Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1984 Jan 1;98(1):364–368. doi: 10.1083/jcb.98.1.364

A few axonal proteins distinguish ventral spinal cord neurons from dorsal root ganglion neurons

PMCID: PMC2113020  PMID: 6707097

Abstract

A series of proteins putatively involved in the generation of axonal diversity was identified. Neurons from ventral spinal cord and dorsal root ganglia were grown in a compartmented cell-culture system which offers separate access to cell somas and axons. The proteins synthesized in the neuronal cell somas and subsequently transported into the axons were selectively analyzed by 2-dimensional gel electrophoresis. The patterns of axonal proteins were substantially less complex than those derived from the proteins of neuronal cell bodies. The structural and functional similarity of axons from different neurons was reflected in a high degree of similarity of the gel pattern of the axonal proteins from sensory ganglia and spinal cord neurons. Each axonal type, however, had several proteins that were markedly less abundant or absent in the other. These neuron-population enriched proteins may be involved in the implementation of neuronal diversity. One of the proteins enriched in dorsal root ganglia axons had previously been found to be expressed with decreased abundance when dorsal root ganglia axons were co-cultured with ventral spinal cord cells under conditions in which synapse formation occurs (P. Sonderegger, M. C. Fishman, M. Bokoum, H. C. Bauer, and P.G. Nelson, 1983, Science [Wash. DC], 221:1294-1297). This protein may be a candidate for a role in growth cone functions, specific for neuronal subsets, such as pathfinding and selective axon fasciculation or the initiation of specific synapses. The methodology presented is thus capable of demonstrating patterns of protein synthesis that distinguish different neuronal subsets. The accessibility of these proteins for structural and functional studies may contribute to the elucidation of neuron-specific functions at the molecular level.

Full Text

The Full Text of this article is available as a PDF (817.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschuler R. A., Mosinger J. L., Harmison G. G., Parakkal M. H., Wenthold R. J. Aspartate aminotransferase-like immunoreactivity as a marker for aspartate/glutamate in guinea pig photoreceptors. Nature. 1982 Aug 12;298(5875):657–659. doi: 10.1038/298657a0. [DOI] [PubMed] [Google Scholar]
  2. Barak L. S., Yocum R. R., Webb W. W. In vivo staining of cytoskeletal actin by autointernalization of nontoxic concentrations of nitrobenzoxadiazole-phallacidin. J Cell Biol. 1981 May;89(2):368–372. doi: 10.1083/jcb.89.2.368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barde Y. A., Edgar D., Thoenen H. Sensory neurons in culture: changing requirements for survival factors during embryonic development. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1199–1203. doi: 10.1073/pnas.77.2.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berg D. K., Fischbach G. D. Enrichment of spinal cord cell cultures with motoneurons. J Cell Biol. 1978 Apr;77(1):83–98. doi: 10.1083/jcb.77.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Black M. M., Lasek R. J. The presence of transfer RNA in the axoplasm of the squid giant axon. J Neurobiol. 1977 May;8(3):229–237. doi: 10.1002/neu.480080306. [DOI] [PubMed] [Google Scholar]
  6. Bondy S. C., Purdy J. L. Migration of ribosomes along the axons of the chick visual pathway. Biochim Biophys Acta. 1975 May 16;390(3):332–341. doi: 10.1016/0005-2787(75)90354-8. [DOI] [PubMed] [Google Scholar]
  7. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  8. Braun S. J., Sweadner K. J., Patterson P. H. Neuronal cell surfaces: distinctive glycoproteins of cultured adrenergic and cholinergic sympathetic neurons. J Neurosci. 1981 Dec;1(12):1397–1406. doi: 10.1523/JNEUROSCI.01-12-01397.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bray D., Wood P., Bunge R. P. Selective fasciculation of nerve fibres in culture. Exp Cell Res. 1980 Nov;130(1):241–250. doi: 10.1016/0014-4827(80)90060-9. [DOI] [PubMed] [Google Scholar]
  10. Campenot R. B. Independent control of the local environment of somas and neurites. Methods Enzymol. 1979;58:302–307. doi: 10.1016/s0076-6879(79)58146-4. [DOI] [PubMed] [Google Scholar]
  11. Campenot R. B. Local control of neurite development by nerve growth factor. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4516–4519. doi: 10.1073/pnas.74.10.4516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Carr V. M., Simpson S. B., Jr Proliferative and degenerative events in the early development of chick dorsal root ganglia. I. Normal development. J Comp Neurol. 1978 Dec 15;182(4):727–739. doi: 10.1002/cne.901820410. [DOI] [PubMed] [Google Scholar]
  13. Chun L. L., Patterson P. H., Cantor H. Preliminary studies on the use of monoclonal antibodies as probes for sympathetic development. J Exp Biol. 1980 Dec;89:73–83. doi: 10.1242/jeb.89.1.73. [DOI] [PubMed] [Google Scholar]
  14. Edström A., Sjöstrand J. Protein synthesis in the isolated Mauthner nerve fibre of goldfish. J Neurochem. 1969 Jan;16(1):67–81. doi: 10.1111/j.1471-4159.1969.tb10344.x. [DOI] [PubMed] [Google Scholar]
  15. Fields K. L., Brockes J. P., Mirsky R., Wendon L. M. Cell surface markers for distinguishing different types of rat dorsal root ganglion cells in culture. Cell. 1978 May;14(1):43–51. doi: 10.1016/0092-8674(78)90299-4. [DOI] [PubMed] [Google Scholar]
  16. Fischbach G. D., Dichter M. A. Electrophysiologic and morphologic properties of neurons in dissociated chick spinal cord cell cultures. Dev Biol. 1974 Mar;37(1):100–116. doi: 10.1016/0012-1606(74)90172-9. [DOI] [PubMed] [Google Scholar]
  17. Fischbach G. D. Synapse formation between dissociated nerve and muscle cells in low density cell cultures. Dev Biol. 1972 Jun;28(2):407–429. doi: 10.1016/0012-1606(72)90023-1. [DOI] [PubMed] [Google Scholar]
  18. Frankel R. D., Koenig E. Identification of locally synthesized proteins in proximal stump axons of the neurotomized hypoglossal nerve. Brain Res. 1978 Feb 3;141(1):67–76. doi: 10.1016/0006-8993(78)90617-0. [DOI] [PubMed] [Google Scholar]
  19. Fuchs P. A., Nicholls J. G., Ready D. F. Membrane properties and selective connexions of identified leech neurones in culture. J Physiol. 1981 Jul;316:203–223. doi: 10.1113/jphysiol.1981.sp013783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gottlieb D. I., Glaser L. Cellular recognition during neural development. Annu Rev Neurosci. 1980;3:303–318. doi: 10.1146/annurev.ne.03.030180.001511. [DOI] [PubMed] [Google Scholar]
  21. Hatten M. E., Schachner M., Sidman R. L. Histochemical characterization of lectin binding in mouse cerebellum. Neuroscience. 1979;4(7):921–935. doi: 10.1016/0306-4522(79)90176-3. [DOI] [PubMed] [Google Scholar]
  22. Hatten M. E., Sidman R. L. Plant lectins detect age and region specific differences in cell surface carbohydrates and cell reassociation behavior of embryonic mouse cerebellar cells. J Supramol Struct. 1977;7(2):267–275. doi: 10.1002/jss.400070210. [DOI] [PubMed] [Google Scholar]
  23. Henderson C. E., Huchet M., Changeux J. P. Neurite outgrowth from embryonic chicken spinal neurons is promoted by media conditioned by muscle cells. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2625–2629. doi: 10.1073/pnas.78.4.2625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hollyday M., Hamburger V. An autoradiographic study of the formation of the lateral motor column in the chick embryo. Brain Res. 1977 Aug 26;132(2):197–208. doi: 10.1016/0006-8993(77)90416-4. [DOI] [PubMed] [Google Scholar]
  25. Koenig E. Ribosomal RNA in Mauthner axon: implications for a protein synthesizing machinery in the myelinated axon. Brain Res. 1979 Sep 28;174(1):95–107. doi: 10.1016/0006-8993(79)90806-0. [DOI] [PubMed] [Google Scholar]
  26. Masuko S., Kuromi H., Shimada Y. Isolation and culture of motoneurons from embryonic chicken spinal cords. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3537–3541. doi: 10.1073/pnas.76.7.3537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  28. Ransom B. R., Christian C. N., Bullock P. N., Nelson P. G. Mouse spinal cord in cell culture. II. Synaptic activity and circuit behavior. J Neurophysiol. 1977 Sep;40(5):1151–1162. doi: 10.1152/jn.1977.40.5.1151. [DOI] [PubMed] [Google Scholar]
  29. Raper J. A., Bastiani M., Goodman C. S. Pathfinding by neuronal growth cones in grasshopper embryos. I. Divergent choices made by the growth cones of sibling neurons. J Neurosci. 1983 Jan;3(1):20–30. doi: 10.1523/JNEUROSCI.03-01-00020.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Raper J. A., Bastiani M., Goodman C. S. Pathfinding by neuronal growth cones in grasshopper embryos. II. Selective fasciculation onto specific axonal pathways. J Neurosci. 1983 Jan;3(1):31–41. doi: 10.1523/JNEUROSCI.03-01-00031.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. SPERRY R. W. CHEMOAFFINITY IN THE ORDERLY GROWTH OF NERVE FIBER PATTERNS AND CONNECTIONS. Proc Natl Acad Sci U S A. 1963 Oct;50:703–710. doi: 10.1073/pnas.50.4.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schwab M., Landis S. Membrane properties of cultured rat sympathetic neurons: morphological studies of adrenergic and cholinergic differentiation. Dev Biol. 1981 May;84(1):67–78. doi: 10.1016/0012-1606(81)90371-7. [DOI] [PubMed] [Google Scholar]
  33. Sonderegger P., Fishman M. C., Bokoum M., Bauer H. C., Nelson P. G. Axonal proteins of presynaptic neurons during synaptogenesis. Science. 1983 Sep 23;221(4617):1294–1297. doi: 10.1126/science.6612344. [DOI] [PubMed] [Google Scholar]
  34. Stelzner D. J., Martin A. H., Scott G. L. Early stages of synaptogenesis in the cervical spinal cord of the chick embryo. Z Zellforsch Mikrosk Anat. 1973;138(4):475–488. doi: 10.1007/BF00572291. [DOI] [PubMed] [Google Scholar]
  35. Sweadner K. J. Environmentally regulated expression of soluble extracellular proteins of sympathetic neurons. J Biol Chem. 1981 Apr 25;256(8):4063–4070. [PubMed] [Google Scholar]
  36. Vulliamy T., Rattray S., Mirsky R. Cell-surface antigen distinguishes sensory and autonomic peripheral neurones from central neurones. Nature. 1981 Jun 4;291(5814):418–420. doi: 10.1038/291418a0. [DOI] [PubMed] [Google Scholar]
  37. Wilson D. L., Stone G. C. Axoplasmic transport of proteins. Annu Rev Biophys Bioeng. 1979;8:27–45. doi: 10.1146/annurev.bb.08.060179.000331. [DOI] [PubMed] [Google Scholar]
  38. Wilson S. H., Schrier B. K., Farber J. L., Thompson E. J., Rosenberg R. N., Blume A. J., Nirenberg M. W. Markers for gene expression in cultured cells from the nervous system. J Biol Chem. 1972 May 25;247(10):3159–3169. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES