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ABSTRACT The localization of membrane-associated specializations (basal lamina and cyto- 
plasmic density) at sites of acetylcholine receptor (AChR) aggregation is consistent with an 
involvement of these structures in receptor stabilization. We investigated the occurrence of 
these specializations in association with AChR aggregates that develop at the cathode-facing 
edge of Xenopus muscle cells during exposure to a DC electric field. The cultures were labeled 
with a fluorescent conjugate of ct-bungarotoxin and the receptor distribution on selected cells 
was determined before and after exposure to the field. In thin sections taken from the same 
cells, the cathode-facing edge was characterized by plaques of basal lamina and cytoplasmic 
density co-extensive with sarcolemma of increased density. In sections cut in a plane similar 
to the fluorescence image, it was possible to demonstrate that the specializations were 
concentrated at areas of field-induced AChR aggregation, and at receptor clusters existing on 
control cells. This finding further indicates that these structures participate in AChR stabiliza- 
tion, and that the mechanisms involved in AChR aggregation that result from field exposure 
and nerve contact may be similar. 

During the development of the neuromuscular junction, sta- 
ble aggregates of acetylcholine receptors (AChR) t form within 
the pre-existing diffuse receptor population on the muscle cell 
(l, 2) and may result from the redistribution of surface AChR 
(3). In addition, the postsynaptic sarcolemma develops struc- 
tural specializations, which include regions of increased mem- 
brane density co-extensive with a well-developed basal lamina 
and cytoplasmic dense layer (4-6). This association is main- 
tained at the mature junction, where the specializations and 
AChR aggregates are co-localized at the crests of the postsyn- 
aptic folds (7, 8). A similar co-localization of AChR and these 
specializations has been demonstrated at AChR clusters that 
form on non-innervated muscle cells in culture (9), and at 
those induced by nerve extracts (10) and polycation-coated 
beads (11). In these cases, aggregation also involves the redis- 
tribution of pre-existing AChR into stable aggregates (10-12). 
Because dispersed AChR undergo lateral diffusion in the 
membrane (13, 14), the stability of these aggregates indicates 

t Abbreviations used in this paper: AChR, acetylcholine receptor; 
TMR-aBTX, tetramethylrhodamine-conjugated a-bungarotoxin. 

that a mechanism to restrict receptor motion exists. Consid- 
ering the consistent localization of the described specializa- 
tions at sites of AChR aggregation, it is possible that they may 
be related to this mechanism. 

The exposure of cultured muscle cells to DC electric fields 
also causes the redistribution of surface AChR into aggregates 
(15). It has been proposed that the field-induced translocation 
of the receptors is the result of electrophoresis (15) or electro- 
osmotic flow (16) resulting from the voltage gradient imposed 
along the cell surface. However, the resulting aggregates are 
stable against lateral diffusion following termination of the 
field (15). It was therefore of interest to determine if postsyn- 
aptic-like specializations are also associated with these aggre- 
gates. In this study, fluorescence microscopy was used to 
monitor the distribution of AChR on cultured Xenopus mus- 
cle cells before and after exposure to a 7.5 V/cm electric field; 
the same cells were then thin-sectioned and examined by 
electron microscopy. The results demonstrate that the spe- 
cializations were present and localized at areas where AChR 
aggregates had formed during exposure to the field. A prelim- 
inary account of these findings has appeared (17). 
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MATERIALS AND METHODS 

Cell Culture: Cultures of myotomal muscle cells were prepared from 
stage 20-22 Xenopus laevis embryos 08) as has been described (19, 20) and 
plated on uncoated glass coversJips in a medium consisting of 10% L-15 
(Leibovitz) and 1% fetal bovine serum (Gibco Laboratories, Grand Island, NY) 
in Steinberg's saline (60 mM NaCI, 0.67 mM KC1, 0.83 mM MgSO4, 0.34 mM 
Ca(NO3)2, i0 mM HEPES, pH 7.4). The cells were maintained at 20"C and 
exposed to the electric field after 2-4 d of culture. 

Fluorescence Microscopy: Cultures were labeled with c~-bungaro- 
toxin conjugated with tetramethylrhodamine (TMR-aBTX) (21) for 30-60 rain 
and washed in several changes of culture medium. Fluorescence was observed 
with a Leitz Orthoplan microscope using a 100-W mercury arc lamp and 
epifluorescence illumination through a 63x, NA 1.4, objective and N2. l filter 
cube. The prefield receptor distribution on selected cells was observed and 
recorded using a Cohu 44 l0 silicon intensified target (SIT) video camera (Cohu 
Inc., Electronics Div., San Diego, CA), which permitted reduction of the 
excitation illumination with a 6.3% transmittance neutral density filter in order 
to minimize bleaching of the fluorophore as well as possible adverse effects on 
the cells related to its excitation (22). Selected cells were bipolar, oriented within 
45* of perpendicular to the applied field, and without interactions with other 
cells. The postfield receptor distribution on the same cells was photographed 
with an Olympus OM-2 camera using Kodak Tri-X film without reduction of 
the excitation illumination, to maximize resolution. 

Field Application: Procedures were adapted from those used previ- 
ously (l 5, 23). We constructed open rectangular chambers by attaching cover- 
glass strips to microscope slides with silicone cement. The culture coverglass 
was inverted over the opening and sealed to the chamber with dental wax, 
thereby enclosing an area of 0.2 x l0 x 54 mm 3 with a small open extension 
at each end. Cylindrical glass reservoirs were sealed around the openings with 
silicon grease, and current was applied to these through 15-cm 2% agar- 
Steinberg's saline bridges, which isolated the chamber from beakers containing 
Ag-AgCI electrodes immersed in Steinberg's saline and connected to a power 
supply. This arrangement minimized manipulations by permitting pre- and 
postfield microscopic observations while the cultures were on the chambers. 
Application of 1. l-mA of current, as measured by an ammeter in series with 
the power supply, resulted in a calculated field strength of 7.5 V/cm in the 
chamber, which corresponds to a 20-mV potential gradient across a typical, 
25-#m-wide cell. Field durations of 3-4 h were used in these experiments. 
Controls were treated similarly, but subjected to a 3-4-h incubation period 
(without field exposure). 

Electron Microscopy: After postfield photography, the cultures were 
removed from the chambers under Steinberg's saline and fixed in 2% glutaral- 
dehyde with l0 mM Ca(NOj)2 in 50 mM cacodylate buffer (pH 7.2) for 2 h, 
postfixed with 1% OsO, in the same buffer, en bloc stained with 1% uranyl 
acetate in 50 mM acetate buffer (pH 5.5), dehydrated through an ethanol series, 
and embedded in Epon 812. After curing, the Epon was softened by immersion 
in a 70"C water bath, separated from the coverglass with a scalpel blade, and 
dried in a vacuum dessicator. For sectioning parallel to the substrate, the 
selected cells were relocated, cut out, and glued to Epon blanks with Epoxy 907 
(Miller-Stephenson Co., Chicago, IL). For cross sections, the blocks were 
secured directly into the microtome chuck; after trimming, the cell could be 
sufficiently resolved by light microscopy to identify the level of sectioning. Thin 
sections were collected on Formvar-coated single-slot grids, stained with uranyl 
acetate and lead citrate, and observed with a JEOL 100s electron microscope 
operating at 60 kV. The results are based on 17 cells that were prefield mapped, 
subjected to the field (or control incubation), postfield mapped, and thin- 
sectioned through identified areas of AChR aggregation. 

RESULTS 

Field-induced Redistribution of AChR 
It has been demonstrated that exposure of cultured Xenopus 

myocytes to DC electric fields causes the redistribution of 
AChR into aggregates at the cathode-facing edge of the cells 
( 15, 24). In the following experiments, this redistribution was 
observed directly by labeling the culture with TMR-aBTX 
and recording the prefield AChR distribution on selected cells 
using video-intensified fluorescence microscopy (Fig. I B). 
Following exposure to a 3-h 7.5 V/cm field, the same cells 
were relocated and examined by conventional fluorescence 
microscopy, which revealed new fluorescent areas at the cath- 
ode-facing edge of the myocytes (Fig. 1 C). In contrast to the 
single cathodal aggregate forming on the spherical "myoballs" 
used in previous investigations (24), the bipolar cells used in 
these experiments were characterized by multiple cathodal 
aggregates, which occurred as discrete patches separated by 
nonfluorescing extents of the cathode-facing edge (Fig. l C). 
A speckled substructure in the micrometer-to-submicrometer 
range was evident within these patches. These characteristics 
were particularly evident through the variation in fluorescence 
pattern that resulted upon altering the plane of focus, thereby 
demonstrating discontinuity of the aggregates in the vertical 
plane. Receptor aggregates were not observed to form at 
noncathodal locations during field exposure, or at any loca- 
tion on cells subjected to 3-h control incubations (Fig. 2, B 
and C). Alterations in the position or substructure of pre- 
existing AChR aggregates on field-exposed or control cells 
were not observed. 

Specializations Associated with the 
Cathode-facing Edge 

To determine if field exposure had resulted in ultrastruc- 
tural modification of the cathode-facing edge in association 
with AChR redistribution, selected cells were thin-sectioned 
parallel to the substrate and examined by electron microscopy. 
For this evaluation, it was necessary to minimize interference 
from specializations associated with pre-existing (i.e., not 
field-induced) AChR aggregates. Therefore, only cells that 
had no observable fluorescence at the presumptive cathode- 
and anode-facing edges prior to field exposure were sectioned. 
At magnifications as low as 5,000 the occurrence of discrete 
dense areas at the cathode-facing edge was evident (Fig. 3). 
Like the cathodal fluorescence described above, these were 
distributed discontinuously along the sarcolemma, compris- 
ing extents in the micron-to-submicron range (0.7 + 0.6 #m, 

FIGure 1 AChR aggregates and membrane specializations in a field-exposed muscle cell, cathode towards the left. (A) Phase- 
contrast micrograph of cell after field exposure. V, vacuole; L, lipid inclusion; Y, yolk granule. (B) Video-intensified fluorescence 
micrograph prior to field application. Note the absence of AChR aggregates along the future cathodal edge. (C) Postfield 
fluorescence micrograph of the same cell. Note the numerous AChR aggregates that have developed at the cathode-facing edge 
of the cell, three of which are indicated (arrows). Structures visible by autofluorescence are also indicated. (D) Thin section taken 
at a level similar to the pIane of focus of C, as evidenced by the indicated structures. Small arrows indicate the location of the 
following enlargements. (E) Cathode-facing sarcolemma in the vicinity of aggregate No. 1. Note the presence of dense areas 
(arrows). (F) Enlargement of the upper specialization in E, which demonstrates that the specializations consist of co-extensive 
basal lamina (BL), dense membrane (DM), and submembranous density (SMD). (C) Specialized sarcolemma in the vicinity of 
aggregate No. 2; one patch is partially enclosed by an extension from the cell surface (arrow). (H) Specialized sarcolemma in the 
vicinity of aggregate No. 3. Basal lamina is co-extensive with the lower specializations but not evident at the upper one. MT, 
microtubule. (/) Cathode-facing sarcolemma from an area where AChR aggregation is less extensive. Only two small areas of 
specialization are evident (arrows). (A D) x 750. (E) x 22,000. (F) x 80,000. (G) x 36,000. (H) x 50,000. (/) x 21,000. 
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FIGURE 2 Specializations associated with control AChR aggregates. CA) Phase-contrast micrograph of cell after control incubation. 
(B) Video-intensified fluorescence microscopy prior to incubation. A large AChR aggregate is located on the edge of the cell. (C) 
Postincubation fluorescence micrograph of the same cell. No alterations in the position of the aggregate are apparent. (D) Thin 
section from the same cell. Arrows indicate the region enlarged in E. (E) Several areas of increased density are evident at the edge 
of the cell in the area of AChR aggregation (arrows). (F) High magnification of the density indicated in E reveals basal lamina (BL), 
dense membrane (DM), and submembranous density (SMD). (G) High magnification of the lower dense areas in E. Specializations 
associated with a surface invagination (I) and subsurface cisterna (SC) are indicated. (H) Sarcolemma from an area without AChR 
aggregation; no specializations are apparent. (A-D) x 850. (E) 15,000. (F) x 80,000. (G) x 36,000. (/4) x 14,000. 
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FIOURE 3 Comparison of cathode- and anode-facing edges of field-exposed cells. In all examples, pret!eld video-intensified 
fluorescence microscopy revealed no AChR aggregates at the presumptive cathode-facing edge, whereas numerous cathodal 
AChR aggregates were present following field exposure. Note that a large number of dense areas (arrows} are present at the 
cathode-facing edges (A, C, and E), but none are evident at the anode-facing edges of the same cells (B, D, and F), shown at the 
same magnification. CP, coated pit; CV, coated vesicle; GA, Golgi apparatus. SC indicates a dense area located on a subsurface 
cistern. (A and B) x 1,200. (C and D) x 22,000. (E and F) x 17,000. 
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TABLE I 

Correlations between TMR-~BTX Fluorescence and Fine Structures 

Cell 

Fluorescence* Density* Density s 

C A C A C/A F N F F/N F 

a b c d e f g h 

Structures I 

Area BL SMD MT CV GA 

i j k I m n 

Field-exposedcel ls 
1 1.7 0 0.5 0.1 5.0 1.2 0.4 3.0 D 

ND 
2 2.3 0 0.9 0.4 2.3 3.3 0.2 16.5 D 

ND 
3 L9 0 0.9 0.0 - -  3.4 0.5 6.8 D 

ND 
4 2.4 0 1.2 0.2 6.0 4.1 0.6 6.8 D 

ND 
5 2.9 0 2.4 0.2 12.0 - -  - -  - -  D 

ND 
Pooled * 2.3 0 1.0 0.2 5.0 3.0 0.4 7.5 D 

ND 
D/ND 

Control  cells 
6 3.9 0.0 - -  D 

ND 
7 4.6 0.2 23.0 D 

ND 
Pooled ! 4.2 0.1 42.0 D 

ND 
D /ND 

8.3 8.7 0,0 0.0 0.0 
0.7 1.4 0.9 0.4 0.0 

6.5 7.5 2.1 0.7 0.7 

0.4 0.2 2.2 0,0 0.0 

3.6 6.5 0.0 0.0 0.6 
0.3 0.3 0.0 0.0 0.0 
6.9 8.4 9.9 3.0 1.0 
0.4 0.3 0.8 0.4 0.0 
4.3 8.4 6.3 0.7 0.0 
1.3 0.7 0.5 0.0 0.0 
5.8 8.0 3.4 0.8 0.5 
0.6 0.5 1.0 0.2 0.0 
9.7 16.0 3.4 4.0 - -  

3.9 9.8 2.9 0.0 0.0 
0.1 0.2 0.3 0.0 0.0 
5.8 8.8 0.0 0.0 0.0 

0.5 0.3 0.3 0.0 0.0 
4.8 9.4 1.7 0.0 0.0 
0.3 0.3 0.8 0.0 0.0 

16.0 31.3 2.1 - -  - -  

* C, cathode-facing edge; A, anode-facing edge. Based on the measurement of all fluorescent areas at the cell edges and the total extent of the edge within 
the area of fluorescence illumination taken from 1,100x micrographs. Data are expressed as length per 10/~m of sarcolemma in columns a d and ~g. 

