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ABSTRACT The neurofibrillary tangles that occur in the brain in cases of senile dementia of 
the Alzheimer type contain a distinctive type of filament, the paired helical filament (PHF). 
We have developed a method for isolating the tangles postmortem in sufficient yield for 
structural study of PHFs by electron microscopy of negatively stained and shadowed prepa- 
rations. This material shows the characteristic helical structure seen in sectioned embedded 
material. In addition, two striking fragmentation patterns are observed. (a) Some filaments 
show sharp transverse breaks at apparently random positions along the filament. (b) In a few 
PHFs one strand is missing for a variable length, whereas the other appears to maintain its 
structural integrity. The shadowed specimens show the PHF to be wound in a left-handed 
manner. These observations indicate that the PHF consists of subunits of very limited axial 
extent arranged along two left-handed helical strands. The visualization of the substructure 
within the PHFs is rather variable and a model building approach has therefore been adopted, 
which has allowed the main features seen in the images to be interpreted. The subunit appears 
to have at least two domains in a radial direction and an axial extent of <5 nm. The whole 
structure can best be described as a twisted ribbon and indeed alkali treatment does untwist 
PHFs to give flat ribbons. The nature of the proposed model makes it most unlikely that the 
PHF is formed by a simple collapse of normal cytoskeletal elements, such as neurofilaments. 

In dementias of the Alzheimer type, the main kinds of mor- 
phological lesion which occur in the brain are the neurofi- 
brillary tangle, the neuritic plaque, and granulovacuolar de- 
generation (l 8). Of these, the presence of abundant tangles in 
the cerebral cortex has an almost unequivocal diagnostic 
significance, being found only in cases with dementia (17). 
Lesions superficially similar to the tangle occur in other 
settings, such as aluminium intoxication (14), viral infections 
of the brain (24), and in cultured neurons treated with micro- 
tubule-depolymerizing agents (13). However, in Alzheimer's 
disease (6) and in some rarer neurological disorders (24), the 
tangles are distinctive in that the filaments which accumulate 
in the perikaryon of affected cells exhibit a characteristic 
paired helical structure. This appearance is different from any 
of the filamentous components of the normal neuronal cyto- 
skeleton and from the filaments in other types of tangle (26). 
These paired helical filaments (PHFs)' are also found in the 

~Abbreviations used in this paper. PHF, paired helical filament; 
PMSF, phenylmethylsulfonyl fluoride. 

abnormal dendritic neurites of the neuritic plaque (7, 22). 
Thus, a morphologically distinctive class of filament, the PHF, 
occurs in the two main structural lesions of Alzheimer's 
disease. Strong statistical correlations have been established 
between the degree of dementia observed in life and the extent 
of plaque and tangle formation observed postmortem (3, I l, 
12, 21). While such correlations do not establish causation, 
they do suggest that a better understanding of the nature and 
formation of plaques and tangles might provide insights into 
the pathogenesis of the disease. To this end we have been 
studying the structure of the PHF. 

Previous electron microscopic studies of the structure of 
PHFs have been based mainly on sectioned material (7, 23). 
These showed that the PHF appeared to consist of two fila- 
ments wound helically around one another, with a longitu- 
dinal spacing between crossovers of ~65-80 nm and a width 
modulated between ~27-34 nm at the widest part and 10-15 
nm at the narrowest. The dimensions reported for negatively 
stained PHFs are much smaller than those in sections, ranging 
from 15-22 nm at the widest to 6-8 nm at the narrowest (9, 
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25). However, large numbers of free PHFs appear not to have 
been available for detailed structural analysis. 

We have developed a preparative procedure that enables us 
to visualise large numbers of isolated PHFs by electron mi- 
croscopy of shadowed or negatively stained specimens. The 
details of well-preserved filaments seen in these preparations 
and the nature of the fragmentation patterns observed sug- 
gested to us a preliminary model for the subunit organization 
in the PHF. We propose that the PHF consists of two strands 
of subunits interwound in a left-handed double helix; each 
subunit has a small (<5 nm) axial extent but has at least two 
domains in a radial direction. The nature of the subunit in 
the proposed model makes it unlikely that the PHF arises 
from a simple collapse of normal cytoskeletal elements. 

MATERIALS AND METHODS 

Source of Pathological Tissues: Brains were obtained postmortem 
from well-documented cases with a clinical diagnosis of senile dementia of the 
Alzheimer type. In each case, the clinical diagnosis was confirmed histologically 
by the presence of large numbers of plaques and tangles in frontal and temporal 
cortex. Tissues obtained from four human brains were used in the present 
study; these people had died at 65, 67, 71, and 84 years old. The material used 
in preparations was taken from frontal cortex, temporal cortex, and hippocam- 
pus. Transverse sections were cut after removal of pial and meningeal mem- 
branes. White matter was then dissected away and discarded, leaving 20--40 gm 
of tissue for use in an individual preparation. Tissues were stored at -70"C. 

Preparation of PHF-enriched Fractions: Tissues were mixed with 
an approximately equal volume of 0.32 M sucrose, 1 mM magnesium chloride, 
0.25 mM phenylmethyl sulfonyl fluoride (PMSF), 1 mM EGTA, 5 mM 
potassium phosphate (pH 6.5). The resulting mixture was homogenized in a 
teflon-glass manual homogenizer and filtered through a fourfold muslin screen 
mounted on a syringe, to give a final volume of 70-100 ml. The filtered 
homogenate was layered over an equal volume of 1.5 M sucrose, 1 mM 
magnesium chloride, 0.25 mM PMSF, 1 mM EGTA, 5 mM potassium phos- 
phate (laH 6.5), and centrifuged at 27,000 g for 60 rain in a Beckman SW 27 
rotor (Beckman Instruments, Inc., Palo Alto, CA) at 15"C. The supernatant 
and pellet were discarded. The material at the interface was harvested, together 
with the underlying 1.5 M sucrose layer. This mixture was rehomogenized in a 
teflon-glass homogenizer, layered over 2.0 M sucrose, 1 mM magnesium 
chloride, 0.25 mM PMSF, 1 mM EGTA, 5 mM potassium phosphate (oH 6.5), 
and centrifuged at 40,000 g for 60 rain in a Beckman SW 40 rotor at 15"C. 
The fraction that floated to the top and the upper supernatant were discarded, 
as was the bottom pellet. The material at the interface was harvested, resus- 
pended in the initial 0.32 M sucrose and buffer solution, and centrifuged at 
40,000 g for 60 min in a Beckman SW 40 rotor at 15"C. This final pellet was 
stored at -70"C, using the cut polyallomer centrifuge tube sealed with plastic 
film as a storage well. 

Electron Microscopy: For electron microscopy, fragments of the 
final pellet were cut off and resuspended in 100 mM sodium chloride, 12.5 
mM sodium phosphate (pH 6.5) using a 100-~1 glass homogenizer. Typically, 
a 4-#1 aliquot of this suspension was placed on a 400-mesh carbon-coated 
copper grid, generally washed with 2% lithium dodecyl sulphate, before nega- 
tively staining with 1% aqueous sodium phosphotungstate (pH 6) or with 
unbuffered 1% uranyl acetate. Micrographs were recorded at 80 kV at a nominal 
magnification of 45,000 using a Philips EM 301 electron microscope. Shad- 
owing was performed in an Edwards evaporator (Edwards High Vacuum, 
Model E306A, Manor Royal, Crawley, Sussex, U.K.) using platinum deposited 
at an angle of about 20* for unidirectional methods and 5* for rotary methods. 

RESULTS 

Negatively Stained Filaments 
A series of discontinuous sucrose gradient centrifugation 

steps was used to produce a fraction enriched in tangles and 
tangle fragments. This enrichment resulted from the removal 
of a substantial quantity of myelin-associated material during 
the flotation step (second centrifugation) and the pelleting of 
nuclei in both first and second centrifugations. Stages in the 
preparation of PHFs were monitored by counts of whole 
tangles and tangle fragments, using the distinctive gross mot- 
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phology of tangles observed by fluorescence microscopy (27). 
Typical yields of tangle-like aggregates of PHFs seen in the 
electron microscope do not provide an index of purity, but in 
practice free PHFs could be found on almost all grid squares 
and PHF aggregates could be found in approximately one 
quarter of grid squares. The various cases and brain regions 
used in preparations showed no differences, either in terms of 
tangle morphology or PHF ultrastructure as seen by electron 
microscopy. No distinction between cases or source of tissue 
will therefore be made in the results reported here, although 
there was no pooling of material. 

PHFs could be visualized with a number of negative stains, 
of which uranyl acetate and sodium phosphotungstate proved 
most useful. Uranyl acetate gave images with high contrast 
and clearly defined boundaries, whereas phosphotungstate 
gave superior delineation of the substructure. A typical frag- 
ment of tangle is shown in Fig. I b. Enlarged views (Fig. 1, a 
and c) of the PHFs projecting around the periphery show 
their appearance in sodium phosphotungstate stain. Fig. 2 a 
shows PHFs negatively stained with uranyl acetate. 

In both stains the helical morphology was clear and showed 
the characteristic modulation in transverse diameter with a 
period of ~70 nm. However, the longitudinal periodicity was 
variable, ranging from 60 nm at one extreme to almost 
complete flattening and loss of modulation at the other. This 
will be discussed further below. The maximum diameter was 
also variable, ranging from 15 to 22 nm. The higher figure 
was less than that reported from sectioned embedded tissues 
(23) but comparable with previous negative staining (9, 25). 

Fragmented Filaments 
An important insight into the molecular architecture of the 

PHF is provided by two kinds of fragmentation pattern ob- 
served in negatively stained preparations. 

A fairly common form of fragmentation arises from sharp 
transverse breaks across the filament. Infrequently, it is pos- 
sible to find small areas of the grid in which extensive breakage 
of filaments has occurred to give an assortment of fragments 
(Figs. 2 b and 3 a). Additionally, there are instances of fila- 
ments fragmenting in situ, so that the relative disposition of 
the fragments is preserved (Figure 3b). In both cases the 
fragments vary in length and there does not appear to be a 
favored longitudinal unit. Rather, PHFs appear to be able to 
break randomly at any point along their length. Importantly, 
a clean transverse break is almost invariably observed. Fur- 
thermore, in the shortest fragments which are still recogniz- 
able as originating from PHF (~30 nm in length), the basic 
helical twist characteristic of PHFs is well preserved. 

Another kind of fragmentation which is much more rarely 
observed (Fig. 4, a-c) is a longitudinal break along the axis of 
the filament, with the splitting off and loss of half a PHF. It 
is particularly interesting that the single strand left after such 
a break continues to have an observable twist, retaining the 
same periodicity and substructure as the complete PHF. The 
example shown in Fig. 4 b is particularly striking, as the region 
of single strand is flanked by regions of apparently normal 
PHF. Although the straight transverse break is by far the most 
common ending for a PHF, occasionally a single strand can 
be seen extending for a short distance beyond a half break 
(Fig. 4, d-f) as previously noted (23). The single strand 
continues to show the same characteristic twist and periodicity 
as observed in the parent filament. The loss of one strand and 



Metal Shadowing 
Metal shadowing gives a complementary view of the struc- 

ture of the PHF. The unidirectionally shadowed material (Fig. 
5 a) shows that PHFs are left-handed. The clear sinusoidal 
modulation observed along the edge of the shadow implies 
that the cross section cannot be circular, but is instead typical 
of the varying aspect presented by a twisted ribbon-like struc- 
ture. This interpretation is reinforced by the rotary-shadowed 
specimens (Fig. 5 b). 

