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ABSTRACT The eggs of most or all animals are thought to be activated after fertilization by a transient 
increase in free cytosolic Ca 2+ concentration ([Ca2+]i). We have applied Ca2+-selective microelec- 
trodes to detect such an increase in fertilized eggs of the frog, Xenopus laevis. As observed with an 
electrode in the animal hemisphere, [Ca2+]~ increased from 0.4 to 1.2 pM over the course of 2 min 
after fertilization, and returned to its original value during the next 10 min. No further changes in 
[Ca2+]~ were detected through the first cleavage division. In eggs impaled with two Ca 2+ electrodes, 
the Ca 2+ pulse was observed to travel as a wave from the animal to the vegetal hemisphere, 
propagating at a rate of ~10 #m/s across the animal hemisphere. The apparent delay between the 
start of the fertilization potential and initiation of the Ca 2+ wave at the sperm entry site as ~1 min. 
Though these observations describe only the behavior of subcortical [Ca2+]i, we suggest that our 
data represent the subcortical extension of the cortical Ca 2+ wave thought to trigger cortical granule 
exocytosis, and we present evidence that both the timing and magnitude of the Ca 2+ pulse we 
observed are consistent with this identity. This first quantification of subcortical [Ca2+]~ during 
fertilization indicates that the Ca 2+ transient is available to regulate processes (e.g., protein synthesis) 
in the subcortical cytosol. 

The  ca lc ium theory  of  egg ac t ivat ion,  wh ich  ho lds  tha t  an  
increase  in free cytosolic Ca  2÷ c o n c e n t r a t i o n  ([Ca2÷]i) 1 sets in 
m o t i o n  the  early even ts  o f  the  " p r o g r a m  of  fer t i l izat ion" (e.g., 
see reference 34), is a m p l y  suppor ted  by  a var iety o f  s tudies 
(2, 5 -7 ,  10, 13, 14, 23, 27, 28, 37, 38). Qual i ta t ive  measure-  
m e n t s  o f  [Ca2÷]i changes  af ter  fert i l izat ion in eggs o f  the  
m e d a k a  fish (14, 23), sea u rch in  (7, 28), starfish (7a), a n d  
m o u s e  (6), wi th  the  use o f  the  mic ro in jec ted  Ca2÷-sensitive 
p h o t o p r o t e i n  aequor in ,  have  d e m o n s t r a t e d  a t r ans ien t  [Ca2+]i 
increase af ter  fer t i l izat ion in all these eggs, a n d  for the  medaka ,  
starfish, a n d  sea u r c h i n  eggs have  shown  the  [Ca2+]~ increase 
to t raverse  the  egg as a wave (7, 7a, 14). Unfo r tuna te ly ,  the  
aequo r in  t e c h n i q u e  can  at  best  yield on ly  es t imates  o f  [Ca2+]i 
(such es t imates  for peak  levels range f rom 1 tzM in the  sea 
u rch in  egg to 30 ~ M  in the  m e d a k a  egg), a n d  c a n n o t  usually 
address  the  radia l  e x t e n t  (cor t ical  vs. subcor t ica l )  o f  the  [Ca2+]~ 
increase.  T o  clarify these po in t s  for the  frog egg, a n d  to 
d e t e r m i n e  w h e t h e r  wavel ike [Ca2+]i increases migh t  be  a 
general  feature  o f  egg ac t ivat ion,  we have  used Ca2+-selective 
microe lec t rodes  to s tudy the  response  o f  Xenopus laevis eggs 
to fert i l ization.  

' Abbreviations used in this paper: AH, animal hemisphere; [Ca2+]i, 
free cytosolic Ca 2+ concentration; SES, sperm entry site; VH, vegetal 
hemisphere. 
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MATERIALS AND METHODS 

Procurement and Handling of Gametes: Mature Xenopus oo- 
cytes were squeezed from females induced to ovulate via subcutaneous injection 
of 800-1,000 IU of human chorionic gonadotropin (Sigma Chemical Co., St. 
Louis, MO) on the previous night. Sperm were prepared by mincing dissected 
testes in FI solution (see below). To prevent prick activation, eggs were impaled 
in FI that contained 10 mM chlorobutanol, which was replaced with regular FI 
just before insemination. FI solution was prepared as previously described (17). 
Experiments were conducted at room temperature, between 20.5 and 24"C. 

