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Abstract. Protein 4.1 is a peripheral membrane  pro- 
tein that strengthens the actin-spectrin based mem- 
brane skeleton of  the red blood cell and also serves to 
attach this structure to the plasma membrane.  In 
avian erythrocytes it exists as a family of  closely re- 
lated polypeptides that are differentially expressed 
during erythropoiesis. We have analyzed the synthesis 
and assembly onto the membrane  skeleton of  protein 
4.1 and in this paper we show that its assembly is 
extremely rapid and highly efficient since >95% of  the 
molecules synthesized are assembled in < 1 min. The 
remaining minor  fraction of  unassembled protein 4.1 
differs kinetically and is either degraded or assembled 
with slower kinetics. All protein 4.1 variants exhibit a 
similar kinetic behavior irrespective of  the stage of  

erythroid differentiation. Thus, the amount  and the 
variants ratio of  protein 4.1 assembled are determined 
largely at the transcriptional or at the translational 
level and not posttranslationally. During erythroid ter- 
minal differentiation the molar  amounts  of  protein 
4.1 and spectrin assembled change. In postmitotic 
cells, as compared with proliferative cells, far more 
protein 4.1 than spectrin is assembled onto the mem- 
brane-skeleton. This modulat ion may permit  the as- 
sembly of  an initially flexible membrane  skeleton in 
mitotic erythroid cells. As cells become postmitotic 
and undergo the final steps of  maturat ion the mem- 
brane skeleton may be gradually stabilized by the as- 
sembly of  protein 4.1. 

ROTEIN network is attached to the cytoplasmic surface 
of the erythrocyte plasma membrane which influ- 
ences cell shape and deformability and the distribu- 

tion of integral membrane proteins. This network, the mem- 
brane skeleton, is based on actin oligomers bound and cross- 
linked by spectrin tetramers (for reviews see references 2, 6, 
and 20). Protein 4.1 forms a ternary complex with spectrin 
and actin and thereby strongly enhances and stabilizes their 
association ( 1 l, 12, 29). It may also confer Ca2+-sensitivity on 
the actin-spectrin interaction (12). Anchorage of the network 
to the bilayer is mediated by ankyrin, which provides a link 
between spectrin and an integral membrane protein, the anion 
transporter (reviewed in references 2, 6, and 20). In addition, 
protein 4. l functions in the membrane attachment of the 
actin-spectrin network: It binds with high affinity to the 
cytoplasmic domain of glycophorin (1) and associates with 
phosphatidylserine-containing liposomes (26). Protein 4.1 
may also form a complex with the cytoplasmic domain of the 
anion transporter (24). Since the binding to the anion trans- 
porter appears to exclude a concurrent interaction of protein 
4. l with spectrin-actin complexes, switching between its mem- 
brane binding sites may be a means to reversibly alter the 
attachment of the membrane skeleton to the plasma mem- 
brane. 

Protein 4. l, spectrin, ankyrin, and the anion transporter 
also have been identified in chicken erythrocytes (3, 9, 13- 

16, 23, 25, 30). The chicken system offers the advantage that 
embryonic erythroid cells can be obtained easily. This greatly 
facilitates studies of the biogenesis of the membrane skeleton 
during erythropoiesis. Chicken protein 4.1 is composed of a 
family of closely related polypeptides of a lower molecular 
weight group (77K, 87K, 100K, and l15K) and a higher 
molecular weight group (145K, 150K, 160K, and 175K) (13, 
14). The higher molecular weight variants are present in 
considerably lesser amounts than the lower molecular weight 
variants. Individual protein 4.1 variants were shown to be 
differentially expressed during maturation of erythroid cells 
(14). In proliferative erythroid cells the lower molecular weight 
variants of both groups are present. As the cells mature and 
become postmitotic the upper molecular weight variants of 
both groups gradually accumulate. This appearance of new 
variants during terminal differentiation is observed in both 
the primitive erythroid cell series, which is present in early 
embryos, and the definitive cell series, which appears later 
during embryogenesis and persists throughout life. 

In this study we have analyzed the synthesis and assembly 
of protein 4.1 onto the membrane skeleton. We demonstrate 
that the assembly process is very rapid and efficient since only 
a minor fraction of the molecules synthesized is not assem- 
bled. The synthesis and assembly kinetics of the different 
protein 4.1 variants are very similar. However, during eryth- 
roid terminal differentiation the amount of protein 4.1 syn- 
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thesized and assembled varies relative to the amount of spec- 
trin assembled. In proliferative cells the molar amount of 
protein 4.1 assembled is substantially less than the amount of 
spectrin assembled. As cells become postmitotic and express 
the larger protein 4.1 variants of each group the molar ratio 
of protein 4.1 and spectrin assembled changes gradually until 
more protein 4.1 is assembled than spectrin. This regulation 
of assembly may ensure a relatively flexible membrane skel- 
eton in proliferative cells but lead to a stabilization of this 
structure during the final stages of erythroid terminal differ- 
entiation. 

Materials and Methods 

Preparation of Cells 
Circulating chicken embryo erythroid cells were isolated from fertilized eggs 
after different times of incubation. The embryos were removed from the eggs 
and bled into minimal essential medium (MEM} Gibeo, Grand Island, NY). 
The diluted blood was filtered through glass wool, washed five times in MEM 
or MEM minus methionine (for labeling with methionine), and any buffy coat 
was removed. All steps were performed at room temperature with medium 
prewarmed to 37*C. 

Size Fractionation of Cells by Centrifugal Elutriation 
Erythroid cells from 9-d-old embryos were resuspended in MEM (9 x l0 g cells 
in l0  ml MEM). They were loaded wilh a flow rate of 16 ml /min  into a 
Beckman JE-6B elutriator rotor (Beckman Instruments lnc., Polo A~to~ CA) 
spinning at 2,860 rpm and containing cold Hunk's buffered saline solution 
minus Mg 2÷, Ca 2÷ supplemented with 0.25% bovine serum albumin. The cells 
were sequentially elated with flow rates of 20, 30, 36, and 46 ml /min  (fractions 
A to D, respectively). Fractions A and B contained definitive cells, fractions C 
and D contained primitive cells as has been shown previously (14). After 
elutriation the cells were pelleted, washed once in MEM, and labeled with ~4C- 
amino acids. 

Labeling of Cells 
For continuous labeling with [3SS]methionine the pelleted cells were resus- 
pended in I0 vol prewarmed MEM minus methionine and O. l to I mCi [35S]- 
methionine (specific activity, 7,800 Ci/mmol; Amersham Corp., Arlington 
Heights. IL) was added. Cells were incubated at 37"C for 2 h, pelleted in a 
clinical centrifuge, and washed once with cold MEM and fractionated (see 
below). For pulse-chase labeling pelleted cells were resuspended in 4 voI 
prewarmed MEM-methionine containing 1.5 mCi [J~Slmethionine, They were 
then pulse labeled for 3 min at 37"C. The cells were pelleted for 1 rain in a 
clinical centrifuge, resuspended in 20 vol MEM supplemented with 0.5 mM L- 
methionine, and incubated at 37°C (chase). In some experiments cells were 
chased in the presence of a protein synthesis inhibitor (50 t~M emetine). Samples 
were taken immediately after the resuspension of the cells in chase medium 
(pulse sample) and at different times thereafter (chase samples). The cells were 
pelleted for 1 rain in the cold and fractionated. For continuous labeling with 
amino acids the pelleted cells were resuspended in 50 vol Earle's balanced salt 
solution (Gibeo) supplemented with 1% MEM, 1% nonessential amino acids 
(Gibeo), and from 50 to 150 gCi of a L-J'C-amino acid mixture (specific 
activity, 55 mCi [maton carbon, New England Nuclear, Boston, MA]). Cells 
were incubated at 37"C for 4 h, pelleted thereafter, washed once in cold MEM, 
and then fraetionated. 

Cell Fractionation 
Petleted erythroid cells were resuspended in 20 vol 5 mM Hepes, pH 7.3, 5 
mM MgCI2, 5 mM EGTA, I mM phenylmethylsulfonyl fluoride, I mM 
aprotinin (Boehringer Mannheim Biochemicals, Indianapolis, IN), 0.1 mM 
leupeptin (Boehringer Mannheim Biochemicals), and lysed on ice for from 3 
to 5 min. The structures were pelleted in a clinical centrifuge in the cold and 
washed once. Both supernatants were combined (hypotonically soluble extract). 
The structures were either dissolved in SDS sample buffer (125 mM Tris, pH 
6.8, 1% SDS, 25 mM dithiothreitol), and the DNA was sheared by brief 
sonication. Alternatively they were extracted with 10 vol 10 M urea in one-half 
of the lysis buffer for 15 min at 4"C. The suspension w~s centrifuged for 5 min 

' Ahhreviation used in this paper." MEM, minimum essential medium. 

in an Eppendorf centrifuge in the cold, and the snpernatant, which q~an~i¢a- 
tively contained protein 4.1 and spectrin, was removed, 

Immunopreeipitation, SDS PAGE, and Quantitation 
For immunoprecipitation, extracts were diluted with from 10 to 20 vol of 100 
mM Tris, pH 9.0, 200 mM NaCI, 5 mM EDTA, 5 mM EGTA. 5 mM 
dithiothreitol, 1% Triton X-100, 0.1% SDS, 1% sodium deoxycholate, 1 mM 
aprotinin, 1 mM phenylmethylsulfonyl fluoride, 0.1 mM leupeptin. Chicken 
erythrocyte protein 4.1 antiserum (13) or ~-spectrin antiserum (22) was added, 
and the immunoprecipitation was as described (28), Supernatants of the pre- 
cipitation were reprecipitated with the same antiserum to ensure a quantitative 
precipitalion. Precipitated proteins were eluted by heating in SDS sample buffer 
and loaded onto 12.5% SDS polyacrylamide gels (25). After electrophoresis gels 
were stained with Coomassie Brilliant Blue, deslained, and prepared for fluo- 
rography (7, 17). Fluorograms were scanned with a Quick-Scan (Helena Lab- 
oratories. Beaumont, TX), and the area under the peaks was integrated or cut 
out and weighed, 

Results 
Separation of Assembled and Unassembled 
Protein 4.1 
To analyze the assembly of protein 4.1 onto the membrane 
skeleton a cell fractionation method was required that allowed 
for a separation of assembled and unassembled polypeptides, 
In previous studies of spectrin and ankyrin, molecules solu- 
bilized during cell lysis with buffers containing nonionic 
delergents were operationally defined as unassembled, and 
the insoluble fraction was designated as the membrane skel- 
eton (5, 21). During pulse-chase experiments unassembled 
spectrin and ankyrin polypeptides turned over, but polypep- 
tides assembled onto the membrane skeleton were stable (5, 
21). Our initial studies with protein 4.1 using this fractionation 
procedure, however, showed some variability among different 
experiments with regard to both the amount of protein 4.1 
rendered soluble and its metabolic stability. More detailed 
investigations indicated that protein 4.1 could be solubilized 
from chicken erythroid ghosts (i.e., the membrane skeleton) 
by nonionic detergents (e.g., Triton X-100, Nonidet P-40, 
Tween 20), high salt concentration (2 M NaCI), or mechanical 
forces. Since the amount extracted was dependent on the 
length of the extraction time and additional protein 4.1 was 
solubilized if the extractions were repeated (data not shown), 
no distinct subpopulations of protein 4.1 were obtained under 
these conditions. In contrast, hypotonic lysis of chicken red 
blood cells reproducibly solubilized a bona fide subpopulation 
of protein 4.1, as indicated by the facts that two extractions 
were exhaustive and the remaining material could not be 
removed when the extractions were repeated (data not shown). 
Under these conditions the stable association of the insoluble 
protein 4.1 with the membrane skeleton was not detectably 
decreased by reducing agents (dithiothreitol), chelators 
(EDTA and EGTA), the final protein concentration in the 
extraction buffer, the ratio of  buffer and to extracted cells, or 
the length of the extraction time. Extracted protein 4.1 was 
soluble by the criteria that it could not be pelleted by centrif- 
ugation at 150,000 g (30 rain) and it ran as monomers on 
glycerol gradients (data not shown). 

We next examined the metabolic behavior of the hypoton- 
ically soluble and insoluble protein 4.1 subpopulations during 
a pulse-chase experiment. Erythroid cells from 15-d-old em- 
bryos were pulse-labeled with [35S]methionine for 3 min, 
pelleted, and resuspended in medium containing an excess of 
unlabeled methionine. After the pulse and after different times 
of chase aliquots were removed and hypotonically lysed, and 
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the residual structures were solubilized. The hypotonically 
soluble and the membrane skeletal extracts were analyzed for 
protein 4.1 by immunoprecipitation. To obtain a sufficient 
signal the hypotonically soluble protein 4.1 was precipitated 
from 10 times as many cells as the insoluble protein 4.1. A 
fluorogram from such an experiment is shown in Fig. 1. As 
has been shown (14), the predominant variants synthesized 
at this time were the 100K and 115K polypeptides. Smaller 
amounts of the 87K polypeptide were also synthesized. The 
higher molecular weight variants were synthesized in small 
amounts and only the 160K and 175K polypeptides were 

Figure 1. Metabolic behavior of assembled and unassembled protein 
4.1 in erythroid cells from 15-d-old embryos. Cells were pulse-chase 
labeled and fractionated in a hypotonically soluble (unassembled) 
fraction (lanes 7-12) and the corresponding insoluble (membrane 
skeletal) fraction (lanes 1-6) at different times as described in the 
text. Protein 4.1 was precipitated from both fractions using hypotonic 
extracts from 10 times as many cells as the membrane skeletal 
fraction. The immunoprecipitates were separated on 12.5% SDS 
polyacrylamide gels and visualized by fluorography. Lanes 1 and 7 
pulse. Chase of: 5 min (lanes 2 and 8), 10 min (lanes 3 and 9), 30 
rain (lanes 4 and 10), 75 min (lanes 5 and 11), and 180 min (lanes 6 
and 12). Bars designate protein 4.1 variants: 87K, 100K, 115K, 160K, 
and 175K. 

visible at this exposure. The maximum amount of total 
(unassembled plus assembled) protein 4.1 synthesized was 
reached after only 5 to 10 rain of chase. After this time the 
amount of protein 4.1 in the unextracted fractions remained 
constant during the 4 h chase period. The stability of protein 
4.1 in the unextracted fraction indicated that these molecules 
were assembled onto the membrane skeleton. In contrast 
hypotonically soluble, unassembled protein 4.1 turned over 
(Fig. 1, lanes 7-12). 

Detection o f  Nascent Protein 4.1 Polypeptide Chains 
From the pulse-labeled hypotonic extract (Fig. 1, lane 7) 
many polypeptides were precipitated that formed a smear on 
the gel in the molecular weight region below the major protein 
4.1 variants (115K and 100K). These polypeptides were less 
apparent after longer pulse-labeling times (data not shown) 
and disappeared during a short (10 min) chase (Fig. 1, lanes 
7-9). However, they remained stable for > l  h if elongation 
of polypeptide synthesis was blocked with 50 ttM emetine 
(data not shown). We conclude that these polypeptides are 
protein 4.1 nascent chains. After longer exposure times poly- 
peptides with the same characteristics also could be detected 
below the minor protein 4.1 variants (160K and 170K). They 
were much less abundant than the lower molecular weight 
nascent chains, as were the mature 160K and 170K polypep- 
tides, suggesting that the larger molecular weight cluster of 
nascent chains are precursors only for the larger protein 4.1 
variants. Generation of the lower molecular weight protein 
4.1 variants from the higher molecular weight variants or even 
larger polypeptides by posttranslational proteolytic cleavage 
therefore appears unlikely. The nascent protein 4.1 polypep- 
tides were recovered quantitatively in the soluble fraction not 
only after hypotonic lysis but also after detergent lysis of cells 
in an isotonic buffer. In this respect they differ in their 
extraction properties from a-spectrin nascent chains which 
were found mostly in the cytoskeletal fraction (4). The struc- 
tural basis for this difference remains to be investigated. 

Protein 4.1 Is Assembled onto the Membrane Skeleton 
Immediately after Its Synthesis 
To determine the kinetics of assembly and degradation of 
protein 4.1, the data from the experiment shown in Fig. l 
were quantitated (Table IA). Interestingly, immediately after 

Table I. Kinetic Analysis of Protein 4.1 Synthesis and Assembly 

A. Erythroid cells from 15-d-old Embryos 

Subcellular fraction (pulse then chase [ rnin]) 5 10 30 75 180 
Unassembled membrane skeleton (amount of pro- 606 636 667 321 168 222 

rein 4.1 [arbitrary units]) 13,856 25,789 32,037 33,390 28,682 32,337 
Unassembled membrane skeleton (% total protein 4.2 2.4 2.0 1.0 0.6 0.7 

4.1) 95.8 97.6 98.0 99.0 99.4 99.3 
B. Erythroid cells from 5-d-old Embryos 

Subcellular fraction (pulse then chase [min]) 6 11 30 74 180 
Unassembled membrane skeleton (amount of pro- 94.3 105.4 82.9 29.5 - -  - -  

tein 4.1 [arbitrary units]) 3,149 5,668 5,777 6,616 4,776 4,228 
Unassembled membrane skeleton (% total protein 2.9 1.8 1.4 0.4 0 0 

4.1) 97.1 98.2 98.6 99.6 100 100 

(A) For erythroid cells from 15-d-old embryos, the fluorogram shown in Fig. 1 was scanned, and the peak areas were integrated as described in Materials and 
Methods. The values obtained for the individual protein 4.1 polypeptides were added. Nascent protein 4.1 polypeptide chains were not considered. (B) A similar 
fluorogram for erythroid cells from 5-d-old embryos was quantitated for the data presented. 
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the pulse only ~4% of the mature 4.1 polypeptides were 
found in the unassembled fraction. About 96% of protein 4.1 
was already assembled after this short time (5 min including 
incubation, centrifugation, and resuspension of cells). The 
amount of assembled protein 4.1 increased for the first 5 rain 
by almost the same factor as during the pulse; then assembly 
of labeled molecules slowed to reach a plateau at ~10 min. 
We attribute this increase in assembled material after the end 
of the pulse-labeling to the assembly of polypeptide chains 
that were completed only during the chase period. The small 
amount of unassembled protein 4.1 present after the pulse 
was by far insufficient to explain the assembly during the 
initial chase period, demonstrating that the vast majority of 
protein 4.1 is assembled extremely rapidly after completion 
of synthesis. The half-life of a newly synthesized precursor 
molecule must be <1 min since 96% of the newly synthesized 
molecules is assembled after 5 rain of continuous labeling. 

We have estimated the turnover of unassembled protein 
4.1 from the 10-rain time point onwards since the amount of 
labeled material increased during the first 10 min of chase. 
Such a calculation yields a half-life of 15 to 20 min, consid- 
erably longer than the half-life calculated above for a pre- 
sumed soluble assembly precursor. Therefore, two popula- 
tions of newly synthesized protein 4.1 with different kinetic 
behavior exist: a population that is assembled either co- 
translationally or posttranslationally with a very short half- 
life; and a population with a much longer half-life that may 
be either assembled differently or remain unassembled and 
be degraded. 

Quantitation of the individual protein 4.1 variants shows 
no significant difference in their synthesis, assembly, or deg- 
radation kinetics (data not shown). In addition, the ratio of 
the different 4.1 polypeptides remains constant during the 
chase time in both the assembled and unassembled fraction. 
Only the 4.1 polypeptides precipitated from the hypotonic 
extract after the short pulses (Fig. 1, lane 7) appear to have a 
different ratio. We attribute this to the nascent chains present 
that contribute to the amount of the mature 100K variant. 
This conclusion is supported by experiments with amino acid 
analogues. After incubation of cells with the valine analogue 
L-threo-a-amino-3-chlorobutyric acid and the arginine ana- 
logue canavanine the level of unassembled protein 4.1 is 
increased considerably, probably because assembly is reduced. 
As a consequence nascent chains are much less prominent. 
Under these conditions the same ratio of protein 4. l polypep- 
tides is obtained in all unassembled and assembled fractions 
(data not shown). 

Since there is a change in the protein 4.1 variants expressed 
during erythropoiesis (14), it was important to analyze also 
the assembly kinetics of the "early" protein 4.1 variants, which 
can be done best using erythroid cells from 5-d-old embryos. 
The variants synthesized at this time are primarily the 87K 
polypeptide, less of the 77K polypeptide, and very little of the 
100K polypeptide and the corresponding higher molecular 
weight variants (145K, 150K, 160K) in the same ratio as the 
polypeptides of the lower molecular weight group (see also 
Fig. 2, lane 1). It can be seen from Table IB that the maximum 
amount of labeled total protein 4.1 was reached after - 5  to 
l0 rain of chase. The half-life of the unassembled polypeptides 
was -15  rain, slightly shorter than in 15-d erythroid cells. 
About 97% of mature protein 4.t was assembled after the 

pulse-labeling, whereas the assembly reached a plateau after 
- 6  min of chase. No change in the ratio of different protein 
4.1 polypeptides was detected during the experiment. We 
conclude that there is no major difference in the assembly 
kinetics of protein 4.1 in 5- and 15-d erythroid cells. 

Protein 4.1 Assembly onto the Membrane Skeleton 
Increases Relative to l~-Spectrin Assembly during 
Erythroid Terminal Differentiation 

Aside from a determination of the kinetics, our understanding 
of protein 4.1 assembly also requires knowledge of the amount 
of protein 4.1 assembled relative to the molecules it interacts 
with. We therefore determined the ratio of protein 4.1 and t3- 
spectrin assembled onto the membrane skeleton in erythroid 
ceils from 5- and 14-d-old chicken embryos. Erythroid cells 
were labeled with a ~4C-amino acid mixture for 4 h, hypoton- 
ically lysed, and the cytoskeletal fractions were solubilized 
with urea. From these fractions protein 4.1 and /3-spectrin 
were quantitatively immunoprecipitated and separated by 
SDS PAGE. The corresponding fluorographs are shown in 
Fig. 2. The different protein 4.1 variants synthesized in eryth- 
roid cells from 5- and 14-d-old embryos are seen in this figure 
(Fig. 2, lanes 1 and 3). The fluorograms were scanned and 
the peak areas were determined. These values and the ratios 
of protein 4.1 to/3-spectrin are given in Table II. The ratios 
of protein 4.1 to 13-spectrin assembled onto the membrane 
skeleton clearly were different in erythroid cells from 5- and 
14-d-old embryos. Proliferative primitive cells (5 d) assembled 
(and therefore synthesized) about five to six times less protein 
4.1 relative to/~-spectrin than did postmitotic definitive cells 
(14 d). The interpretation of this result is somewhat compli- 
cated since the cells analyzed belong to two different erythroid 
cell series (8). Differences in the relative amounts of protein 
4.1 assembled therefore may be due to inherent properties of 
each cell series. Alternatively, they may reflect a true differ- 
entiation-specific phenomenon if erythroid cells of both series 
assemble more protein 4.1 relative to 13-spectrin as they ter- 
minally differentiate. 

To distinguish between these two possibilities postmitotic 
(mature) cells of the primitive series and proliferative defini- 

Figure 2. Analysis of protein 4.1 
and /3-spectrin assembled onto 
the membrane skeleton in eryth- 
roid cells from 5- and 14-d-old 
embryos. The cells were contin- 
uously labeled for 4 h with a ~4C- 
amino acid mixture, fraction- 
ated, and protein 4. l or (3-spec- 
trin was immunoprecipitated 
from aliquots of the cytoskeletal 
fractions as described. The poly- 
peptides were separated on 
12.5% SDS polyacrylamide gels 
and visualized by fluorography. 
Lanes I and 2; 5-d erytbroid cells; 
lanes 3 and 4, 14-d erythroid 
cells. Protein 4.1 variants are des- 
ignated by bars: 77K, 87K, 100K, 
lI5K, 145K, 150K, 160K, and 
175K./3,/~-spectrin. 
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Table H. Quantitative Analysis of the Amounts of Protein 
4.1 and {3-Spectrin Assembled During Different Stages of 
Erythropoiesis 

Relative Molar 
amounts Ratio of rela- ratio of 

tive amounts protein 
Protein /3- of protein 4.1//~- 
4.1 Spectrin 4.1/13-spectrin spectrin 

A. Erythroid cells 
Incubation time (d) 

5 
14 

B. Primitive and defini- 
tive erythroid cells,* 
from 9-d-old em- 
bryos 
Fraction 

A 
B 
C 
D 

(a~itra~ units) 

415 1,127 0.33 0.83 
160 291 1.82 3.64 

116 343 0.34 0.86 
95 131 0.72 1.58 

153 185 0.83 1.83 
515 386 1.33 2.66 

Appropriate exposures of the fluorograms shown in Figs. 2 and 3 were scanned, 
and the peak areas were measured by weighing out the recording paper. The 
sum of all protein 4.1 variants in each fraction is given. Molar ratios were 
calculated using the apparent molecular weights of the different protein 4.1 
variants expressed at different stages of erythroid development. 
* Separated by centrifugal elutriation. 

tive erythroid cells had to be analyzed. A mixed population 
of both cell series is present in the circulation between 5 and 
15 d of incubation. However, there are more definitive than 
primitive cells already in 9-d-old embryos, and after about 
the twelfth day of incubation the primitive cells constitute 
only a very minor fraction of all circulating erythroid cells 
(8). As primitive and definitive cells differ in their size we 
separated them by velocity sedimentation (14, 19) from a 
mixed population of erythroid cells derived from 9-d-old 
embryos. The cells were size-fractionated by centrifugal elu- 
triation (14), and the fractions obtained were labeled for 4 h 
with a 14C-amino acid mixture, fractionated, and analyzed for 
protein 4.1 and ~-spectrin as described above. Fig. 3 shows a 
fluorogram with protein 4.1 and ~-spectrin immunoprecipi- 
tated from all fractions. The two fractions eluting first (A, B; 
Fig. 3, lanes 1 and 2, 3 and 4) contained definitive cells at 
different stages of differentiation (14). The two fractions elut- 
ing thereafter (C, D; Fig. 3, lanes 5 and 6, 7 and 8) contained 
two sets of primitive erythroid cells (15). The relative amounts 
of protein 4.1 and 13-spectrin as well as the ratio of both 
proteins were determined for all fractions and are given in 
Table II. The mitotic definitive cells (Table IIB, fraction A; 
Fig. 3, lanes I and 2) assemble protein 4. l and B-spectrin 
onto the membrane skeleton in a ratio similar to the mitotic 
primitive erythroid cells (Fig. 2, lanes 1 and 2; Table IIA). As 
the definitive cells become postmitotic, indicated by the set 
of protein 4.1 variants expressed (Fig. 3, lanes 3 and 4), 
relatively more protein 4.1 is assembled (Table IIB, fraction 
B). In the earlier postmitotic primitive cells (Fig. 3, lanes 5 
and 6) that express slightly more of the larger protein 4.1 
variants than the definitive cells of fraction B, the ratio of 
protein 4.1 to /3-spectrin assembled is slightly higher (Table 
IIB, fraction C). As maturation of primitive cells proceeds 
(Fig. 3, lanes 7 and 8; Table IIB, fraction D) even more 
protein 4.1 relative to B-spectrin is assembled, though the 

Figure 3. Protein 4.1 and/3-spectrin assembled onto the membrane 
skeleton in primitive and definitive erythroid cells from 9-d-old 
embryos. Erythroid cells from embryos of 9 d of incubation were 
separated by centrifugal elutriation as described in Materials and 
Methods. Fractions were eluted with flow rates of 20 (A, lanes 1 and 
2), 30 (B, lanes 3 and 4), 36 (C, lanes 5 and 6), and 40 (D, lanes 7 
and 8) ml/min. Cells were labeled for 4 h with 14C-amino acids, the 
cytoskeletal fractions were isolated, and protein 4.1 and ~-spectrin 
were immunoprecipitated after solubilization of these fractions. The 
precipitated polypeptides were separated on 12.5% SDS polyacryl- 
amide gels and visualized by fluorography. Bars designate protein 4. l 
variants: 77K, 87K, 100K, 115K, 160K, 175K./3,/3-spectrin. 

ratio of protein 4. l/~-spectrin is not as high as that obtained 
with 14-d definitive erythroid cells (Table IIA). Protein 4.1 
and /3-spectrin may only be assembled in such a ratio in 
primitive cells at even later stages of embryogenesis. 

Table II also gives the molar ratios in which protein 4. l 
and/3-spectdn are assembled that were calculated using the 
apparent molecular weights of the individual polypeptides. 
Therefore, the values obtained can be regarded only as ap- 
proximations. They indicate that protein 4.1 is assembled in 
less than equimolar amounts as compared with B-spectrin in 
proliferative erythroid cells. However, the molar ratio of 
protein 4.1 to B-spectrin assembled is considerably larger than 
unity in postmitotic cells. Since protein biosynthetic activity 
decreases during erythroid differentiation, the large ratios 
obtained with erythroid cells from older embryos do not 
necessarily indicate that the total amount of protein 4.1 
assembled throughout differentiation is larger than the 
amount of/3-spectrin assembled. This is evidenced by the fact 
that the molar ratio of protein 4.1 to B-spectrin in adult 
erythrocytes is one (6; data not shown). The data presented 
indicate that the molar ratio of protein 4. l to/3-spectrin that 
is assembled onto the membrane-skeleton changes gradually 
as a function of the differentiation of both erythroid cell 
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series. Since we analyzed only cell populations we cannot 
exclude the possibility that a rapid change of this ratio occurs 
in individual cells as they become postmitotic. Asynchrony 
of the population may result in the overall appearance of a 
gradual alteration. 

Discussion 

In this study we have sought to analyze the mechanism of 
assembly of protein 4.1 and the mechanism by which the 
ratio of the variants to each other and to spectrin is achieved 
in erythroid cells during chicken embryo development. A 
prerequisite was to define extraction conditions for chicken 
erythroid cells that allowed for a separation of assembled and 
unassembled protein 4.1 molecules. A readily soluble protein 
4.1 subpopulation could be obtained that was unassembled 
based on its extraction properties and its metabolic instability. 
The corresponding insoluble population, which was metabol- 
ically stable, was regarded as assembled onto the membrane 
skeleton. This designation is based on the available evidence 
which indicates that all or at least most of steady state (i.e., 
metabolically stable) protein 4.1 is associated with the mem- 
brane skeleton (13, 14). 

The kinetic studies demonstrated that newly synthesized 
protein 4.1 is assembled extremely rapidly so that we cannot 
discriminate if it occurs co- or posttranslationally. Thus, 
during or shortly after synthesis a distinction must be made 
between protein 4.1 polypeptides which give rise to two 
subpopulations with different kinetic behavior and which 
channel the protein 4.1 polypeptides into either of two distinct 
pathways. One subpopulation assembles rapidly with a < l -  
ruin half-life of a presumed precursor molecule. The other 
subpopulation forms a readily soluble pool and exhibits a 
much slower turnover rate (t~/2, 15 to 20 min). The mecha- 
nism or mechanisms by which newly synthesized protein 4.1 
polypeptides are segregated into the two different pathways 
are not known at present. However it is apparent from the 
kinetic evidence presented that after its synthesis protein 4.1 
does not simply enter a homogeneous soluble pool from which 
molecules are removed with a certain probability by either of 
two competing pathways, self-assembly or degradation. In- 
stead a more sophisticated mechanism(s) appears to exist that 
probably requires the action of additional proteins. 

During the process of protein 4.1 assembly no major regu- 
lation of the number of molecules assembled occurs since 
only a few percent of the molecules synthesized remain un- 
assembled. The amount of protein 4.1 assembled therefore 
must be determined largely by the availability of protein 4.1 
polypeptides. This is in contrast to the assembly of a- or/3- 
spectrin and ankyrin, where the amount of each of these three 
polypeptides assembled was shown to be determined primarily 
at the posttranslational level (5, 21, 31). In this case it was 
postulated that the number of available receptor molecules 
(anion transporter) at the plasma membrane may limit the 
amount of spectrin and ankyrin which is assembled (18, 27). 

Chicken protein 4.1 is encoded by a single gene in the 
haptoid genorue (Ngai, J., R. T. Moon, and E. Lazarides, 
manuscript in preparation). The variety observed on the 
polypeptide level thus must be generated during mRNA or 
protein synthesis or processing. In this context it should be 
noted that one polypeptide of the lower and one of the higher 
molecular weight cluster of protein 4.1 variants are expressed 

always together during erythroid development (e.g., the 87K 
and the 150K, or the 100K and the 160K polypeptides). This 
observation may suggest that the generation of the four pro- 
tein 4.1 variant clusters during erythropoiesis is determined 
by one mechanism (on the RNA level) whereas the generation 
of a higher and a lower molecular weight variant within a 
given cluster occurs via a different mechanism (on the protein 
level). The kinetic behavior of the individual protein 4.1 
variants gives no indication for a posttranslational processing 
involved in the generation of the variants (see also reference 
14). All protein 4.1 polypeptides exhibit similar kinetics (syn- 
thesis, assembly, or degradation) irrespective of the stage of 
erythroid terminal differentiation. Consequently, the same 
ratio of protein 4.1 variants that was synthesized was assem- 
bled and maintained at the cytoskeleton or degraded. Fur- 
thermore, protein 4.1 nascent polypeptide chains of lower 
and higher molecular weight were found in a similar ratio as 
the full-length molecules. This indicates that the larger and 
the smaller protein 4.1 variants are synthesized separately and 
not generated posttranslationally from the same precursor 
molecule. However, this observation does not exclude limited 
cotranslational cleavage of the nascent polypeptide chains, 
which could give rise to the lower molecular weight polypep- 
tides. 

During terminal differentiation a gradual shift in the protein 
4.1 variants expressed occurs in both the primitive and the 
definitive chicken erythroid cell series when the cells become 
postmitotic, resulting in an alteration of the ratio of the 
protein 4.1 polypeptides synthesized (14). Protein 4.1 is as- 
sembled onto the membrane skeleton in all the different ratios 
without any detectable kinetic difference. However, the shift 
in the protein 4. I variants expressed is paralleled by a change 
in the amount of protein 4. l assembled relative to spectrin. 
In proliferative erythroid cells substantially less protein 4.1 is 
assembled than spectrin on a molar basis. As the cells become 
postmitotic and the protein 4.1 variants synthesized change, 
increasingly more protein 4.1 is assembled relative to spectrin. 
Since protein 4.1 assembles quantitatively at all stages of 
erythropoiesis the ratio change could be achieved by an in- 
crease in the level of translatable protein 4.1 mRNA relative 
to the spectrin RNAs. In addition, it has been shown that the 
fraction of newly synthesized spectrin that assembles decreases 
during erythropoiesis (5). This may contribute also to the 
relative increase in protein 4.1 assembly. The shift in the ratio 
of protein 4.1 and spectrin assembled indicates that the assem- 
bly of the individual components of the membrane skeleton 
is not coupled strictly during differentiation, even though 
protein 4.1 and spectrin directly interact with each other on 
the membrane skeleton. The interaction of protein 4.1 with 
spectrin strongly increases the association of spectrin and actin 
in vitro ( 11, 12, 29). In vivo an association of protein 4.1 with 
spectrin should therefore stabilize the membrane skeleton. As 
the membrane skeleton is assembled during erythropoiesis 
less than equimolar amounts of protein 4.1 are assembled 
initially and a relatively flexible structure may be generated 
in the proliferative cells. When the cells become postmitotic 
and undergo terminal differentiation, protein 4.1 is assembled 
in more than equimolar amounts. The excess protein 4.1 may 
associate with previously assembled spectrin and actin, in- 
crease the overall stability of the latter two, and form addi- 
tional links to the plasma membrane. It may thereby eontrib- 
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ute to the final stabilization of the erythrocyte membrane 
skeleton during terminal differentiation. 
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