* Based on the measurement of distinct dense areas exceeding 0.25 #m, and the total length of the evaluated edge on 5,000-10,000x micrographs. The 
ends of the cells, where the section was tangential to the sarcolemma, were not evaluated. 

s F, fluorescing; NF, nonfluorescing areas of sarcolemma. Based on the same measurements as in columns c and d, but categorized as within or outside 
highly fluorescent areas. The latter were delimited on the electron micrograph by superimposing the fluorescence image based on landmarks visible in 
both. 
BL, basal Jamina; SMD, submembranous density; MT, microtubu/es; CV, coated vesicles and pits; CA, GoIgi apparatus; D, dense membrane; ND, nondense 
membrane. Based on measurements made within and outside the dense areas identified for columns c and d, but on 25,000-30,000x micrographs. To 
insure distinction of these areas, sarcolemma within 1 #m of dense areas was not evaluated. The total extents of basal lamina and submembranous density 
within an area were measured and expressed as occurrence per 10/am of sarcolemma, Microtubules, coated vesicles, and Golgi apparatus were scored if 
within 75, 250, and 500 nm of the sarcolemma, respectively, and expressed as observations per 10/am of sarcolemma. 
Indicates results calculated from the summed data obtained from individual cells. 

mean + SD, n = 82). These sometimes occurred in groups, 
and 24% exceeded 1 ~m in length. Few dense areas were 
observed at the anode-facing sarcolemma; these were of  a 
slightly smaller dimension (0.5 _.+ 0.3 #m, n = 20), and only 
one (5%) exceeded I ~m in extent. The effect was quantitated 
by determining the total extent of  density occurring along a 
cell edge (omitting the ends, where the section was tangential 
to the membrane), and expressing this as extent per i0 um of 
the evaluated edge. 

Individual and pooled results from the cathode- and anode- 
facing edges of five cells evaluated from x5,000-10,000 mi- 
crographs are listed in Table I. In all of  these cells, the extent 
of  dense area occurring at the cathode-facing edge was ele- 
vated relative to that at the edge facing the anode (columns 
c-e, Table I) and at nonfluorescing edges of  control cells 
(column g, cells 6 and 7). The actual fraction of the cathodal 
sarcolemma that was dense, and the ratio of  this fraction to 
that of  the respective anodal edge (column e), varied consid- 
erably between cells. When the measurements from all five 
cells were pooled, dense membrane was found to comprise 

10% of the cathode-facing sarcolemma, whereas <2% of the 
anode-facing membrane and of  nonfluorescing edges of  con- 
trol cells appeared to be dense. 

The similar distribution of  density and AChR aggregates in 
field-exposed cells suggest a relationship between the phenom- 
ena; this is further implied by the observation that the occur- 
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rence of  density along the cathode-facing edge was propor- 
tional to the occurrence of  TMR-aBTX fluorescence along 
that edge (compare columns a and c, Table I). The spatial 
relationship between the distributions of  densities and AChR 
aggregates was determined more precisely by delimiting the 
extent of  highly fluorescent regions of  the cell edge on electron 
micrographs and quantifying the occurrence of  dense regions 
within and outside these areas. To perform this correlation it 
was necessary that the section (a) be taken from a plane 
similar to that of  the fluorescence micrograph; (b) contain 
intracellular and extracellular landmarks that were also iden- 
tifiable in the fluorescence image (Fig. 1, C and D), to permit 
determination of  the plane of  section and superimposition of 
the fluorescence and thin section images; and (c) be precisely 
parallel to the substrate. These criteria were met for the first 
four cells in Table 1, and cell number 4 is shown in Fig. 1. 
The results indicate that the spatial distribution of  AChR 
aggregates and densities are correlated, with the occurrence of 
densities being elevated eightfold in fluorescing areas relative 
to nonfluorescing regions (compare columns f a n d  g, Table 
I). This is evident by comparing Fig. 1, E-H, which are 
electron micrographs of  the fluorescent areas indicated in Fig. 
1 C, with Fig. i I, which is of  a low-fluorescence area. For 
comparison, two control cells that had AChR aggregates on a 
free edge of  the cell (i.e., not substrate associated) were sec- 
tioned parallel to the substrate. In these, the elevated occur- 



FIGURE 4 Specializations associated with field-induced AChR aggregates. (A) Tangential section of specialized area reveals 
microfilaments associated with the submembranous density. (B) A microtubule (MT) parallels a specialized region for several 
micrometers. (C) A coated vesicle (arrow) in the vicinity of a specialized region. (D) A coated pit (arrow) associated with the edge 
of a specialization. The contents of the pit appear continuous with basal lamina (BL). (E) A Golgi apparatus (GA) near a specialization 
(arrow). (F) Specializations on subsurface cisternae (arrows). (G) Specialization on a membrane invagination. (A) x 54,000. (B) 
65,000. (C) x 80,000. (D) x 80,000. (E) x 33,000. (F) x 27,000. (G) x 70,000. 
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rence of dense patches in fluorescent regions of the edge was 
greater than that observed in field-exposed cells (Fig. 2 E and 
columnffor  cells 6 and 7 in Table I). The intensity of TMR- 
aBTX fluorescence was also greater than in cathodal fluores- 
cent areas, which further suggests a relationship between the 
dense areas and AChR aggregates. 

High-magnification (25,000-30,000) micrographs of the 
cathodal dense areas identified in the above quantification 
were evaluated to determine their structural constitution. 
Quantification of the findings are listed in columns i-n of 
Table I. All of the densities were observed to result from the 
presence of a submembranous dense layer, generally in asso- 
ciation with basal lamina and increased sarcolemmal density 
(Fig. 1 F).  This association varied from a precisely co-exten- 
sive and continuous patch of all three specializations to an 
intermittent disposition of the elements within the dense area 
in which their registration was less precise. Although in some 
cases the submembranous dense layer and dense sarcolemma 
occurred in the absence of basal lamina, basal lamina was 
rarely observed in the absence of the other specializations. 
The extent of these specializations within delimited dense 
areas is indicated in columnsj and k of Table I. The submem- 
branous density was substructured and irregular in thickness 
(40 _.+ 10 nm, n = 62) and appeared to impinge directly on 
the sarcolemma. The cytoplasmic surface of the structure 
merged indistinctly with cortical granular and filamentous 
structures. Basal lamina was observed at 91% of the identified 
dense areas and was also substructured and variable in thick- 
ness (45 + 16 nm, n = 55). The substance generally appeared 
to impinge directly on the membrane, and a lamina lucida 
was rarely observed. The occurrence of dense membrane was 
difficult to assess as the sarcolemma was frequently obscured 
by the submembranous layer. However, at many locations 
the membrane density exceeded that of the submembranous 
structure, and its distinction from unspecialized sarcolemma 
was evident at most (55%) of the dense areas (Fig. IF ) .  
Similar specializations were observed at dense areas in control 
cells (cells 6 and 7 in Table I and Fig. 2 F),  but they occurred 
infrequently in areas categorized as nondense in low-magni- 
fication observations of both field-exposed and control cells 
(Table I and Figs. 11 and 2H). 

Several other specializations were sometimes observed to 
associate with dense areas. Specific examples of these are 
shown in Fig. 4, and others are indicated in Figs. 1-3. The 
frequency at which these structures were observed per 10 #m 
of dense membrane is indicated in columns l-n of Table I. 
Microtubules (diameter [d] = 21.4 _+ 2.0 nm, n = 15) were 
observed within 75 nm of 34% of the dense areas, and in 
some cases paralleled these for several micrometers (Fig. 4 B). 
Coated vesicles (d = 81.5 _+ 3.0 nm, n = 4) and coated pits 
were observed in association with 8% of the densities (Fig. 4, 
C and D). An array oflamellae and vesicles resembling Golgi 
apparatus was observed near 5% of the dense areas (Fig. 4 E). 
The specificity of these associations is indicated by the fre- 
quency at which the structures were observed in relation to 
nondense sarcolemma (columns l-n, Table I). In addition, a 
direct association of the submembranous density with micro- 
filaments (d = 5.8 -4- 1.0 nm, n = 43) was observed in 76% of 
dense areas evaluated at 80,000-90,000× (Fig. 4A). Finally, 
9% of the dense areas were located in sarcolemmal invagina- 
Lions (Fig. 4 G) or subsurface cisternae (Fig. 4 F); it is possible 
that the latter are actually cross-sectioned invaginations. In 
the control cells sectioned in this investigation, microtubules 
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were observed in relation to 17% of the densities, and 17% of 
the dense areas were located in sarcolemmal invaginations or 
cisternae; however, associations with Golgi apparatus or 
coated vesicles were not observed. 

In addition to the cells listed in Table 1, seven field-exposed 
and three control cells were sectioned parallel to the substrate 
or cross-sectioned through identified field-induced or control 
AChR aggregates and evaluated qualitatively. The observa- 
tions were consistent with those described above, except that 
(a) dense areas on the cathode-facing edge of field-exposed 
cells appeared less extensive in cross-sectioned cells, further 
indicating subunit structuring of the specializations, and (b) 
substrate-associated control aggregates were always associated 
with specializations on large cisternae or intensive membrane 
invaginations, which sometimes exceeded 0.5 um. 

DISCUSSION 

This investigation indicates that the application of an electric 
field to cultured Xenopus myocytes results in the elaboration 
of membrane-associated structural specializations in addition 
to AChR aggregates at the cathode-facing edge of the cells, 
and that a temporal and spatial relationship exists between 
these phenomena. That both receptor aggregates and the 
specializations are elaborated within the 3-4-h duration of 
the field suggests a temporal association; this time scale is 
similar to that of their formation at developing neuromuscular 
contacts in vivo (4, 25). A spatial association is indicated by 
an increased concentration of the specialized dense areas 
within areas of AChR aggregation observed in correlated 
fluorescence and thin-section images. The structural charac- 
teristics of these specializations and the observed temporal 
and spatial relationships are similar to those observed at 
developing neuromuscular junctions and AChR aggregates in 
other systems (9-11), which may indicate a common mech- 
anism for their elaboration as well as a functional relationship 
between AChR aggregation and the specializations. 

A considerable amount of evidence can be extracted from 
the literature to support the contention that basal lamina or 
the submembranous density is involved in the stabilization of 
aggregated AChR. Rotary replication (26) and high-voltage 
or whole-mount electron microscopy (27, 28) have resolved 
the submembranous density into a filamentous network, and 
the impingement of these filaments upon the sarcolemma has 
been described (12, 29-31). Furthermore, immunological 
studies indicate that the subsynaptic sarcoplasm is distin- 
guished by a number of cytoskeletal proteins, including the 
cytoplasmic isoforms of actin, vinculin, a-actinin, filamin, 
and an intermediate filament-like protein (32-34). The pos- 
sibility of cytoskeletal-AChR interaction is also indicated by 
(a) the disposition of postsynaptic AChR correlates into rows 
as visualized by freeze-fracture and deep-etch replication (30, 
3 l, 35), an arrangement which is consistent with attachment 
to underlying filaments; (b) the increased diffusional mobility 
of AChR in membrane blebs (36), which are presumably 
devoid of cytoskeletal interaction; (c) the capacity of Triton- 
X to extract aggregated AChR (37), which indicates that 
interactions between the receptor and extramembranous ele- 
ments must exist; and (d) the ability of cytoskeletal disrupting 
agents to affect AChR aggregation and dispersal (38, 39), 
suggesting a functional relationship. Some of the above evi- 
dence is also consistent with an involvement of the associated 
basal lamina in the stabilization of aggregated AChR. This 



substance also has a specialized molecular composition (40- 
42) and directly impinges on the sarcolemma (26, 29). Fur- 
thermore, isolated synaptic basal lamina is capable of inducing 
AChR aggregation (43-44). However, the involvement of 
either structure in AChR stabilization remains to be estab- 
lished. For example, associated basal lamina and submem- 
branous densities are also co-localized at certain regions in 
the absence of AChR aggregation: at focal contacts (45), along 
the nonjunctional sarcolemma of slow muscle (46), and at 
the myotendinous junction (46, 47). Considering the tenacity 
of the neuromuscular contact (48), it is possible that the 
specializations are more relevant to the stabilization of the 
junction than of AChR. In this regard, it is interesting that 
the experimental induction of AChR aggregation with basal 
lamina (43), polycation-coated beads (11), silk thread and 
degenerating nerve (49), or substrate (12) requires cell surface 
contact with an exogenous substance. The induction of aggre- 
gation by nerve extracts and conditioned medium may be 
analogous if the active factor is a cell surface component, 
which is consistent with the ability of laminin and collagen V 
to stimulate its activity (50). The aggregation of AChR and 
development of associated specializations through exposure 
to the electric field may therefore be significant in that events 
are induced in the absence of such contact, which strengthens 
the argument for a functional association between the spe- 
cializations and AChR stabilization. 

The observed spatial coincidence between AChR aggregates 
and dense areas was not absolute. This may be the result of 
(a) an imperfect alignment of the thin-section and fluores- 
cence images; (b) a disparity between the location or thickness 
of the plane of section and fluorescence plane of focus; or (c) 
the presence of unlabeled AChR aggregates (i.e., resulting 
from AChR externalized after prefield TMR-aBTX labeling), 
or aggregates smaller than the limit of resolution for fluores- 
cence microscopy. Alternatively, a minority of AChR aggre- 
gates or dense areas may exist in the absence of the described 
association. Furthermore, this study does not establish 
whether the formation of specializations is precedent, coinci- 
dent, or subsequent to that of the aggregate (i.e., within the 
3-h field duration). Other investigators have observed special- 
ized sarcolemma at which AChR labeling is partial or absent 
co-existing with labeled specializations (9, 10), which may 
indicate that the specializations precede aggregation, perhaps 
acting as a receptor "trap" (51). Considering the measured 
rate of AChR diffusion (13, 14), and possible electrophoretic 
effects (15), the time scale of electric field-induced aggregation 
does not conflict with this possibility. 

The association of microtubules, coated vesicles, and cis- 
ternae with AChR aggregates has been observed in several 
systems. Microtubules have been observed in association with 
postsynaptic densities and the associated microfilaments (9, 
l 1, 26), and colchicine inhibits receptor aggregation (12, 38, 
52). (However, colchicine does not appear to affect field- 
induced AChR aggregation [15].) Coated vesicles are often 
associated with the specialized surface, and can be labeled 
with a-bungarotoxin conjugates (9, 53-54); these may repre- 
sent a vector for the insertion or reuptake of AChR. Cisternae 
with basal lamina and submembranous density specializations 
have been observed in association with polycation-coated 
bead contacts (11) and acetylcholine esterase sites (55) in 
cultured Xenopus muscle cells. In terms of the current inves- 
tigation, it is possible that intracellular structures such as these 
participate in the elaboration of the observed specializations 

at the cathode-facing edge. It is also possible that they are 
involved in externalization of newly synthesized AChR at the 
cathode-facing cell surface, as the participation of these in 
field-induced AChR aggregation has not been excluded. How- 
ever, each of these elements was observed only at a minority 
of the dense areas, and their potential involvement in any 
AChR aggregation event remains a matter for further study. 

The exposure to a DC electric field could be expected to 
influence the cell in a number of ways, including electropho- 
resis of surface components, extracellular electro-osmotic 
flow, membrane depolarization, gradient formation, etc. This 
study does not indicate which of these influences are impor- 
tant in AChR aggregation, and the means by which the field 
effects this process is, as is the case for nerve-induced receptor 
aggregation, a matter of speculation. However, a number of 
similarities between nerve and field-induced AChR aggrega- 
tion are apparent: (a) Both cause the redistribution of preex- 
isting AChR into localized areas of the sarcolemma (3); (b) 
both result in the formation of distinct AChR clusters with a 
substructure in the micrometer-to-submicrometer range (56); 
(c) both result in the stabilization of AChR against lateral 
diffusion (13, 15); (d) both result in the formation of structural 
specializations in association with the receptor aggregate; and 
(e) both occur in a similar time span (25). Thus, it seems 
likely that the two influences are activating the same aggre- 
gation mechanism. We anticipate that further studies using 
the electric field system, which is easily controlled in terms of 
the site and timing of AChR aggregation, will clarify the 
events involved in this phenomenon. 
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