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Abstract. MAPs (microtubule-associated proteins) 
were isolated from crayfish walking leg nerves. A ma- 
jor MAP was identified as a high molecular weight 
protein (270K). This protein co-migrated with mam- 
malian MAP2, stimulated the polymerization of rat 
brain tubulin into microtubules, and was heat resistant. 
Rotary shadowing revealed that the 270K MAP is a 
long thin flexible structure. It formed cross-bridges of 
fine strands, linking microtubules with each other in 

vitro. These strands resemble the cross-bridges 
between microtubules observed in the crayfish axon 
permeabilized with saponin and quick-frozen, deep- 
etched. Antibodies against mammalian MAP2 cross- 
reacted with this crayfish MAP and stained the 
axoplasm of the walking leg nerves. Thus MAPs, es- 
pecially the 270K MAP, appear to be a major compo- 
nent of the cross-linking strands between microtubules 
observed in the crayfish axon. 

T 
HE neuron is a highly polarized cell composed of 
dendrites, cell body, and axon along the direction of 
impulse propagation. Each part of the neuron takes 

characteristic shapes for which the cytoskeleton provides the 
framework. The cytoskeleton of the neuron is a static struc- 
ture, but it does participate in the dynamic function of the 
cell, e.g., axonal transport (1, 7, 10) and neurite growth. 

The crustacean axon is a unique system whose cytoskele- 
ton is malni X composed of microtubules (25). This provides 
a simple model system for analysis of the microtubule 
cytoskeleton in axons which in other animals consist of com- 
plicated structures (8, 14, 15, 27). 

Cross-bridges between microtubules have been observed 
in the crustacean axon (9, 18, 23, 26, 35). Concerning the 
chemical nature of the cross-bridge, it is reasonable to specu- 
late that the cross-bridge, if present, may be composed of 
some kinds of MAPs. 

In the mammalian nervous system several microtubule- 
associated proteins (MAPs) I have been identified. The MAPs 
include high molecular weight proteins MAPIA, 1B, lC 
(4, 5) and MAP2A, 2B (11, 22, 32) as well as a group of low 
molecular weight proteins named Tau (34). The distribution 
of these MAPs is quite characteristic in a neuron. Usually, 
the MAP1 is present in dendrites, cell bodies, and axons (4, 
5, 16), but the MAP2 is mainly present in dentrites and cell 
bodies (22). Recently it has been reported that Tau is re- 
stricted to the axon and that only a small amount of MAP2 
exists in the axon (2, 24, 32). 

The present study analyzes the cytoskeletal structure of 
axons that contain mainly microtubules and at the same time 
1. Abbreviations used in thispaper: PEM buffer, 0.1 Pipes, pH 6.8, contain- 
ing EGTA, 1.0 mM MgCl2; MAPs, microtubule-associated proteins. 

tries to determine the chemical nature of the cross-bridges 
that connect the microtubule domain in an arthropod axon. 
By the quick-freeze, deep-etch approach, we have shown that 
there is a network of cross-bridges between microtubules in 
crayfish axons. Interestingly, we found a 270K MAP2-1ike 
protein as a main MAP in the peripheral axons of the 
crayfish, and this could very well be a main component of 
cross-bridges between microtubules found in the microtu- 
bule domain in the axon. 

Materials and Methods 

Quick-Freeze, Deep-Etch Electron Microscopy 
Small bundles of axons including giant axons were dissected from walking 
leg nerves. Both ends of the nerves were tied with surgical threads and 
placed in Sylgard bottomed petri dishes containing internal medium (280 
mM K ÷ aspartate, 15 mM NaC1, 15 mM Hepes, 5 mM MgC12, 3 mM 
EGTA) (21). Some of the axons were permeabilized by incubation for 20-30 
rain in internal medium plus 0.02 % saponin. Saponin-permeabilized axons 
and some axons fixed with 2% glutaraldehyde in 0.1 M Pipes, 1 mM 
MgC12, 1 mM EGTA, pH 6.8 and washed with distilled water were frozen 
by contact with a pure copper block cooled by liquid helium as previously 
described (12, 13). The surfaces of the frozen samples were fractured in 
Balzers 400 or 301 at -196°C at a vacuum of 2 x 10 ~ torr and etched for 
5 min at -95°C.  Then they were replicated by rotary shadowing with plati- 
num and carbon. Tissues were dissolved in chromic sulfuric acid, and 
replicas were cleaned with distilled water and picked up on formvar-coated 
grids. Stereo micrographs were taken by JEOL 100 CX or 1200 EX electron 
microscopy at 100 kV at +10 ° tilt. 

Preparation of MAPs from Walking Leg Nerves 
For one experiment the walking leg nerves were dissected from 30 crayfish 
(12 experiments were carried out). MAPs were isolated using taxol accord- 
ing to the method developed by Vallee (32). About 0.1 g of nerves was taken 
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from 30 animals. It was homogenized in 1.5 vol of 0.1 M Pipes, pH 6.8, con- 
taining 1.0 mM EGTA, 1.0 mM MgCI2 (PEM buffer) with a Dounce glass 
homogenizer on ice. The homogenate was centrifuged at 36,000 g for 20 
rain at 4"C, and the pellet was discarded. The supernate was then cen- 
trifuged at 180,000 g for 90 min at 4°C, and the pellet again discarded. GTP 
was added to 1 mM, and the solution was warmed at 3"/°C for 10 min. Then 
taxol was added to 20 IxM, and the solution was incubated for 5 min at 37°C. 
The solution was centrifuged at 35*C for 30 rain through a cushion of 5% 
sucrose in PEM buffer containing 20 ~tM taxol and 1 mM GTP at 36,000 g. 
The resulting pellet contained microtubules and MAPs. The pellet was 
washed with PEM buffer containing 20 ~tM taxol and 1 mM GTP and then 
centrifuged for 30 min at 36,000 g. 

To dissociate the MAPs from the microtubules, the microtubule pellet 
was resuspended to volume in assembly buffer plus taxol at 37°C and NaC1 
was added to 0.6 M. The solution was centrifuged again at 36,000 g for 
30 min, leaving the MAPs in the supernate. The pellet was washed with 
PEM buffer containing 20 ~tM taxol and 1 mM GTP and then centrifuged 
for 30 min at 37°C. Pellets of MAPs plus microtubules and salt-extracted 
microtubules were quick-frozen and deep-etched. Other pellets were ana- 
lyzed with SDS gel electrophoresis. For comparison MAPs plus microtu- 
bules were prepared from rat brain by the same procedure. 

Test for Heat Stability of MAPs and Stimulation of 
Polymerization of Rat Brain Tubulin 
Microtubules plus MAPs solutions from crayfish were made in PEM buffer 
containing 0.75 M NaCI, 10 mM 2-mercaptoethanol (protein concentration 
8 mg/ml). They were rapidly pipetted into tubes that were kept in a boiling 
water bath for 4 min (11). Heavy precipitate formed. The tubes were rapidly 
cooled in ice water, and the solution was centrifuged at 4°C for 30 rain at 
10,000 g. The resulting pellets and supernatants were analyzed by SDS gel 
electrophoresis. The superuatant was dialyzed against PEM buffer and 
mixed with tubulin purified from rat brain by phosphocellulose column in 

PEM buffer containing 1 mM GTP at 37"C for 10 min. In another case the 
boiled MAP and rat tubulin were mixed at 26°C, and OD350 was scanned 
for 30 rain. As a control a solution containing only tubulin was used. Finally 
solutions were warmed at 37°C for 5 rain. Then some parts of the solutions 
were diluted 10-20-fold by PEM buffer and dropped on grids coated with 
formvar and carbon. They were stained with 2 % uranyl acetate and exam- 
ined by electron microscope. Other parts of the solutions were centrifuged 
at 10,000 g for 30 min. The resulting pellet was quick-frozen and deep- 
etched. 

Preparation of Rat Brain TubuUn 
Microtubule protein from rat brains was purified by three cycles of 
temperature-dependent assembly and disassembly in PEM buffer as de- 
scribed by Shelanski et al. (29). Tubulin was isolated from microtubule pro- 
tein by phosphocellulose chromatography in the cold as described by Her- 
zog and Weber (11). Pure tubulin was eluted with PEM buffer. 

Analytical Methods 
SDS gel electrophoresis was performed according to the method of 
Laemmli (20) using 7.5 % aerylamide in the running gel and 3 % acrylamide 
in the stacking gel. Gels were stained with Coomassie Brilliant Blue. Pro- 
tein concentration was analyzed by a method described by Bradford (6). 

Low Angle Rotary Shadowing of 270K MAP 
Rotary shadowing was accomplished as described by Shotton et al. (28) and 
Tyler and Branton (31). 

The supernatant of the boiled MAPs, which contained the 270K protein 
as a main band according to SDS gel analysis, was dialyzed against PEM 
buffer. 

The solution was mixed with glycerol (50 ~tg/ml protein in 30% glycerol- 

Figure 1. Axoplasm in an axon permeabil ized with saponin. The axoplasm is composed  of  longitudinally oriented microtubules and a net- 
work of  fine strands between them. The strands are either a straight and short type (arrows) or  anastomosing type. Bar, 0.1 Izm. 
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Figure 2. SDS gel electrophoresis of proteins from crayfish peripheral nerves and MAPs of rat brain. Running gel 7.5 %; stacking gel 3 %. 
(A) Lane 1, isolated whole giant axons. Lane 2, isolated giant axons after permeabilization with saponin. Tu, tubulin. Arrow, 270K proteins 
remain after permeabilization. (B) Lane 1, homogenate of crayfish peripheral nerves. Lane 2, supernatant after centrifugation of the first 
supernatant of the homogenate warmed at 37°C and incubated with taxol. Tubulin and 270K protein are decreased in amount. Lane 3, 
pellet after centrifugation (at 36,000 g for 30 min) of the first supernatant of the homogenate incubated with taxol at 37°C for 10 min. 
This contains tubulin and MAPs from crayfish peripheral nerves. In the pellet, tubulin and 270K protein axe the main bands. Lane 4, superna- 
taut after centrifugation of crayfish MAPs and tubulin boiled for 4 min. 270K proteins clearly stay in the supernatant after heat treatment. 
Lane 5, pellet after centrifugation of crayfish MAPS and tubulin boiled for 4 rain. Tubulin and other proteins are found in the pellet. Lane 
6, supernatant after centrifugation of crayfish MAPs plus tubulin extracted with 0.6 M NaCI. T/0K protein is extracted by high-salt treatment. 
Lane 7, pellet after centrifugation of crayfish MAPs plus tubulin treated with 0.6 M NaCI. 270K protein is extracted from the pellet. Lane 
8, rat brain MAPs and tubulin isolated by a method using taxol. Lane 9, supernatant after centrifugation of MAPs and tubulin boiled for 
4 rain. MAP2 clearly stays in the supernatant. Arrow points to 2"/OK protein. Tu, tubulin. 

PEM buffer) and sprayed onto mica with nitrogen gas. The mica was dried 
under vacuum and rotary shadowed with platinum at an angle of 7 ° by an 
electron beam evaporator. Specimens were then coated with a thin carbon 
film. The replicas were detached from mica with hydrofluoric acid, washed 
with distilled water, and observed with an electron microscope. 

Immunocytochemistry and Immunoblotting 
Using Anti-MAP2 Antibodies 

Heat stable MAP was subjected to SDS PAGE on a 7.5% polyacrylamide 
gel. It was then transferred to nitrocellulose paper. Nitrocellulose replicas 
of SDS gels were stained with either preimmune serum or anti-MAP2 se- 
rum (3) (courtesy of R. Vallee and G. Bloom, the Worcester Foundation). 
The second antibody was horseradish peroxidase-conjugated lgG fraction 
of goat anti-rabbit IgG (Cappel Laboratories, Cochranville, PA), which was 
reacted with diaminobenzidine to reveal the immunoreactive proteins. 

Crayfish walking leg nerves were dissected out and fixed with 2% 
paraformaldehyde and 0.2 % glutaraldehyde in internal medium for 10 h. 
They were cut into small pieces and incubated with NaBI-I4 (1 mg/ml) for 
30 rain and washed with phosphate-buffered saline (PBS). They were im- 
mersed in 1.5 M sucrose in PBS for 3 h and frozen with liquid Freon. 8-1xm 
frozen sections were cut with a Damon cryostat (Needham, MA). The sec- 
tions were incubated with 20% goat serum in PBS followed by rabbit anti- 
MAP2 serum (3) in PBS plus 1% bovine serum albumin (BSA), or preim- 
mune serum in PBS + BSA for I h. APter washing with PBS plus 0.1% BSA, 
they were incubated with horseradish peroxidase-labeled goat anti-rabhit 
lgG which was reacted with 4-Cl-l-naphthol. 

Results 

Visualization of the Cytoskeletal Organization in the 
Saponin-permeabilized Crayfish Axon with 
Quick-Freeze, Deep-Etch Electron Microscopy 
The axoplasm in saponin-treated nerves was composed of 
longitudinally oriented microtubules and an extensive net- 

work of cross-bridges 6-9 nm in diameter (6.6 + 1.4-nm 
wide) (Fig. 1). When the microtubules are close to each 
other, the cross-bridges tend to be straight and short (~30- 
nm long). However, frequently microtubules tended to be 
separated far more than 30 nm and the cross-bridges tended 

0D35o 

200 

150 

100" 

50- 

0 10 20 30 rain 

Figure 3. OD3s0 of solution A containing 224 IXl of rat tubulin (1.5 
mg/ml), 150 ~tl of crayfish-boiled MAP (0.56 mg/ml), and 1 mM 
GTP in PEM buffer (e)  and solution B containing 224 lxl of rat 
tubulin (1.5 mg/ml), 150 ltl of PEM buffer, and 1 mM GTP in PEM 
buffer ([]). 
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Figure 4. Negative-stained solution A containing rat brain tubulin and crayfish boiled MAP in PEM buffer plus 1 mM GTP after incubation 
for 35 min. 

to form anastomosing networks (Fig. 1). Basically similar 
results were obtained from fixed samples washed with dis- 
tilled water before freezing. 

Identification of a MAP (270K) in the Crayfish 
Peripheral Nerve and Its Molecular Structure 

MAPs were isolated from crayfish leg nerves using taxol. A 
prominent band of protein co-migrating (270K) with rat brain 
MAP2 was identified by SDS gel electrophoresis in the 
MAPs polymerized with tubulin and by using taxol (Fig. 2). 
This protein was also identified in an SDS gel of isolated gi- 
ant axons (two to three axons, Fig. 2 A). After saponin treat- 
ment this MAP clearly remained in the isolated giant axons 
(Fig. 2 A). This protein stayed in the supernatant after boiling 
for 5 min, so it somewhat resembled mammalian MAP2 
(Fig. 2 B). 270K MAP purified by boiling enhanced poly- 
merization of tubulin purified from rat brain by a phos- 
phocellulose column (Figs. 3 and 5). OD350 was scanned 
for 30 min after incubating rat brain tubulin with 270K MAP 
at 26°C in PEM buffer containing 1 mM GTP (Fig. 3). 
OD35o of the control solution containing only tubulin was 
also scanned (Fig. 3). After 30 min both solutions were 
warmed to 37°C and were then incubated for another 5 min. 
After that the solutions were examined by the negative-stain 
technique. Microtubules were formed in the samples of 270K 
MAP plus rat tubulin (Fig. 4). Microtubules were not found 
in the sample containing only tubulin. Polymerized tubulin 
plus 270K MAP were centrifuged and the pellets were quick- 
frozen, deep-etched. Microtubules were cross-linked with 

each other mostly by simple straight cross-bridges (25-50- 
nm long), but sometimes by anastomosing cross-bridges 
(Fig. 5). These cross-bridges looked just like the fine strands 
between microtubules observed in in vivo axons. However, 
the cross-bridges tended to be much more anastomosing in 
vivo than those in the replica of 270K plus tubulin in vitro. 
Low angle rotary shadowing of 270K MAP on mica revealed 
that the 270K MAP is a long flexible thin molecule (Fig. 6). 
The length of the 270K MAP on mica varied somewhat but 
its average was 104 + 22 nm. 