Fabrication of Microelectrodes: Our Ca 2+ electrodes were a mod- 
ified version of those of Tsien and Rink (31, 32). Chromic acid-cleaned 
borosilicate glass micropipettes without an inner fiber were broken to ~2-~m 
tip diameter and rendered hydrophobic by baking for 30 min at 200"C in a 
chamber that contained tri-N-chlorobutylsilane (Pfaltz & Bauer Inc., Stamford, 
CT) vapor in air. The pipettes were then backfilled with pCa 7 calibration 
buffer (see below) by applying gentle pressure from a syringe to the back end 
of the pipettes, then the tips were filled via suction with a 50-100-urn column 
of ungelled Ca 2÷ sensor, prepared as previously described (31). Finally, the 
electrode tips were briefly dipped twice into poly(vinyl chloride)-gelled Ca 2+ 
sensor (32) and dried at 45"C for 15 min after each dip. All Ca 2+ sensor 
components were purchased from Fluka Chemical, Hauppauge, NY, Average 
90% response time from pCa 6.5 to 6 was 8 s (SD = 4 s, n = 7); at higher Ca 2÷ 
levels, response was typically even faster. Response slopes ranged from 20-29 
mV between pCa 6 and 7. 

Membrane potential microelectrodes with submicrometer tips were pulled 
from borosilicate glass tubing that contained an inner fiber, and were backfilled 
with 0.5 M KC1, 10 mM EGTA (pH 7.4). Their resistance ranged from 7 to 15 
megaohms in FI. 
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Electrophysiological  Recording:  Experiments were performed in 
a 3-mm-deep plexiglass and glass chamber through which solutions were 
pumped intermittently by hand. The bath was grounded via an Ag/AgCl 
electrode in an F1 agar-fiUed tube. Membrane potential electrode output was 
amplified by a standard electrophysiological amplifier; Ca 2÷ electrode output 
was connected to a unity gain, high input impedance Analog Devices 311J 
amplifier. Subtraction of membrane potential from the Ca 2÷ electrode output 
was performed at the chart recorder. 

Ca 2÷ electrodes were calibrated in buffers o fpCa 6, 6.5, and 7 (negative log 
of free Ca 2+ concentration). These contained l0 mM EGTA, 5 mM CaC12, and 
(for pea  6) l0 mM PIPES, 45 mM KOH, 15 mM KC1 (pH 6.77 at 23°C); (for 
pCa 6.5) l0 mM PIPES, 47 mM KOH, 12 mM K O  (pH 7.02 at 23°C); (for 
pCa 7) l0 mM 4-morpholinepropanesulfonic acid, 35.5 mM KOH, 29.3 mM 
KCI (pH 7.27 at 23°C). These buffers' ionic strength was 75 raM, close to that 
of Xenopus egg cytosol (see reference 36). We used the "mixed constants" for 
EGTA of MarteU and Smith (20) to calculate the resulting free Ca 2÷ levels after 
correction for ionic strength as discussed on page 45 of reference 30. Electrodes 
were calibrated before and after cell impalement; only data from those display- 
ing nearly identical recalibrations after impalement were used for the quantifi- 
cation of [Ca2+]~ (-25% of electrodes met this criterion). 

Cell impalement with the membrane potential electrode was performed by 
increasing the negative capacitance; impalement with the blunter Ca 2+ elec- 
trodes required a sharp tap on the end of the electrode holder with a forceps 
handle. 

Determination of Ca 2+ Wave Velocity: Eggs impaled in the 
animal hemisphere (AH) with two Ca 2÷ electrodes (one near the animal pole, 
the other near the equator) were photographed ~ 15 min after fertilization, after 
relaxation of the cortical contraction. The sperm entry site (SES) was visible as 
a localized accumulation of pigment. Planar coordinates of the SES and 
impalement sites taken from these photos were converted to three-dimensional 
coordinates on the egg surface, and the direction cosines a, b and c of each site 
were calculated as 

and 

cos a = x /4x  2 + y2 + z 2, 

cos b = y/Vx 2 + y2 + z 2, 

cos c = z/~/x 2 + y2 + z2, 

where x, y and z are the coordinates of the site. The angle, 0, with vertex at the 
origin, between two points on a sphere is described by the relation 

COS 0 = COS gtlCOS a2 + COS b lcos  b2 + cos  c]cos c2, 

where the subscripts 1 and 2 refer to the two points. From calculated values of 
0 and the measured radius of the egg, the circumferential distance between each 
impalement site and the SES was determined. Assuming that the SES is the 
initiation site of the Ca 2÷ wave (as in medaka) and that the wave propagates at 
approximately constant velocity in all directions, this velocity is then V = (/~, 
- D.)/TLb, where a and b are the first and second electrodes to detect the Ca 2÷ 
pulse, respectively, D is the circumferential distance from the electrode to the 
SES, and Tab is the interval between detection of the pulse at electrodes a and 
b. The apparent lag between onset of the fertilization potential and initiation 
of the Ca 2÷ wave at the SES is then L = T. - ( D / D ,  where T. is the interval 
between onset of the fertilization potential and detection of the Ca 2÷ wave at 
the first electrode. Electrode impalement depth was not taken into account in 
these analyses. 

Statistical Analysis: All averages are expressed as the mean _+ SEM. 
The significance of differences in Ca 2+ wave characteristics between the two 
hemispheres of eggs were determined via Student's t test for paired data; 
Student's t test for unpaired data was used for all other comparisons. The 
criterion for significance was P < 0.05. 

RESULTS 

[Ca2+]i Increases Threefold af ter  Fertilization 

Fig. 1 shows a typical result for an egg impaled with a C a  2+ 

electrode in the animal hemisphere. Upon washout of the l0 
mM chlorobutanol present during impalement (to prevent 
prick activation), [Ca2+]~ increased to its resting level (pCa 
6.32), reflecting the ability of chlorobutanol to reversibly 
depress [Ca2+]i (see below). At fertilization, a typical depolar- 
ization of membrane potential, the "fertilization potential", 
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pCa 5 mV~.~ 
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FIGURE 1 M e m b r a n e  po t en t i a l  (top) and  AH [Ca2+]~ in a fer t i l iz ing 

Xenopus egg.  At 7, c h l o r o b u t a n o l  was  r e m o v e d  f rom the  ba th ing  
m e d i u m .  At 2, m i n c e d  tes t i s  was  a d d e d .  At 3, c l e a v a g e  fu r row 

fo rma t ion  began .  Traces  a t  t he  far left a n d  r ight  (bottom) are  Ca  2÷ 

e l e c t r o d e  ca l ib ra t ions  at  t he  i n d i c a t e d  pCa  levels .  

was observed; 2.2 min after the onset of the fertilization 
potential, [Ca2÷]i began to increase rapidly (over 2.1 rain) to 
2.1 ~M (pCa 5.68) and immediately began to recover, return- 
ing to its original value over the next 12 rain. No further 
changes in [Ca2+]i  w e r e  observed in four eggs through the first 
cleavage division, in agreement with the observations of Rink 
et al. (24). In seven eggs from seven females, resting [Ca2+]i 
before fertilization was 0.40 pM (pCa 6.4 _+ 0.02), in good 
agreement with the resting pCa of 6.5 measured in 2-64-cell 
embryos (24). The mean peak [Ca2+]i after fertilization was 
1.2 pM (pCa 5.93 _+ 0.06), and the final level after the Ca 2÷ 
pulse was 0.41 pM (pCa 6.39 _+ 0.02), which is not signifi- 
cantly different from its prefertilization value. 

Although we cannot specify precisely the depth of impale- 
ment achieved in these studies, we note that the values quoted 
clearly represent subcortical [ C a 2 + ] i  levels. The morphologi- 
cally defined cortex of the Xenopus egg is <5 pm thick (9), 
and its total radius is ~650 pm. Considerable force (delivered 
by tapping the end of the electrode holder) is required to 
achieve impalement with these rather blunt electrodes, driving 
the tip deeply into the egg. In three impalements, a ring of 
pigment granules could be seen adhering to the poly(vinyl 
chloride)-coated electrode shank after withdrawal; in each 
case this ring was _>100 #m from the tip. We estimate that 
the average depth of impalement was on the order of 100 pm. 
Since impalement depth was uncontrolled, the small SE's 
listed above suggest that resting and peak C a  2+ levels do not 
depend sharply on depth, at least in the subcortical region. 

The Increase In [Ca2+]i Traverses the Egg as 
a Wave 

To determine whether the Ca 2+ pulse traverses the egg as a 
wave, we performed double impalements, with C a  2+ elec- 
trodes present simultaneously in both the pigmented animal 
hemisphere (AH) and unpigmented vegetal hemisphere (VH), 
approximately equidistant from the equator. Fertilization in 
frog eggs apparently occurs only in the AH (8); thus, a 
propagated wave of elevated [Ca2+]i  commencing at the sperm 
entry site (as observed in the medaka egg) should ordinarily 
be detected first by the AH electrode (except in the rare 
instance when the SES is equidistant from each electrode). In 
Fig. 2, the C a  2+ pulse is first detec/ed in the AH 3.2 min after 
the onset of the fertilization potential, and in the VH some 2 
min later. For eight eggs from eight females, the average delay 
between the AH and VH pulses was 1.9 + 0.4 min, significant 
at the P < 0.005 level, demonstrating that the subeortical 
calcium pulse travels as a wave from AH to VH. The total 
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FIGURE 2 Membrane potential (top) and animal (A) and vegetal (V) 
hemisphere [Ca2+]~ during fertilization in a doubly-impaled egg. 
Inset shows approximate electrode placement with respect to the 
pigmented animal hemisphere. At I, chlorobutanol was removed. 
At 2, minced testis was added and the chart recorder speed was 
increased as indicated. At 3, artifacts due to poor subtraction of the 
membrane potential spikes at fertilization are visible in the A and V 
traces. 

duration of  the wave (to 90% recovery) in the two hemispheres 
was not significantly different, lasting 10.3 _+ 1.1 min in the 
AH and 10.0 _+ 0.5 min in the VH, but the rise time of  the 
AH wave (2.2 _ 0.3 min) was significantly shorter than that 
in the VH (3.0 __. 0.3 min; P < 0.025). This difference may 
reflect the lower density in the VH of junctions between the 
plasma membrane and cortical endoplasmic reticulum, as the 
cortical reticulum and its plasma membrane junctions have 
been suggested to be involved in Ca 2÷ release after fertilization 
(4, 12). 

To determine the rate of  propagation of  the calcium wave, 
we performed experiments with two Ca 2÷ electrodes in the 
AH (to avoid the confounding effects of  a possible difference 
in rate between the two hemispheres). For four experiments 
at 21-24"C (mean = 22"C) the mean velocity of  the Ca ~+ 
wave in the AH was 9.7 _+ 1.5 #m/s, and the apparent delay 
between the fertilization potential and onset of  the Ca 2÷ wave 
at the sperm entry site was 63 + 5.5 s. In one experiment, the 
sperm entry site was located only 20 ~m from the first Ca 2÷ 
electrode to detect the wave, yet the delay was still 64 s; this 
suggests that the "apparent" mean delay of 63 s accurately 
reflects the timing of  this event. 

Chlorobutanol Reversibly Depresses [Ca 2+]i 
Because impalement with our fairly blunt Ca 2÷ electrodes 

tended to activate eggs, all impalements discussed here were 
performed in F 1 that contained 10 mM chlorobutanol, which 
has long been known to inhibit prick activation. We observed 
that upon washout of the chlorobutanol just before insemi- 
nation, [Ca2+]i typically increased by ~0.1 -0 .5  pCa unit, as 
seen in Figs. 1 and 2. Preliminary experiments such as that 
of Fig. 3 demonstrated that this reflects the ability of  chloro- 
butanol to reversibly depress resting [Ca2+]i (in this experi- 
ment by 0.3 pCa unit). Chlorobutanol had no effect on the 
electrode response in calibration buffers (data not shown). 

DISCUSSION 

New Findings 
Our data extend the known instances of  Ca 2÷ waves accom- 

panying egg activation from the medaka (14), starfish (7a), 
and sea urchin (7) eggs to include the frog egg as well. Indeed, 
it has been suggested that Ca 2+ waves are a ubiquitous feature 
of  deuterostome egg activation (19), and our data support this 
hypothesis. 

O- 
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FIGURE 3 Membrane potential (too) and AH [Ca2÷]~ (bottom) dur- 
ing chlorobutanol anesthesia of an unfertilized egg. Impalement 
was performed in FI containing 10 mM chlorobutanol, which was 
replaced by regular FI at the arrow. 10 mM chlorobutanol was 
reintroduced during the period indicated by the bar. This egg 
subsequently displayed a normal Ca 2÷ pulse after treatment with 
10 ~M A23187 (not shown). 

A unique contribution of  the present study is our direct 
quantification of the resting and peak [Ca2+]i in the subcortical 
cytosoi of  an activating egg. The medaka egg is somewhat 
unusual in that it is centrolecithal, with a 5-40 #m shell of  
cytoplasm surrounding a membrane-bounded yolk compart- 
ment which comprises the bulk of  the cell. If  one defines the 
cortex as the layer of cytoplasm that contains the cortical 
granules, then in this important respect the whole of  the 
medaka egg cytoplasm is cortical. Further, Steinhardt et al. 
(28) tentatively concluded that the [Ca2+]i increase they ob- 
served in sea urchin eggs via the aequorin technique was 
probably confined to the cortex. Hence, our data are the first 
to demonstrate that the [Ca2+]i increase accompanying fertil- 
ization is available to regulate processes occurring in the 
subcortical region of the noncentrolecithal egg (e.g., protein 
synthesis; see reference 37). 

Our use of CaE+-selective microelectrodes has also enabled 
us to detect the ability of  chlorobutanol to reversibly lower 
[Ca2+]i. Because prick activation of  Xenopus eggs requires 
extracellular Ca 2÷ (38), this observation immediately suggests 
a mechanism of action for chlorobutanol in inhibiting prick 
activation--i.e., by lowering [Ca2÷]i sufficiently, the leakage 
of  extracellular Ca 2÷ into the egg through the prick wound 
cannot raise [Ca2*]~ to the triggering level necessary to initiate 
activation. 

An unexpected result of this study was the surprisingly long 
apparent delay between the first observable sign of fertiliza- 
tion, the fertilization potential, and the onset of  the Ca 2+ wave 
at the sperm entry site. While we cannot rule out the possi- 
bility that the Ca 2÷ wave begins at the plasma membrane 
immediately after fertilization but requires 1 min to propagate 
(or diffuse?) to the subcortically located electrode tip, the 
recent report by Eisen et al. (7) of a 23-s delay between 
fertilization potential and onset of  the Ca 2÷ transient (as 
observed via aequorin luminescence) in eggs of  the sea urchin 
Arbacia suggests that the delay we observed is real. Several 
authors (14, 18, 25) have suggested that the fertilizing sperm 
initiates the Ca 2÷ pulse after sperm-egg fusion by delivering a 
bolus of  sperm-derived Ca 2÷ to the egg cytosol at the sperm 
entry site, thus initiating Ca2÷-induced Ca 2÷ release, presum- 
ably from the endoplasmic reticulum. It seems difficult to 
comfortably accommodate a 1-min delay within such a 
scheme, since Ca2÷-induced Ca 2÷ release is an inherently rapid 
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process (at least in mammalian cardiac muscle; e.g., see 
reference 11). Thus, delays of the magnitude observed in the 
sea urchin and frog eggs suggest to us that, while the Ca 2÷ 
wave may well be propagated via Ca2÷-induced Ca 2÷ release, 
it is initiated by the sperm via another means involving a 
series of (time consuming) events. Recent observations by 
Turner et al. (33) of increased polyphosphoinositide turnover 
after fertilization suggest that this time-consuming sequence 
could involve activation of phospholipase C and its subse- 
quent generation of inositol trisphosphate to trigger the Ca 2÷ 
wave (see Note Added in Proof). 

The Form of the/Ca2+]i Wave in the Xenopus Egg 

Our data concerning the timing of the [Ca2+]i wave permit 
a rough visualization of its form as it traverses the egg (Fig. 
4), which can be useful in assessing its functions. We have 
assumed as a first approximation that the rate of propagation 
is roughly constant over the entire egg, and have applied the 
rate determined in the animal hemisphere to the vegetal 
hemisphere as well. In the medaka egg, the vegetal hemisphere 
propagation rate is, on average, 30% slower than that in the 
animal hemisphere (14). A similar retardation in the Xenopus 
egg would affect the absolute timing shown in the bottom row 
of Fig. 4, but would not greatly change the overall picture 
presented. 

An outstanding difference between the previous results for 
the medaka egg (14) and those presented in Fig. 4 is that, only 
in the Xenopus egg, the whole of the cell is simultaneously 
involved in some phase of the [Ca2÷]i transient (Fig. 4, f-h). 
As we discuss below, the subcortical [Ca2+]~ changes we report 
probably parallel the cortical [Ca2÷]i wave presumed to acti- 

O' 1' 2.7' 3.2' 

0 0.01 0.03 0.04 

4.4' 6.6' 11,3' 13.0' 14.7' 

0,05 0.07 0.12 0.14 

FIGURE 4 The approximate temporal sequence of events during 
the Ca 2÷ wave in a fertilized Xenopus egg, based on the data and 
assumptions discussed in the text. The approximate spacial extent 
and magnitude of increased [Ca2% are indicated by the distribution 
and intensity of stippling, respectively. The first number beneath 
each drawing is the time, in minutes, from onset of the fertilization 
potential; the second number is the decimal fraction of the interval 
from fertilization potential to first cleavage at 22"C. Timing of sperm 
incorporation is arbitrary. (a) Orientation of egg, with animal pole 
at top. Fertilization is shown occurring there for simplicity. ~b) Onset 
of fertilization potential. (c) Ca 2+ wave begins at the sperm entry 
site. (d) Front of [Ca2% wave reaches equator. (e) [Ca2÷]i peaks at 
sperm entry site. (f) Front of Ca 2+ wave reached antipode. (g) 
[Ca2% peaks at antipode. (h) Recovery complete at sperm entry 
site. (i) Recovery complete in animal hemisphere. (j) Recovery 
complete throughout cell. 
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vate cortical granule exocytosis. Other cortical events thought 
to be regulated by this same Ca 2+ wave include a ring-shaped 
wave of plasma membrane permeability change (Kline, D., 
and R. Nuccitelli, manuscript in preparation) and the "acti- 
vation waves," narrow tings of cortical contraction which 
propagate across the egg at activation (16, 29). An important 
consequence of the broad spatial extent of this wave is thus 
that future models of the mechanism(s) of Ca2+-induced trig- 
gering of the (relatively narrow) "activation" and transcellular 
current waves must address the means whereby they are 
terminated at their trailing edges while [Ca2+]i is still elevated, 
or even near its peak value (at least subcortically), in the same 
sector of the cell. 

Another significant difference between the results presented 
here and those previously reported for the medaka egg is the 
magnitude of the peak [Ca2+]i level achieved. Gilkey et al. 
(14) estimated from their aequorin results a peak [Ca2+]i of 
-30  tzM in the medaka egg, a 300-fold increase over the 
resting level. Due to the essentially qualitative nature of the 
aequorin assay, such estimates necessarily involve numerous 
assumptions, e.g., the volume of cytosol accessible to ae- 
quorin, the Ca 2+ level in vivo at which aequorin luminescence 
is Ca2+-independent, the intracellular free Mg 2÷ concentra- 
tion, and the dependence of aequorin's light output on intra- 
cellular pH (since the nature of aequorin's pH-dependence, 
even in vitro, is a topic of debate; see references 1, 21, 26). 
Our direct quantification of [Ca2+]i in the Xenopus egg yields 
a peak level of 1.2/~M, or a threefold increase over the resting 
level. In light of the 10,000-fold increase in aequorin lumi- 
nescence in the activated medaka egg reported by Ridgway et 
al. (23), it may well be that the medaka egg, perhaps due to 
its centrolecithal structure, experiences a much larger Ca 2÷ 
transient than does the Xenopus egg. Alternatively, the as- 
sumptions involved in estimating peak [Ca2+]i via the ae- 
quorin technique may lead to overestimates. In this regard, it 
is interesting to note that the [Ca2÷]i required to elicit cortical 
granule exocytosis in the medaka egg is between 2 and 5 uM 
at pH 7 (13), or just 7-17% of the peak [Ca2+]i estimated by 
Gilkey et al. (14). 

The Subcortical Ca 2+ Wave May Be An Extension 
of a Similar Cortical Wave 

In prick-activated Xenopus eggs, the front of cortical granule 
exocytosis begins almost instantly at the pricking site and 
propagates across the egg at a rate o f - 9  #m/s (29). In fertilized 
eggs, a similar rate of propagation is observed (16, 29), but 
here the delay between fertilization and onset of exocytosis is 
unknown. It may be that pricking bypasses an initial step in 
sperm-induced egg activation (such as the generation of ino- 
sitol trisphosphate discussed above), so that fertilization (but 
not pricking) could involve a delay similar to that which we 
observe; the important point is the approximate temporal 
correlation between the subeortical Ca 2÷ wave and exocytosis, 
as well as the good agreement in their rates of propagation. 
Further, the peak [Ca2+]i level we observe is of the magnitude 
required to initiate cortical granule exocytosis. Using isolated 
cortices from eggs of the frog, Rana pipiens, Goldenberg and 
Elinson (15) observed breakdown of 50% of cortical granules 
at pCa 5.2 in medium of pH 6.4. In the medaka egg, the 
[Ca 2÷] which elicits cortical granule exocytosis is markedly 
pH-dependent (13), exactly reflecting the pH-dependence of 
the Ca 2÷ dissociation constant of calmodulin (3), the regula- 



tory protein which has been implicated in control of  cortical 
granule exocytosis in other eggs (27). Thus, we calculate that 
Goldenberg and Elinson's data, collected at a pH 1 unit lower 
than the intracellular pH of  the Xenopus egg (22, 35, 36) 
probably overestimates the Ca 2÷ requirement for cortical gran- 
ule exocytosis by 1 pCa unit (see reference 3 for discussion); 
i.e., the in vivo [Ca2÷]i required would be about pCa 6.2 (0.6 
uM) at the low ( -0 .5  mM) Mg 2÷ concentration of  Xenopus 
egg cytosol (35). If  so, the peak [Ca2+]i of  1.2 #M we report 
would be more than adequate to regulate this process. Thus, 
in both its timing and magnitude, the Ca 2÷ wave we report 
would coincide with that required to activate cortical granule 
exocytosis. 

We thank Drs. K. Robinson and R. Y. Tsien for helpful discussions. 
This was supported by National Science Foundation grant PCM 

81 18174 and National Institutes of Health grant K04 HDO 0470-02 
to R. Nuccitelli. 

Received for publication 12 June 1984, and in revised form 21 
December 1984. 

Note Added in Proof." While this manuscript was in press, it was 
reported that microinjection of inositol-1,4,5-trisphosphate activates 
sea urchin eggs (Whitaker, M., and R. F. Irvine, 1984, Nature(Lond.)., 
312:636-639). We have recently confirmed this with Xenopus eggs, 
and have shown that inositol-1,4,5-trisphosphate iontophoresis trig- 
gers a Ca 2+ wave in these eggs that is identical to that reported in this 
paper (Busa, W. B., J. E. Ferguson, S. K. Joseph, J. R. Williamson, 
and R. Nuccitelli, manuscript submitted for publication). 
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