
Changes in the Basement Membrane Zone Components 
during Skeletal Muscle Fiber Degeneration and Regeneration 

A. K. GULATI, A. H. REDDI, and A. A. ZALEWSKI 
Laboratory of Neurochemistry, National Institute of Neurological and Communicative Disorders and 
Stroke, and Mineralized Tissue Research Branch, National Institute of Dental Research, National Institutes 
of Health, Bethesda, Maryland 20205 

ABSTRACT The basement membrane of skeletal muscle fibers is believed to persist unchanged 
during myofiber degeneration and act as a tubular structure within which the regeneration of 
new myofibers occurs. In the present study we describe macromolecular changes in the 
basement membrane zone during muscle degeneration and regeneration, as monitored by 
immunofluorescence using specific antibodies against types IV and V collagen, laminin, and 
heparan sulfate proteoglycan and by the binding of concanavalin A (Con A). Skeletal muscle 
regeneration was induced by autotransplantation of the extensor digitorum Iongus muscle in 
rats. After this procedure, the myofibers degenerate; this is followed by myosatellite cell 
activation, proliferation, and fusion, resulting in the formation of new myotubes that mature 
into myofibers. In normal muscle, the distribution of types IV and V collagen, laminin, heparan 
sulfate proteoglycan, and Con A binding was seen in the pericellular basement membrane 
region. In autotransplanted muscle, the various components of the basement membrane zone 
disappeared, leaving behind some unidentifiable component that still bound Con A. Around 
the regenerated myotubes a new basement membrane (zone) reappeared, which persisted 
during maturation of the regenerating muscle. The distribution of various basement membrane 
components in the regenerated myofibers was similar to that seen in the normal muscle. 
Based on our present and previous study (Gulati, A. K., A. H. Reddi, and A. A. Zalewski, 1982, 
Anat. Rec. 204:175-183), it appears that some of the original basement membrane zone 
components disappear during myofiber degeneration and initial regeneration. As a new 
basement membrane develops, its components reappear and persist in the mature myofibers. 
We conclude that skeletal muscle fiber basement membrane (zone) is not a static structure as 
previously thought, but rather that its components change quite rapidly during myofiber 
degeneration and regeneration. 

The importance of basement membrane (basal lamina) during 
the orderly regeneration of damaged skeletal muscle has been 
emphasized by several authors (2, 5, 7, 21, 40, 47, 50). In 
general, on the basis of the studies just listed, it is believed 
that the basement membrane of each myofiber persists as an 
unchanged tube during muscle fiber degeneration and initial 
regeneration and forms the structural framework within 
which the new myotubes and myofibers develop. The evi- 
dence supporting this structural role of basement membrane 
is based on electron microscope studies, which demonstrate 
its presence around the degenerating myofiber (1, 21, 47). 

Although the complete macromolecular composition of 
basement membrane is still not known, its complex biochem- 

ical nature has been recently studied extensively (16, 24, 37, 
46). Basement membranes are known to consist of several 
collagenous and noncollagenous components. The most 
prominent collagenous component of basement membrane is 
type IV collagen, which has been localized by immunoelec- 
tron microscopy in the lamina densa layer (12, 36, 51). Type 
V collagen, although associated with a few basement mem- 
branes, is not an integral component (29) but is localized in 
the pericellular environment (15, 29). 

Several noncollagenous components have recently been 
characterized and localized within the basement membrane. 
Laminin, a high molecular weight glycoprotein, is a ubiqui- 
tous component of the basement membrane (46). Laminin 

THE JOURNAL OF CELL BIOLOGY • VOLUME 97 OCTOBER 1983 957-962 957 



has been localized in the lamina lucida (lamina rara) layer of 
basement membrane (13). Recently, laminin has also been 
detected in the lamina densa (26, 38). Fibronectin is another 
glycoprotein which has been associated with the lamina lucida 
of the basement membrane; however, it is not a universal 
component and is also present in other regions of the extra- 
cellular matrix (8, 30, 34, 44). Heparan sulfate proteoglycan 
has also been shown to be an important component of base- 
ment membranes and has also been localized in the lamina 
lucida layer (22, 23). Since there is some overlap and co- 
distribution of various components in different layers, it may 
be that all components jointly form the basement membrane. 
Other components that have been associated with different 
basement membranes include entactin, bullous pemphigoid 
antigen, chondroitin sulfate, and certain lipids. Additional 
details regarding the components of basement membrane can 
be obtained from several review articles (24, 34, 37, 42, 43, 
45). 

Since it is now known that the basement membrane consists 
of several unique macromolecules, we investigated possible 
changes in basement membrane components and related 
these to the processes of skeletal muscle degeneration and 
regeneration. Skeletal muscle degeneration and regeneration 
was induced by autotransplantation of extensor digitorum 
longus (EDL) 1 muscle in rats. This model has been widely 
used to study muscle regeneration in vivo (6, 7, 17, 18, 19). 

MATERIALS AND METHODS 

Surgery and Tissue Preparation: We used male Fischer rats (175- 
200 g body weight) obtained from the National Institutes of Health (Bethesda, 
MD) breeding colony. Each animal was anesthetized with chloral hydrate (400 
mg/100 g body weight i.p.) and the EDL muscle in each leg autotransplanted 
according to the procedure described earlier (19). In brief, the proximal tendon 
of the EDL muscle was cut close to the knee; the muscle was removed from its 
bed and transplanted back in the same site. No attempt was made to join any 
blood vessels or nerves to the muscle since it was expected that revascularization 
and reinnervation would occur from the blood vessels and nerves in the graft 
site (7). Finally, the overlying muscle and skin were separately sutured. Auto- 
grafted muscles were removed at 2, 4, 7, 14, 28, and 56 d after surgery and 
frozen in liquid nitrogen. Six to seven muscles were analyzed at each time 
interval; in addition, several normal muscles were analyzed. Frozen cross- 
sections of 6 um thickness, from different regions of the muscle, were cut 
serially in a cryostat set at -20"C and mounted on multiple glass slides. Some 
of these slides were stained with periodic acid-Schiff (PAS)-hematoxylin for 
histological analysis, whereas the remaining ones were used for immunofluo- 
rescent staining. 

Preparation of Antibodies and Immunofluorescent Stain- 
ing: Type IV collagen and laminin were purified from Engelbreth-Holm- 
Swarm murine sarcoma, which is known to produce large amounts ofbascment 
membrane matrix (46). Both type IV collagen and laminin were dissolved 
separately in PBS and emulsified with an equal volume of Freund's complete 
adjuvant and injected into different rabbits. Antibodies against type IV collagen 
and laminin were isolated by cross-immunoadsorption. The specificity of these 
antibodies has been reported earlier (1 l). Another batch of antibodies against 
type-IV collagen as well as the antibodies against heparan sulfate proteoglycan 
and type-V collagen were provided by Dr. George Martin and colleagues 
(National Institute of Dental Research, Bethesda, MD). In addition, fluorescein- 
conjugated coneanavalin A (Con A) (Vector Laboratories, Burlingame, CA) 
was used to demonstrate the muscle fiber cell surface and basement membrane 
zone during skeletal muscle degeneration and regeneration. Con A and other 
lectins have been used to demonstrate the pericellular basement membrane 
zone of myofibers in recent studies (32, 39). 

The purified antibodies to types IV and V collagen, laminin, and heparan 
sulfate proteoglycan were applied to adjacent tissue sections (20 ug/ml) and 
incubated at room temperature (22"-25"C) for 30 min. The slides were then 

Abbreviations used in this paper: Con A, Concanavalin A; EDL, 
extensor digitorum longus; PAS, periodic acid-Schiff; PBS, phos- 
phate-buffered saline. 
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washed with PBS and incubated with fluorescein-conjugated goat antibody to 
rabbit IgG diluted 1:20 with PBS (Cappel Laboratories, West Chester, PA). The 
slides were washed again and mounted in a medium consisting of 90% glycerol 
and 10% PBS. Some slides at each time interval were incubated directly with 
fluorescein-conjugated Con A (diluted 1:40), washed with PBS, and mounted 
as before. All slides were viewed with a Lietz Ortholux II, epiilluminated 
fluorescent microscope. Controls consisted of sections incubated in preimmune 
serum only, preabsorbed antibodies with specific antigen, or Con A with 
mannose, and PBS as the first incubating solution. 

RESULTS 

Normal  Muscle  

The normal EDL muscle of the rat consisted of muscle 
fibers which varied in diameter and staining intensity, and 
each possessed a peripheral nuclei (Fig. 1). The immunofluo- 
rescent localization of types IV and V collagen, laminin, and 
heparan sulfate proteoglycan was seen as a fine line in the 
pericellular region of each myofiber corresponding to the 
basement membrane (Fig. 2). Type V collagen stained more 
diffusely in the pericellular region of myofibers, and its distri- 
bution was similar to that of fibronectin as seen in our 
previous study (19). The cytoplasm of the myofiber was 
devoid of any staining for basement membrane components. 
A similar pericellular binding was also noted in the muscle 
when stained with fluorescein-conjugated Con A (not shown). 
Wheat germ agglutinin and Ricinus communis agglutinin 120 
also bound in the pericellular region (nonsynaptic), whereas 
other lectins (soybean agglutinin, Dolichos biflorus agglutinin, 
Ulex europeus agglutinin I, peanut agglutinin) either bound 
very poorly or not at all (A. K. Gulati, unpublished observa- 
tion). The cell-surface distribution of the various basement 
membrane zone components and the binding of lectins in 
normal muscle agreed with the findings of previous reports 
(9, 31, 32, 38, 39, 44). All control sections lacked fluorescence; 
a representative control section of normal muscle in which 
the antibodies were preabsorbed with purified antigen (lami- 
nin) lacking fluorescence is shown in Fig. 3. 

Autotransplanted Muscle 

The histological progression of muscle fiber degeneration 
and regeneration observed after autotransplantation was sim- 
ilar to that described by Carlson and colleagues (6, 7). After 
2 d, two distinct zones were visible in the muscle graft: a thin 
peripheral zone of surviving myofibers (which apparently 
could receive nutrients from the surrounding tissues) and a 
remaining zone of ischemic myofibers (6, 7). As the vascular- 
ization of muscle grafts was restored, the ischemic myofibers 
nearest to the surviving myofibers underwent degeneration 
and were phagocytosed by infiltrating macrophages. At the 
same time, the myosatellite cells present within these degen- 
erating myofibers differentiated to form myoblasts, which 
proliferated and fused to form myotubes (41). With the acti- 
vation of myoblasts and the formation of regenerated myo- 
tubes, a new myogenic zone appeared in 4-d autotransplants 
(Fig. 4). The myogenic zone extended centrally as further 
revascularization was restored at 7 d and the regenerated 
myotubes grew in size. By 14 d most of the muscle graft was 
filled with peripheral original surviving myofibers and the 
regenerated myofibers and myotubes. The regenerated myofi- 
bers had grown in size at 28 and 56 d and become similar to 
the original surviving myofibers; however, the regenerated 
myofibers possessed centrally located nuclei, a typical feature 



of regenerated muscle (7, 17). 
In a 2<1 muscle autotransplant, the distribution of types IV 

and V collagen, laminin, and heparan sulfate proteoglycan 
did not change in the basement membrane region of the 
myofibers. In contrast to this observation, we have shown 
previously that fibronectin, another basement membrane 
zone glycoprotein disappears from the pericellular region of 
the degenerating myofibers within 2 d (19). In 4<1 muscle 
grafts, three distinct zones were visible when the sections were 
stained for various basement membrane region components 
(Figs. 5 and 9). A zone of peripheral surviving original my- 
ofibers maintained all of the original basement membrane 
zone components (including fibronectin). The inner zone of 
isehemic and degenerating myofibers also continued to ex- 
press the presence of various basement membrane compo- 
nents. The degenerating and ischemic myofibers appeared 
similar when stained for types IV and V collagen, laminin, 
and heparan sulfate proteoglycan. In contrast, staining for 
fibronectin showed differential staining of degenerating and 
ischemic myofibers, thus resulting in four zones as described 
earlier (19). In the myogenic zone, the activated myoblasts 
did not show any staining for basement membrane compo- 
nents; however, after their fusion to form myotubes, staining 
for basement membrane was seen as small rings around them 
(Figs. 5 and 9). The small newly regenerated myotubes were 
initially seen in close approximation to the larger myotubes 
(Fig. 6) or in some cases close to the outer surface of the 
basement membrane of degenerating myofibers (Fig. 9). Since 
regenerated myotubes appear as clusters in the myogenic zone 
(Figs. 5 and 6), this may mean that the larger myotubes 
provide a favorable environment for the formation of new 
myotubes. That these clusters were actually regenerated myo- 
tubes and not basement membrane profiles of the degenerated 
myofibers that they resemble (38) was confirmed by compar- 
ing adjacent sections stained with PAS-hematoxylin, which 
showed centrally located nuclei in the cytoplasm. The new 
basement membrane acquired by regenerated myotubes per- 
sisted throughout maturation, and the entire muscle was filled 
with peripherally located original myofibers and centrally 
located regenerated myofibers (Fig. 8). In a few muscle grafts, 
a central region of necrotic myofibers was seen because of 
incomplete revascularization after 21 d. The distribution of 
various basement membrane components was irregular and 
patchy around these necrotic myofibers (Fig. 7). 

The binding of fluorescein-conjugated Con A revealed the 
remains of the original basement membrane zone of the 
myofibers undergoing degeneration (Figs. l0 and 11), which 
was not seen with antibodies against specific basement mem- 
brane components (Figs. 5 and 9; and reference 19). In 
addition to binding to the original basement membrane, Con 
A also bound to the surface of myotubes. Weak binding was 
also seen on certain unidentified cells (possibly myoblasts and 
macrophages) present in the isehemic and degenerating my- 
ofibers (Fig. 10). 

In a fully regenerated muscle the distribution of all base- 
ment membrane zone components was similar to that seen 
in the normal muscle. In summary, during the process of 
myofiber degeneration fibronectin disappeared from the per- 
icellular region (19). This was followed by the disappearance 
oflaminin and type IV collagen. Heparan sulfate proteoglycan 
and type V collagen also disappeared about the same time, 
leaving behind certain unidentifiable component that had 
affinity for Con A binding. The regenerated myotubes pro- 

duced a new basement membrane, the components of which 
reappeared with fibronectin appearing last. 

DISCUSSION 

The disappearance and reappearance of types IV and V 
collagen, laminin, and heparan sulfate proteoglycan, four 
known components of the basement membrane matrix (16, 
24) were used to study the changes in the skeletal muscle 
basement membrane region during degeneration and regen- 
eration. In normal muscle, these macromolecules and fibro- 
nectin (19) were localized in the pericellular region of myofi- 
ber corresponding to the basement membrane zone. 

The various components of the basement membrane zone 
did not change initially; however, as the revascularization of 
the muscle occurred changes in the expression of various 
basement membrane macromolecules were seen. Fibronectin 
first disappeared from the basement membrane region of the 
degenerating myofibers (19); this was followed by the disap- 
pearance of other major components of basement membrane. 
The disappearance of various basement membrane macro- 
molecules may be due to their enzymatic degradation. En- 
zymes involved in the degradation of basement membrane 
components may be released by infiltrating macrophages 
which are known to possess such enzymes (27). Also enzymes 
present in the activated myoblasts or accumulating extracel- 
lular fluid could be responsible for the degradation of base- 
ment membrane components. In fact, in several in vivo and 
in vitro models, alterations and degradation of basement 
membranes and their components have been shown to result 
from the action of specific enzymes (3, 27, 33, 52). Surviving 
cells (like myoblasts) within the muscle graft seem to be 
essential for the degradation of basement membrane because, 
in muscle allografts undergoing immune rejection, the base- 
ment membrane components persist in spite of the fact that 
myofiber cytoplasm and myoblast disappear (A. K. Gulati, 
unpublished observation). 

As the activated myoblasts that lack basement membrane 
fuse to form myotubes, a new basement membrane appears 
around them. The formation of new basement membrane 
(zone) involves the sequential appearance of various compo- 
nents, which are probably synthesized by the fusing myoblasts. 
It has been demonstrated that myoblasts can synthesize var- 
ious basement membrane matrix components in vitro and 
can assemble them on the myotube cell surface (3, 14, 25). A 
similar synthesis of various components may occur with in 
vivo regenerating myotubes. The new basement membrane 
enlarges along with growing myofibers and eventually be- 
comes similar to the original basement membrane. The se- 
quential appearance of various basement membrane compo- 
nents, as seen in the present study, has also been reported 
during embryonic kidney development (10) and in regener- 
ating muscle of the amputated newt limb (20). The disap- 
pearance of the original basement membrane zone of the 
degenerating myofibers and the formation of a new basement 
membrane zone around the regenerated myofibers seems to 
be well-regulated phenomenon, since no elaboration or thick- 
ening of it was observed in a regenerated muscle. Abnormal- 
ities in the basement membrane, as indicated by abnormal 
formation and thickening, have been seen in various patho- 
logical states (31, 34, 35, 47, 48, 49). 

Although the major basement membrane zone macromol- 
ecules disappeared quite rapidly from the pericellular region 
of the degenerating myofiber, some unidentifiable component 
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FIGURES 9-11 Fig. 9: Cross-section of a 4-d autotransplanted muscle stained with antibodies against heparan sulfate proteoglycan 
(adjacent to Fig. 5). Three distinct regions are again visible. The long arrows point to the remains of the original basement 
membrane. The newly regenerated myotubes (short arrow) mostly are seen in close approximation to the original basement 
membrane but are located on the outside. A similar distribution is also seen for type V collagen, x 220. Fig. 10: Cross-section of 
a 4-d autotransplanted muscle showing binding of fluorescein-conjugated Con A. Again three distinct zones are visib!e. The 
binding pattern of Con A reveals what appears to be the remains of the original basement membrane zone (long arrows) that was 
not seen in earlier figures (Figs. 5 and 9). Also compare to PAS-hematoxylin stained adjacent section (Fig. 4). Within the remains 
of the original basement membrane of the ischemic myofibers, a few weakly stained unidentifiable cells are seen (short arrows). 
x 220. Fig. 11: Higher magnification of Fig. 10 showing the remains of the original basement membrane (short arrow) as revealed 
by Con A binding. Small rings of regenerated myotubes are seen within the remains of the old basement membrane (short arrow). 
The long arrow points to the perineurium of a myelinated nerve present in the muscle, x 480. 

did remain as visualized by the binding of Con A. By the use 
of Con A, a lectin which specifically binds to the mannose or 
glucose subunit of  giycoproteins or glycolipids (32) the irreg- 
ular and broken nature of what appeared to be the original 
basement membrane zone (39) could be visualized. In fact, 
in some locations the remains of original basement membrane 
zone appeared as a complete ring with myoblasts and myo- 

tubes maturing within them. It may be that the persistance of 
this Con A-binding component is revealed as a dark staining 
line with an electron microscope and could lead to the con- 
clusion that the original basement membrane remains intact, 
allowing proper regeneration (1, 27, 47, 50). It is, however, 
possible that the Con A-binding remnants of the original 
basement membrane possess enough information for ade- 

FIGURES 1-8 Fig. 1: Cross-section of a normal EDL muscle. The muscle consists of myofibers of different sizes and staining 
intensity. PAS-hematoxylin stain, x 120. Fig. 2: Cross-section of a normal EDL muscle stained with antibodies against laminin, 
Laminin is seen in the pericellular region of myofibers corresponding to the basement membrane region. A similar distribution is 
also seen for type IV collagen and heparan sulfate proteoglycan, x 120. Fig. 3: A representative normal muscle control in which 
the primary antibody against laminin was preabsorbed with purified laminin resulting in the absence of fluorescence. Similar 
absence of fluorescence was also seen in all controls, x 120. Fig. 4: Cross-section of a 4-d autotransplanted muscle. Three zones 
are visible: a peripheral zone of original surviving myofibers (S), a myogenic zone (M) consisting of newly regenerated myotubes 
(and proliferating myoblasts), and a central zone of ischemic myofibers (/). The arrows point to small myelinated nerves present 
in the muscle. PAS-hematoxylin stain, x 120. Fig. 5: Cross-section of a 4-d autotransplanted muscle (section adjacent to Fig. 4) 
stained with antibodies against laminin. Three distinct regions are visible. In the myogenic zone many small regenerated myotubes 
with a continuous ring of laminin are seen. The arrows point to the perineurium of small myelinated nerves present in the muscle. 
A similar distribution is also seen when sections were stained for type IV collagen, x 120. Fig. 6: A cluster of regenerated 
myotubes from Fig. 5. at higher magnification. After fusion of the myoblasts the myotubes with their new basement membranes 
are seen in close approximation to one another. The arrows point to the small round profiles of newly regenerated myotubes 
that are surrounded by the larger more mature myotubes, x 480. Fig. 7: Cross-section of the central necrotic myofibers that were 
never revascularized (21-d autotransplant). The distribution of laminin is patchy and irregular. A similar distribution is seen when 
sections were stained for type IV collagen and heparan sulfate proteoglycan, x 480. Fig. 8: Cross-section of a 28-d autotransplanted 
muscle, stained with antibodies against laminin. The entire muscle is filled with myofibers but their size is small compared to 
those in normal muscle (see Fig. 2). The arrow points to the capsule of a muscle spindle with infrafusal fibers, x 120. 
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quate reinnervation and regeneration. It is known that in frog 
muscle the basement membrane of  the degenerating myofi- 
bers continues to maintain original synaptic sites and cholin- 
esterase activity, thus allowing proper reinnervation (4, 28, 
39). These results show that the major components of  base- 
ment membrane disappear; it remains to be determined what 
happens to these components in electron immunohistochem- 
ical study. It also remains to be determined whether the 
breakdown of basement membrane components is essential 
for regeneration to occur and, if so, what might happen if the 
process was inhibited. 

The results of  the present and our previous study (19) 
indicate that various macromolecular components of  base- 
ment membrane zone disappear during early phases of  my- 
ofiber degeneration. A new basement membrane reappears 
around the regenerated myotubes, with its various compo- 
nents appearing in a sequence. In the regenerated muscle, the 
various components of  the new basement membrane appear 
to be similar to the original basement membrane. We con- 
clude that the myofiber basement membrane zone is not static 
but that its components change rapidly during degeneration 
and regeneration. 
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