Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Mar 1;102(3):859–862. doi: 10.1083/jcb.102.3.859

Nuclear actin and myosin as control elements in nucleocytoplasmic transport

PMCID: PMC2114124  PMID: 2419345

Abstract

Fluorescence redistribution after photobleaching (FRAP) was used to examine the role of actin and myosin in the transport of dextrans through the nuclear pore complex. Anti-actin antibodies added to isolated rat liver nuclei significantly reduced the flux rate of fluorescently labeled 64-kD dextrans. The addition of 3 mM ATP to nuclei, which enhances the flux rate in control nuclei by approximately 250%, had no enhancement effect in the presence of either anti-actin or anti-myosin antibody. Phalloidin (10 microM) and cytochalasin D (1 micrograms/ml) individually inhibited the ATP stimulation of transport. Rabbit serum, anti-fibronectin, and anti-lamins A and C antibodies had no effect on transport. These results suggest a model for nuclear transport in which actin/myosin are involved in an ATP-dependent process that alters the effective transport rate across the nuclear pore complex.

Full Text

The Full Text of this article is available as a PDF (418.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berrios M., Blobel G., Fisher P. A. Characterization of an ATPase/dATPase activity associated with the Drosophila nuclear matrix-pore complex-lamina fraction. Identification of the putative enzyme polypeptide by direct ultraviolet photoaffinity labeling. J Biol Chem. 1983 Apr 10;258(7):4548–4555. [PubMed] [Google Scholar]
  2. Burridge K., Kelly T., Mangeat P. Nonerythrocyte spectrins: actin-membrane attachment proteins occurring in many cell types. J Cell Biol. 1982 Nov;95(2 Pt 1):478–486. doi: 10.1083/jcb.95.2.478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Capco D. G., Wan K. M., Penman S. The nuclear matrix: three-dimensional architecture and protein composition. Cell. 1982 Jul;29(3):847–858. doi: 10.1016/0092-8674(82)90446-9. [DOI] [PubMed] [Google Scholar]
  4. Clark T. G., Rosenbaum J. L. An actin filament matrix in hand-isolated nuclei of X. laevis oocytes. Cell. 1979 Dec;18(4):1101–1108. doi: 10.1016/0092-8674(79)90223-x. [DOI] [PubMed] [Google Scholar]
  5. Douvas A. S., Harrington C. A., Bonner J. Major nonhistone proteins of rat liver chromatin: preliminary identification of myosin, actin, tubulin, and tropomyosin. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3902–3906. doi: 10.1073/pnas.72.10.3902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gall J. G. Octagonal nuclear pores. J Cell Biol. 1967 Feb;32(2):391–399. doi: 10.1083/jcb.32.2.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gerace L., Blobel G. Nuclear lamina and the structural organization of the nuclear envelope. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 2):967–978. doi: 10.1101/sqb.1982.046.01.090. [DOI] [PubMed] [Google Scholar]
  8. Jiang L. W., Schindler M. Chemical factors that influence nucleocytoplasmic transport: a fluorescence photobleaching study. J Cell Biol. 1986 Mar;102(3):853–858. doi: 10.1083/jcb.102.3.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jockusch B. M., Brown D. F., Rusch H. P. Synthesis and some properties of an actin-like nuclear protein in the slime mold Physarum polycephalum. J Bacteriol. 1971 Nov;108(2):705–714. doi: 10.1128/jb.108.2.705-714.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kalderon D., Richardson W. D., Markham A. F., Smith A. E. Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature. 1984 Sep 6;311(5981):33–38. doi: 10.1038/311033a0. [DOI] [PubMed] [Google Scholar]
  11. Kay R. R., Fraser D., Johnston I. R. A method for the rapid isolation of nuclear membranes from rat liver. Characterisation of the membrane preparation and its associated DNA polymerase. Eur J Biochem. 1972 Oct 17;30(1):145–154. doi: 10.1111/j.1432-1033.1972.tb02081.x. [DOI] [PubMed] [Google Scholar]
  12. Korn E. D. Biochemistry of actomyosin-dependent cell motility (a review). Proc Natl Acad Sci U S A. 1978 Feb;75(2):588–599. doi: 10.1073/pnas.75.2.588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lestourgeon W. M., Forer A., Yang Y. Z., Bertram J. S., Pusch H. P. Contractile proteins. Major components of nuclear and chromosome non-histone proteins. Biochim Biophys Acta. 1975 Feb 27;379(2):529–552. [PubMed] [Google Scholar]
  14. Maul G. G. The nuclear and the cytoplasmic pore complex: structure, dynamics, distribution, and evolution. Int Rev Cytol Suppl. 1977;(6):75–186. [PubMed] [Google Scholar]
  15. OHNISHI T., KAWAMURA H., TANAKA Y. DIE AKTIN UND MYOSIN AEHNLICHE PROTEINE IM KALBSTHYMUSZELLKERN. J Biochem. 1964 Jul;56:6–15. doi: 10.1093/oxfordjournals.jbchem.a127959. [DOI] [PubMed] [Google Scholar]
  16. OHNISHI T., KAWAMURA H., YAMAMOTO T. EXTRAKTION EINES DEM AKTIN AEHNLICHEN PROTEINS AUS DEM ZELLKERN DES KALBSTHYMUS. J Biochem. 1963 Sep;54:298–300. doi: 10.1093/oxfordjournals.jbchem.a127789. [DOI] [PubMed] [Google Scholar]
  17. Paine P. L., Moore L. C., Horowitz S. B. Nuclear envelope permeability. Nature. 1975 Mar 13;254(5496):109–114. doi: 10.1038/254109a0. [DOI] [PubMed] [Google Scholar]
  18. Peters R. Flux measurement in single cells by fluorescence microphotolysis. Eur Biophys J. 1984;11(1):43–50. doi: 10.1007/BF00253857. [DOI] [PubMed] [Google Scholar]
  19. Peters R. Nuclear envelope permeability measured by fluorescence microphotolysis of single liver cell nuclei. J Biol Chem. 1983 Oct 10;258(19):11427–11429. [PubMed] [Google Scholar]
  20. Peters R. Nucleo-cytoplasmic flux and intracellular mobility in single hepatocytes measured by fluorescence microphotolysis. EMBO J. 1984 Aug;3(8):1831–1836. doi: 10.1002/j.1460-2075.1984.tb02055.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rungger D., Rungger-Brändle E., Chaponnier C., Gabbiani G. Intranuclear injection of anti-actin antibodies into Xenopus oocytes blocks chromosome condensation. Nature. 1979 Nov 15;282(5736):320–321. doi: 10.1038/282320a0. [DOI] [PubMed] [Google Scholar]
  22. Sanger J. W., Sanger J. M., Kreis T. E., Jockusch B. M. Reversible translocation of cytoplasmic actin into the nucleus caused by dimethyl sulfoxide. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5268–5272. doi: 10.1073/pnas.77.9.5268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schindler M. Alterations in nuclear anatomy by chemical modification of proteins in isolated rat liver nuclei. Exp Cell Res. 1984 Jan;150(1):84–96. doi: 10.1016/0014-4827(84)90704-3. [DOI] [PubMed] [Google Scholar]
  24. Schliwa M. Action of cytochalasin D on cytoskeletal networks. J Cell Biol. 1982 Jan;92(1):79–91. doi: 10.1083/jcb.92.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Smith C. D., Wells W. W. Solubilization and reconstitution of a nuclear envelope-associated ATPase. Synergistic activation by RNA and polyphosphoinositides. J Biol Chem. 1984 Oct 10;259(19):11890–11894. [PubMed] [Google Scholar]
  26. Unwin P. N., Milligan R. A. A large particle associated with the perimeter of the nuclear pore complex. J Cell Biol. 1982 Apr;93(1):63–75. doi: 10.1083/jcb.93.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wieland T. Interaction of phallotoxins with actin. Adv Enzyme Regul. 1976;15:285–300. doi: 10.1016/0065-2571(77)90021-8. [DOI] [PubMed] [Google Scholar]
  28. Wunderlich F., Franke W. W. Structure of macronuclear envelopes of Tetrahymena pyriformis in the stationary phase of growth. J Cell Biol. 1968 Aug;38(2):458–462. doi: 10.1083/jcb.38.2.458. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES