Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Feb 1;100(2):357–363. doi: 10.1083/jcb.100.2.357

Site-specific maturation of enveloped viruses in L cells treated with cytochalasin B

PMCID: PMC2113427  PMID: 2981885

Abstract

Treatment of infected L cells with 10 micrograms/ml cytochalasin B (CB) was found to promote a rapid relocalization of viral glycoproteins on the cell surface. Whereas the vesicular stomatitis virus G protein and the influenza virus hemagglutinin were uniformly distributed on the surface of untreated cells, in CB-treated cells, they were strikingly concentrated at cell extremities in the regions of clustered blebs. Glycoprotein concentration at cell extremities was accompanied by preferential maturation of virus particles from the same sites; both vesicular stomatitis and influenza viruses budded predominantly from the vicinity of clustered blebs. This effect of CB was completely reversible. Removal of CB from the cell growth medium resulted in a return of viral glycoproteins to the uniform distribution characteristic of untreated cells and to uniform virus budding. The results of this study are interpreted in terms of a model that suggests that preferential budding of viruses from the regions of bleb clusters is due to the concentration of viral glycoproteins at these sites.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allikmets E. Iu, Vasil'ev Iu M., Rovenskii Iu A. Vliianie tsitokhalazinov na topografiiu poverkhnosti opukholevykh kletok v suspenzii. Biull Eksp Biol Med. 1983 May;95(5):84–87. [PubMed] [Google Scholar]
  2. Brett J. G., Godman G. C. Macrovacuolation induced by cytochalasin: its relation to the cytoskeleton; morphological and cytochemical observations. Tissue Cell. 1984;16(3):311–324. doi: 10.1016/0040-8166(84)90051-x. [DOI] [PubMed] [Google Scholar]
  3. Brett J. G., Godman G. C. Membrane cycling and macrovacuolation under the influence of cytochalasin: kinetic and morphometric studies. Tissue Cell. 1984;16(3):325–335. doi: 10.1016/0040-8166(84)90052-1. [DOI] [PubMed] [Google Scholar]
  4. Brown J. C., Klotz K. L. Appearance of blebs on the surface of differentiating Friend erythroleukemia cells. Cell Differ. 1980;9(4):239–246. doi: 10.1016/0045-6039(80)90023-8. [DOI] [PubMed] [Google Scholar]
  5. Cancelosi S. E., Brown J. C. Identification of rho-antigenic determinants on the surface of mouse T-lymphocytes. Experientia. 1977 Oct 15;33(10):1382–1384. doi: 10.1007/BF01920194. [DOI] [PubMed] [Google Scholar]
  6. Carter S. B. Effects of cytochalasins on mammalian cells. Nature. 1967 Jan 21;213(5073):261–264. doi: 10.1038/213261a0. [DOI] [PubMed] [Google Scholar]
  7. Coombs K., Mann E., Edwards J., Brown D. T. Effects of chloroquine and cytochalasin B on the infection of cells by Sindbis virus and vesicular stomatitis virus. J Virol. 1981 Mar;37(3):1060–1065. doi: 10.1128/jvi.37.3.1060-1065.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Croop J., Holtzer H. Response of myogenic and fibrogenic cells to cytochalasin B and to colcemid. I. Light microscope observations. J Cell Biol. 1975 May;65(2):271–285. doi: 10.1083/jcb.65.2.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ey P. L., Prowse S. J., Jenkin C. R. Isolation of pure IgG1, IgG2a and IgG2b immunoglobulins from mouse serum using protein A-sepharose. Immunochemistry. 1978 Jul;15(7):429–436. doi: 10.1016/0161-5890(78)90070-6. [DOI] [PubMed] [Google Scholar]
  10. Flanagan M. D., Lin S. Cytochalasins block actin filament elongation by binding to high affinity sites associated with F-actin. J Biol Chem. 1980 Feb 10;255(3):835–838. [PubMed] [Google Scholar]
  11. Fong B. S., Hunt R. C., Brown J. C. Asymmetric distribution of phosphatidylethanolamine in the membrane of vesicular stomatitis virus. J Virol. 1976 Dec;20(3):658–663. doi: 10.1128/jvi.20.3.658-663.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Garg L. C., Brown J. C. Surface membrane-associated phosphatidylethanolamine N-methyltransferase activity in L-929 cells. Arch Biochem Biophys. 1983 Jan;220(1):22–30. doi: 10.1016/0003-9861(83)90382-x. [DOI] [PubMed] [Google Scholar]
  13. Genty N., Bussereau F. Is cytoskeleton involved in vesicular stomatitis virus reproduction? J Virol. 1980 Jun;34(3):777–781. doi: 10.1128/jvi.34.3.777-781.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Godman G. C., Miranda A. F. Cellular contractility and the visible effects of cytochalasin. Front Biol. 1978;46:277–429. [PubMed] [Google Scholar]
  15. Godman G. C., Miranda A. F., Deitch A. D., Tanenbaum S. W. Action of cytochalasin D on cells of established lines. III. Zeiosis and movements at the cell surface. J Cell Biol. 1975 Mar;64(3):644–667. doi: 10.1083/jcb.64.3.644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Godman G., Woda B., Kolberg R., Berl S. Redistribution of contractile and cytoskeletal components induced by cytochalasin. I. In Hmf cells, a nontransformed fibroblastoid line. Eur J Cell Biol. 1980 Oct;22(2):733–744. [PubMed] [Google Scholar]
  17. Godman G., Woda B., Kolberg R., Berl S. Redistribution of contractile and cytoskeletal components induced by cytochalasin. II. In HeLa and HEp2 cells. Eur J Cell Biol. 1980 Oct;22(2):745–754. [PubMed] [Google Scholar]
  18. Griffin J. A., Compans R. W. Effect of cytochalasin B on the maturation of enveloped viruses. J Exp Med. 1979 Aug 1;150(2):379–391. doi: 10.1084/jem.150.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. MacLean-Fletcher S., Pollard T. D. Mechanism of action of cytochalasin B on actin. Cell. 1980 Jun;20(2):329–341. doi: 10.1016/0092-8674(80)90619-4. [DOI] [PubMed] [Google Scholar]
  20. Menko A. S., Croop J., Toyama Y., Holtzer H., Boettiger D. The response of chicken embryo dermal fibroblasts to cytochalasin B is altered by Rous sarcoma virus-induced cell transformation. Mol Cell Biol. 1982 Mar;2(3):320–330. doi: 10.1128/mcb.2.3.320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Menko A. S., Toyama Y., Boettiger D., Holtzer H. Altered cell spreading in cytochalasin B: a possible role for intermediate filaments. Mol Cell Biol. 1983 Jan;3(1):113–125. doi: 10.1128/mcb.3.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Miranda A. F., Godman G. C., Deitch A. D., Tanenbaum S. W. Action of cytochalasin D on cells of established lines. I. Early events. J Cell Biol. 1974 May;61(2):481–500. doi: 10.1083/jcb.61.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Miranda A. F., Godman G. C., Tanenbaum S. W. Action of cytochalasin D on cells of established lines. II. Cortex and microfilaments. J Cell Biol. 1974 Aug;62(2):406–423. doi: 10.1083/jcb.62.2.406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rindler M. J., Ivanov I. E., Plesken H., Rodriguez-Boulan E., Sabatini D. D. Viral glycoproteins destined for apical or basolateral plasma membrane domains traverse the same Golgi apparatus during their intracellular transport in doubly infected Madin-Darby canine kidney cells. J Cell Biol. 1984 Apr;98(4):1304–1319. doi: 10.1083/jcb.98.4.1304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rodriguez Boulan E., Pendergast M. Polarized distribution of viral envelope proteins in the plasma membrane of infected epithelial cells. Cell. 1980 May;20(1):45–54. doi: 10.1016/0092-8674(80)90233-0. [DOI] [PubMed] [Google Scholar]
  26. Sanger J. W., Holtzer H. Cytochalasin B: effects on cell morphology, cell adhesion, and mucopolysaccharide synthesis (cultured cells-contractile microfilaments-glycoproteins-embryonic cells-sorting-out). Proc Natl Acad Sci U S A. 1972 Jan;69(1):253–257. doi: 10.1073/pnas.69.1.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sundqvist K. G., Ehrnst A. Cytoskeletal control of surface membrane mobility. Nature. 1976 Nov 18;264(5583):226–231. doi: 10.1038/264226a0. [DOI] [PubMed] [Google Scholar]
  28. Sundqvist K. G., Otteskog P. Cytochalasin B induces polarisation of plasma membrane components aand actin in transformed cells. Nature. 1978 Aug 31;274(5674):915–917. doi: 10.1038/274915a0. [DOI] [PubMed] [Google Scholar]
  29. Volk W. A., Synder R. M., Benjamin D. C., Wagner R. R. Monoclonal antibodies to the glycoprotein of vesicular stomatitis virus: comparative neutralizing activity. J Virol. 1982 Apr;42(1):220–227. doi: 10.1128/jvi.42.1.220-227.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES