chicken skeletal muscle. II. Substrate specificity. J Biochem. 1979 Aug;86(2):579–581. doi: 10.1093/oxfordjournals.jbchem.a132558. [DOI] [PubMed] [Google Scholar]
- Kameyama T., Etlinger J. D. Calcium-dependent regulation of protein synthesis and degradation in muscle. Nature. 1979 May 24;279(5711):344–346. doi: 10.1038/279344a0. [DOI] [PubMed] [Google Scholar]
- Keller L. R., Emerson C. P., Jr Synthesis of adult myosin light chains by embryonic muscle cultures. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1020–1024. doi: 10.1073/pnas.77.2.1020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kretsinger R. H., Barry C. D. The predicted structure of the calcium-binding component of troponin. Biochim Biophys Acta. 1975 Sep 9;405(1):40–52. doi: 10.1016/0005-2795(75)90312-8. [DOI] [PubMed] [Google Scholar]
- Lazarides E. Intermediate filaments as mechanical integrators of cellular space. Nature. 1980 Jan 17;283(5744):249–256. doi: 10.1038/283249a0. [DOI] [PubMed] [Google Scholar]
- Peng H. B., Wolosewick J. J., Cheng P. C. The development of myofibrils in cultured muscle cells: a whole-mount and thin-section electron microscopic study. Dev Biol. 1981 Nov;88(1):121–136. doi: 10.1016/0012-1606(81)90224-4. [DOI] [PubMed] [Google Scholar]
- Rieger F., Koenig J., Vigny M. Spontaneous contractile activity and the presence of the 16 S form of acetylcholinesterase in rat muscle cells in culture: reversible suppressive action of tetrodotoxin. Dev Biol. 1980 May;76(2):358–365. doi: 10.1016/0012-1606(80)90385-1. [DOI] [PubMed] [Google Scholar]
- Rubin L. L., Schuetze S. M., Weill C. L., Fischbach G. D. Regulation of acetylcholinesterase appearance at neuromuscular junctions in vitro. Nature. 1980 Jan 17;283(5744):264–267. doi: 10.1038/283264a0. [DOI] [PubMed] [Google Scholar]
- Strohman R. C., Bandman E., Walker C. R. Regulation of myosin accumulation by muscle activity in cell culture. J Muscle Res Cell Motil. 1981 Sep;2(3):269–282. doi: 10.1007/BF00713266. [DOI] [PubMed] [Google Scholar]
- Vandenburgh H. H., Kaufman S. Stretch-induced growth of skeletal myotubes correlates with activation of the sodium pump. J Cell Physiol. 1981 Nov;109(2):205–214. doi: 10.1002/jcp.1041090203. [DOI] [PubMed] [Google Scholar]
- Vandenburgh H., Kaufman S. In vitro model for stretch-induced hypertrophy of skeletal muscle. Science. 1979 Jan 19;203(4377):265–268. doi: 10.1126/science.569901. [DOI] [PubMed] [Google Scholar]
- Walker C. R., Wilson B. W. Control of acetylcholinesterase by contractile activity of cultured muscle cells. Nature. 1975 Jul 17;256(5514):215–216. doi: 10.1038/256215a0. [DOI] [PubMed] [Google Scholar]
- Walker C., Strohman R. Myosin turnover in cultured muscle fibers relaxed by tetrodotoxin. Exp Cell Res. 1978 Oct 15;116(2):341–348. doi: 10.1016/0014-4827(78)90457-3. [DOI] [PubMed] [Google Scholar]