270K MAP Reacted with Anti-MAP2 lgG Which 
Stained Crayfish Axons 

As shown in Fig. 7, 270K MAP is composed of two closely 
associated bands, both of which reacted with anti-MAP2 
IgG. Anti-MAP2 stained axoplasm of both giant axons and 
smaller axons in the walking leg nerves (Fig. 8). The 
cytoplasms of the satellite cells were not stained (Fig. 8). 
These data mean that T/0K MAP cross-reacts with anti- 
MAP2 IgG and is localized in the axoplasm of crayfish pe- 
ripheral nerves. 

Discussion 

A Network of Cross-bridges Exists between 
Microtubules in Crayfish Axons 
The present study clearly revealed a network of fine cross- 
bridges between microtubules. These cross-bridges were 
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Figure 5. Quick-frozen, deep-etched pellet of crayfish 270K MAP and rat tubulin polymerized in vitro. Microtubules are cross-linked with 
each other via fine strands of a mainly straight and simple type but sometimes anastomosing type. Bar, 0.1 lain. (Inset) Anastomosing 
cross-bridges. 

most clearly demonstrated in saponin-treated axons. Be- 
cause we have found similar cross-bridges in axons perme- 
abilized with saponin and reactivated with ATP in which 
organdies were actively transported, it is reasonable to con- 
clude that the cross-bridges are real functional structures in 
the axon (17). 

The arrangement of microtubules in the crayfish axon was 
different from axons in vertebrates. In crayfish the distance 
between adjacent microtubules was wider than in the ver- 
tebrate. So the network of cross-bridges was more extensive 
in the crayfish axons. In this regard the cytoskeletal architec- 
ture in the crayfish axon resembles that in the dendrites of 

mammalian neurons where the microtubules are dominant 
cytoskeletal components and the network of cross-bridges is 
more extensive than in axons. It is interesting that both in the 
dendrites of mammalian neurons and in the crayfish axon, 
MAP2 (22) or MAP2-1ike protein is the main component of 
microtubule-associated cross-bridges. 

M A P s  in Crayf ish Peripheral  Nerves  

A MAP (T/0K) co-migrating with mammalian MAP2 was 
identified as a major MAP in the crayfish peripheral nerve 
in the present study. It was found in isolated fresh giant axons 
and remained in the axon after saponin extraction. Of  course 

Figure 6. Rotary-shadowed 270K 
MAP molecules. It looks like a long 
flexible thin rod. Bar, 0.I grn. 
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Figure 7. Nitrocellulose replicas of 
SDS gels of crayfish heat stable 
MAP. (A) A micrograph of an orig- 
inal gel stained with Coomassie 
Brilliant Blue. (B) A nitrocellulose 
replica stained with anti-MAP2 se- 
rum. (C) A replica stained with 
preimmune serum. Anti-MAP2 
antibodies react with 270K MAP 
(arrow). 

the peripheral nerves also contain Schwann cells (satellite 
cells) so that the data from biochemistry alone are not 
enough to verify the idea that the 270K MAP is a component 
in the crayfish peripheral axon. However, in the present 
study immunocytochemistry using anti-MAP2 antibodies 
that cross-react with 270K MAP demonstrated clearly that 
anti-MAP2 antibodies stained axoplasm. Therefore, we con- 
clude that 270K MAP, a MAP2-1ike protein, exists in the 
axoplasm of the peripheral nerves in crayfish. When the 
270K MAP was polymerized with rat brain tubulin in vitro, 
it formed cross-bridges between microtubules. It took a long 
rodlike form on mica. 

Mammalian MAP2 was shown by a thin section study to 
form armlike structures on microtubules (19). The platinum- 
replication technique also demonstrated that MAP2 is a long 
rodlike structure (33). By the quick-freeze method MAP2 
was revealed as cross-bridges between microtubules (unpub- 
lished data). Furthermore, anti-MAP2 IgG cross-reacted 
with the 270K MAP. 

The fact that this MAP in many ways resembles MAP2, 
but in fact exists in the axons, is extremely interesting, be- 
cause MAP2 has been shown to exist mainly in dendrites in 
vertebrate neurons (22). One of the main functions of this 
MAP could he, of course, to build a framework in the 
crayfish axon. However, at the same time this structure ought 
to be elastic or dynamic, because rapidly transported vesi- 
cles must pass through it (1, 10, 17). It has also been shown 
that MAPs cross-link secretory granules with microtubules 
in the absence of ATP, but release them in their presence 
(30). The fact that the 270K MAP resembles mammalian 
MAP2 may be related to the structural similarity between 
dendrites of mammalian neurons and crayfish axons. In both 
cases microtubules are predominant cytoskeletal elements 
and are distributed throughout the cytoplasm. There are 
similar types of networks of cross-bridges between microtu- 
bules in both crayfish axons and dendrites of mammalian 
neuron (Shiomura, Y., and N. Hirokawa, manuscript in 
preparation). 

However, although MAP1 and MAP2 are two main MAPs 
in the dendrites of mammalian neurons, crayfish axons con- 
tain ordy 270K protein as a main high molecular weight 
MAP. We found straight cross-bridges as well as anastomos- 
ing cross-bridges in the crayfish axons. In the preparation 
containing 270K MAP and rat tubulin we recognized mainly 
straight and short cross-bridges, but sometimes anastomos- 
ing ones between microtubules. Because the straight and 

Figure 8. Immunocytoehemical staining of crayfish peripheral nerves with anti-mammalian MAP2 antibodies. (A) A longitudinal section 
of a medium-sized nerve stained with anti-MAP2 antibody. The axoplasm is prominently stained. The cytoplasm of satellite cells surround- 
ing the axon is not stained. (B) A Nomarski photomicrograph of the same axon as shown in A. The reaction products are clearly observed. 
Bar (for A and B), 10 ~tm. (C) A cross-section of several nerves stained with anti-MAP2 antibody. The axoplasms are stained positively. 
(D) A Nomarski photomicrograph of the same section as shown in C. It is evidently shown that the reaction products localize in the axo- 
plasms and not in the cytoplasm of the surrounding satellite cells. (E) A Nomarski photomicrograph of a cross-section of several nerves 
stained with preimmune serum. The axoplasms are not stained. Bar (for C, D, and E), 10 Jam. 
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short cross-bridge (•30 nm) was shorter than a single 270K 
molecule (104 + 22 am), it could be composed of one 270K 
molecule, and a 270K molecule could have binding sites to 
tubulin at both ends. 

There are probably two possibilities to explain the struc- 
ture of the anastomosing cross-bridges at the molecular 
level: (a) 270K MAP can bind tubulin as well as 270K protein 
at both ends. Thus a single molecule can cross-link microtu- 
bules with each other, and several 270K molecules can form 
networks. (b) A 270K molecule has binding sites to tubulin 
at both ends. In this case the oligomer of the tubulin may 
serve as molecules which locate at the anastomosing points 
of cross-bridges. In addition, because in the in vivo axon the 
cross-bridges are so extensively anastomosed, the possibility 
remains that there may be some unknown proteins that con- 
nect 270K MAP with each other. Further studies are neces- 
sary to understand the structure of anastomosing cross- 
bridges at the molecular level. So far the crayfish axoplasm 
provides a simple, clear system for understanding how the 
MAP interacts with microtubules to build the in vivo struc- 
ture further at the molecular level. 
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