Detailed Substructure 

To aid description, the widest portion in the image of a 
PHF will be termed the "loop" and the narrowest portion the 
"crossover." A common feature of loops is the appearance of 
two pairs of longitudinal striations, one on either side of the 
axis (Fig. 6), as has been noted in another study (25). These 
striations consist of a pair of lighter lines, due to exclusion of 
stain, separated by a darker line of stain to give a "tramline" 
appearance. The pairs, or tramlines, on either side of the axis 
are further separated by a darker line along the axis, thus 
making two pairs of tramlines. The dark line along the axis is 
often darker than that within a tramline. The transverse 
separation of these four major longitudinal striations is - 4  
nm. These striations do not generally extend the full length 
of a single loop. Rather, the loop has a polar appearance, with 
four light strands and a dark central line at one end, and three 
light strands, one of which is central, at the other. 

FIGURE 1 Fragment of a tangle, negatively stained with sodium 
phosphotungstate. A low magnification view is shown in b, whereas 
a and c show selected areas at higher magnification. Arrowheads 
identify corresponding points in the field. The characteristic mor- 
phology of the PHFs emerging from the tangle is clear. Bars, (a and 
c) 100 nm; (b) 1,000 nm. (a and c) x 135,000; (b) x 12,000. 

the continuation of the other gives the end of the PHF a 
notched appearance. We have seen just one example (Fig. 4g) 
of an apparent internal transverse break in one of the strands 
of a PHF, associated with separation of the strands. 

The conclusion that we draw from these fragmentation 
patterns is that each strand of a PHF can maintain its struc- 
tural integrity. However, a half filament is probably much 
more prone to breakage than a complete PHF and therefore 
these structures are rarely observed. The sharp transverse 
fragmentation at apparently random positions with no sign 
of fraying (apart from the splitting just described) indicates 
that the constituent subunit is likely to be of limited axial 
extent and not an extended fibrous molecule. 

FIGURE 2 Intact and transversely fragmented PHFs, negatively 
stained with uranyl acetate. The filaments show higher contrast and 
sharper boundaries but less detailed substructure than the phos- 
photungstate-stained ones (Figs. I and 3). The sharp transverse 
breaks giving small fragments of apparently random lengths are 
clear. Bar, 100 nm. x 75,000. 
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line of stain can often be seen running from bottom left to 
top fight across the loop. The strapwork and sloping line can 
both be produced in the model image (see Model Building) 
by reducing the weight of the front relative to the back of the 
helix, thus simulating partial stain-embedding. For a partially 
stain-embedded specimen it is usually the side nearest the 
carbon film which is contrasted, whereas in a shadowed 
specimen the side away from the carbon film is visualized. 
The shadowed and the partially stained (strapwork) images 
should therefore appear to be of opposite hand and this is 
what we observe. 

A further feature of loops is the appearance of transverse 

FIGURE 3 Transversely fragmented PHFs, stained with sodium 
phosphotungstate, a shows a field of fragments, whereas b shows 
individual PHFs which have broken with clear transverse breaks at 
apparently random positions along each filament. Bars, 100 nm. (a) 
x 75,000; (b) x 135,000. 

Another common appearance of loops is shown in Fig. 7. 
The tramlines on either side of the axis appear to twist and 
fold under the other half filament, at either end of the loop. 
We call this a "strapwork" appearance. When the strapwork 
appearance is particularly pronounced, a thin sloping black 
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FIGURE 4 Longitudinal splitting of PHFs. a - c  show PHFs that con- 
tain long regions of single rather than paired filament. The arrow 
heads indicate the ends of each single filament region, which in the 
case of b is in the middle of a PHF. d- f  show short regions of single 
filaments at the ends of PHFs, giving these ends a notched appear- 
ance indicated by the arrowhead, g shows an example of an 
apparent internal break in one of the filaments constituting a PHF. 
All filaments were stained with sodium phosphotungstate. Bar, 100 
nm. x 135,000. 



FIGURE 6 Substructure within loops. The arrowheads indicate 
loops in which the transition from three to four longitudinal white 
striations is visible (see text). This is most clearly seen by tilting the 
diagram so as to view each filament at a glancing angle along the 
direction of the axis. b shows a view of the model which displays 
similar features. In this and all subsequent figures the PHFs are 
negatively stained with sodium phosphotungstate. Bar, 100 nm. × 
135,000. 

FIGURE 5 Shadowed PHFs. (a) Unidirectionally shadowed, show- 
ing clearly that the major helix is left handed. The strongly scalloped 
edges of the shadows indicate the changing aspect of the profile of 
the filament. (b) Rotary-shadowed, giving an impression of a twisted 
ribbon. Bar, 100 nm. × 75,000. 

striations at an axial spacing of  3-4 nm (Fig. 8). Although 
individual loops showing this appearance are not uncommon, 
it is infrequent for adjacent loops to show it, even where the 
loop length remains constant. Also, transverse striations can 
sometimes be observed on one side of  the axis, but not on the 
other, and occasionally these transverse striations can be seen 
to alternate on either side of  the axis. 

These diverse appearances are unlikely to be due to filament 
heterogeneity, since the various loop features described can 
often be discerned along the same stretch of  filament. Rather, 
differences in stain penetration, filament preservation, and 
aspect presentation probably accentuate particular facets of a 
common underlying structural unit. 

The appearances of  crossovers are less diverse than loops. 
Generally, two principal strands can be discerned at cross- 
overs, with a degree of stain accumulation on either side 
which is greater than that around loops. Frequently, an ad- 
ditional fainter strand can be detected within this region of  
stain build-up, on either side of  the crossover. 

Ribbon-like Structures 

After an alkaline wash (1 M NaOH), untwisting of  PHFs 
was observed, so that some filaments of  very much longer 

FIGURE 7 The strapwork appearance (see text). Loops in which 
the sloping black line is clearly visible are indicated by arrowheads. 
The far right panel shows the appearance of the model, when 
simulating partial stain embedding. Bar, 100 nm. x 135,000. 

FIGURE 8 Transverse striping within loops. The arrowheads indi- 
cate loops which show particularly clear transverse striping of ~4 
nm spacing. Bar, 100 nm. x 135,000. 

periodicity and even entirely flattened ribbons were produced 
(Fig. 9). Ultrastructurally, the ribbons have a similar appear- 
ance to the loops in helical filaments described above. Some 
ribbons show transverse striations for variable distances. The 
most prominent pattern however is that of  two pairs of  
longitudinal stripes, separated by a darker central cleft--the 
two sets of  tramlines referred to earlier (see Detailed Substruc- 
ture). Occasionally cleavage is observed along this central cleft 
to produce two half-ribbons. The example shown in Fig. 9c 
has one set of  tramlines projecting a short distance beyond 
the other set and is analogous to the notched ends shown in 
Fig. 4, d-f. Furthermore, it contains a region of  single strand 
joining the ribbon to the more normal part of  the PHF. It is 
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images of PHFs. The simplest obvious symmetry was as- 
sumed, namely that the two strands of the PHF were parallel 
and related by a twofold rotation parallel to the axis of the 
helix. The structure thus generated is polar, in agreement with 
the images (Fig. 6). The helical symmetry was chosen to make 
each strand repeat after 34 subunits per turn, though the 
whole model repeats in half this distance, corresponding to 
one loop. For a crossover spacing of 70 nm, this gives the 
subunit an axial dimension of ~4 nm, in agreement with the 
transversely striped images (Fig. 8). Changes in the assumed 
helical twist alter the length of the loop but do not significantly 
affect the internal details. 

At each level, the pair of twofold related subunits were 
represented by a set of six spheres (Fig. 10e). The sizes and 
relative positions of the spheres were selected to give a model 
of the PHF with approximately the dimensions observed in 
the electron micrographs of negatively stained material. A 
minimum of two spheres in each subunit is needed to produce 

FIGURE 9 Flattened ribbons. PHFs washed with 1 M NaOH on the 
grid appear to untwist, to give a much greater distance between 
crossovers than in normal PHFs and hence extensive stretches in 
which the structure is displayed as a flattened ribbon, a, b, d, and 
e show general views of partially untwisted PHFs. The arrowheads 
in c,/, g, and h indicate stretches of ribbon where the two sets of 
tramlines separated by a strong central black line can be clearly 
seen (see text). Bar, 100 nm. x 135,000. 

important to note that we do not see any splitting of the 
tramlines themselves into individual 4-nm substrands or pro- 
tofilaments, either in the flattened ribbons or in the single- 
stranded notched ends of PHFs. 

Model Building 
In view of the variable appearance of the images of PHFs 

and the difficulty in obtaining sufficiently regular specimens 
to enable the production of good diffraction patterns, we have 
used model building in the first instance to interpret the 
micrographs. This was done by a computer program which 
generated structures with a specified helical symmetry, form- 
ing the subunits in the simplest way out of a set of spheres of 
variable size, density, and relative position. The results were 
viewed as projections on a raster-graphics terminal (AED 
767), which could also be photographed. 

It was possible to produce by trial and error a model (Fig. 
10) which displays the major features described above in 
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FIGURE 10 Simulated images of PHFs generated by computer 
modeling. (a) Complete PHF generated from the subunits shown in 
e. The polar character of each loop going from central white stripe 
to central dark stripe is clear. (b) Image arising from the same 
structure as a but with the weight of the near side of the helix 
reduced relative to that of the far side, thus simulating a one-sided 
appearance like the partially stain-embedded strapwork images (Fig. 
7). In the convention adopted, this is equivalent to viewing the 
structure from the inside; a view from outside, such as is provided 
by shadowing, would give a mirror image to the one shown. (c) 
Transition from double strand (bottom loop) to single strand (top 
two loops) produces an image like those shown on Fig. 4, a-c, in 
which one strand of the PHF is missing. (d) By breaking one strand 
in the middle of a loop and allowing the other strand a short 
extension, a notched appearance is generated (cf. Fig. 4, d-f). (e) 
Cross section of the model showing the disposition of the spheres 
used to build the two subunits at a given level. The dotted line 
indicates the most likely boundary between physical subunits, 
based on the appearance of single strand regions. 



the double tramline appearance in loops. However, models 
based on subunits with only two spheres gave images which 
looked far too empty compared with the micrographs. Addi- 
tion of a third sphere to each subunit produced images much 
more like the micrographs. The likely boundary between 
physical subunits, based on the appearance of single-stranded 
regions, is indicated by the dotted line in Fig. 10e. Each 
physical subunit therefore has a stain-penetrated cleft, which 
gives rise to the tramline appearances. Though it would be 
possible to further refine the model, the basic form of which 
appears correct, a more productive approach is to use image 
reconstruction techniques; this is what we are attempting to 
do. 

The best current model (Fig. 10a), besides displaying the 
overall wide-to-narrow modulation in diameter, shows inter- 
nal details similar to those seen in images of PHFs. In partic- 
ular, the change within a loop from a central white stripe (the 
3-strand appearance) to a central dark stripe (the 4-strand 
appearance arising from two pairs of tramlines (cf. Fig. 6) is 
clear. By varying the densities of the elementary spheres as a 
function of depth in the direction of view, a partially one- 
sided appearance can be produced (Fig. 10b). This is very like 
the strapwork appearance (Fig. 7), and suggests that the latter 
arises from the PHF being only partially embedded in stain. 
The one-sided view also allows comparison with the shadowed 
images, which show similar features although of opposite 
hand, as discussed above. Finally, by suppressing a length of 
one of the helical strands, the transition from double to single 
strand can be mimicked (Fig. 10c), as can the nicked end of 
a loop with one strand projecting (Fig. 10d). 

DISCUSSION 

We have developed a protocol for preparing tangle-enriched 
fractions from cortical tissues obtained postmortem from 
Alzheimer cases. Filaments having the typical morphological 
characteristics of PHFs were visualized by electron micros- 
copy using negative staining and metal shadowing. They were 
observed both as individual filaments and within larger aggre- 
gates having the appearance of intact or fragmented tangles. 
It is not clear at this stage to what extent the individual PHFs 
may have been degraded in the course of the procedures 
required for clear visualization, but the images produced do 
not look markedly different from the individual PHFs seen 
in embedded and sectioned material (10, 23). 

Images of negatively stained and shadowed PHFs prepared 
in the manner described above seem to show more detail than 
can be seen in micrographs of sectioned embedded specimens. 
However, the details seen do not usually extend over adjacent 
lengths of the same filament. Rather, a pattern seen in one 
loop of a given filament, while not being seen in neighboring 
loops on that filament, can readily be found in individual 
loops of other filaments. In view of this diversity of appear- 
ance, probably arising from the preparative treatment and 
variation in helical twist rather than reflecting an intrinsic 
heterogeneity of the subunit packing, we have attempted 
initially to interpret the images by model building. 

The structure that we propose is based on a left-handed 
double helix of subunits. The inherent double-helical nature 
of the packing is supported not merely by the overall "paired 
helical filament" appearance, but more importantly by the 
observation of single helical regions, both at broken ends and 
internally, in otherwise normal PHFs. It follows that the 
longitudinal contacts along a single helix are sufficient to 

maintain structural integrity. The further observation of sharp 
transverse breaks at apparently random positions along PHFs 
shows that the subunit is of fairly limited axial extent. Al- 
though we see a splitting of the PHF into individual strands 
of subunits, as described above, we do not see further fraying 
of these half PHFs into finer protofilaments. Thus it appears 
that in the axial direction the subunit is compact rather than 
extended or fibrous. We tentatively ascribe the 3--4-nm trans- 
verse banding seen in many images to the axial dimension of 
the subunit. 

The longitudinal striping seen in loops, described above as 
two pairs of tramlines, is a consequence of the lining up of a 
domain-like substructure within the subunit and probably 
does not reflect the presence of structural protofilaments. The 
relative crudeness of the model does not allow firm identifi- 
cation, but it does appear that there must be at least two 
significant domains within the subunit to account for the 
staining patterns seen. We are presently attempting to produce 
an improved model of the structure by image reconstruction 
from the micrographs, and preliminary results confirm the 
basic correctness of the proposed model. From the overall 
size of the PHF we estimate that the structural subunit has 
dimensions o f - 8  x 4 nm normal to the axis and 3--4 nm 
axially. This means that if it is a single chemical subunit it is 
likely to be of relatively high molecular weight. The structure 
can most easily be described geometrically as a twisted ribbon 
and models involving flattened or twisted tubules can be 
eliminated. The images of flattened ribbons produced by 
alkali treatment of PHFs confirm this interpretation. 

Several studies have reported that antigens which cross- 
react with neurofilaments (4), and with the 210-kD neuro- 
filament protein in particular (2, 5) are present in tangles. 
However the 210-kD component is not normally expressed 
in the cell body or apical dendrite of cortical or hippocampal 
pyramidal cells (16), where tangles typically appear. Further- 
more, antibodies have been raised which label isolated tangles 
but which do not cross-react with neurofilaments (8, 20). It is 
clear from the pictures presented here that the individual 
strands of PHFs do not look like the published images of 
negatively stained neurofilaments (19) or intermediate fila- 
ments (1). Moreover, the shape and packing of the subunit 
proposed here makes it unlikely that the PHF derives either 
from a simple collapse or helical aggregation (10) or cross- 
linking (15) of complete neurofilaments. This does not ex- 
clude the possibility that PHFs derive from some component 
of neurofilaments, and it is clearly important to establish the 
biochemical nature of the subunit. If the subunit is related to 
a protein (e.g., the 210-kD protein) normally present in the 
cytoplasm of cortical pyramidal cells, it is likely that a specific 
change is required for its aberrant assembly into PHFs. Fur- 
thermore, this change would be the same in PHFs in the 
neurites of the plaque and in the tangle, in different regions 
of an affected cortex, and in different cases diagnosed histo- 
logically as having Alzheimer's disease. 
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