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Abstract. The structure and processing of low density 
lipoprotein (LDL) receptors in wild-type and LDL re- 
ceptor-deficient mutant Chinese hamster ovary cells 
was examined using polyclonal anti-receptor antibod- 
ies. As previously reported for human LDL receptors, 
the LDL receptors in wild-type Chinese hamster ovary 
cells were synthesized as precursors which were exten- 
sively processed by glycosylation to a mature form. In 
the course of normal receptor turnover, an apparently 
unglycosylated portion of the cysteine-rich N-terminal 
LDL binding domain of the receptor is proteolytically 
removed. The LDL receptor-deficient mutants fall 
into four complementation groups, ldlA, ldlB, ldlC, 
and ldlD; results of the analysis of ldlB, ldlC, and ldlD 
mutants are described in the accompanying paper 
(Kingsley, D. M., K. F. Kozarsky, M. Segal, and M. 

Krieger, 1986, J. Cell. Biol, 102:1576-1585). Analysis 
of ldlA cells has identified three classes of mutant 
alleles at the ldlA locus: null alleles, alleles that code 
for normally processed receptors that cannot bind 
LDL, and alleles that code for abnormally processed 
receptors. The abnormally processed receptors were 
continually converted to novel unstable intracellular 
intermediates. We also identified a compound-hetero- 
zygous mutant and a heterozygous revertant which 
indicate that the ldlA locus is diploid. In conjunction 
with other genetic and biochemical data, the finding 
of multiple mutant forms of the LDL receptor in IdlA 
mutants, some of which appeared together in the 
same cell, confirm that the ldlA locus is the structural 
gene for the LDL receptor. 

T 
HE low density lipoprotein (LDL) ~ pathway of recep- 
tor-mediated endocytosis has been one of the most 
thoroughly characterized endocytic systems. This is in 

large measure due to the extensive analysis of LDL metab- 
olism in normal and mutant human fibroblasts by Brown, 
Goldstein, and their colleagues (Goldstein et at., 1979, 1985). 
The mutant fibroblasts were derived from individuals with 
familial hypercholesterolemia (FH), a relatively common au- 
tosomal codominant genetic disease which is caused by mu- 
tations in the LDL receptor structural gene. A variety of 
mutant alleles of the LDL receptor in human FH cells has 
been described, including defects affecting the synthesis, pro- 
cessing, and overall structure of the receptor (Goldstein et at., 
1985). Analysis of these FH cells has been criticaUy important 
in elucidating the role of receptors in endocytosis. 

The biochemical and genetic analysis of these naturally 
occurring human mutations has been extraordinarily produc- 
tive; however, there are inherent limits in the use of cells from 
human patients for the genetic analysis of endocytosis. Pri- 
mary cultured cells do not lend themselves to manipulation 
by a number of somatic cell genetic techniques. In addition, 
the variety of naturally occurring human mutations is limited 

1. Abbreviations used in this paper: CHO, Chinese hamster ovary; FH, familial 
hypercholesterolemia; LDL, low density lipoprotein; PMSF, phenylmethylsul- 
fonyl fluoride. 

and these mutations must be compatible with the growth and 
survival of the entire organism. To circumvent these limita- 
tions, we and others have developed techniques for the isola- 
tion of cultured mammalian somatic cell mutants with defects 
in receptor-mediated endocytosis (for review, see Krieger et 
al., 1985). 

We have developed two selection techniques for isolating 
mutants that exhibit defects in LDL endocytosis (Krieger et 
al., 1981, 1983) and a nutritional selection for revertants of 
such mutants (Sege et at., 1984; Kingsley and Krieger, 1984). 
These selections exploit the ability of native or modified LDLs 
to deliver substantial amounts of cholesterol or toxic or fluo- 
rescent cholesterol derivatives to cells via the LDL pathway 
(Krieger et al., 1979, 1981). Using these three selection tech- 
niques, we have isolated a large collection of LDL receptor- 
deficient Chinese hamster ovary (CHO) cell mutants and 
several revertants of these mutants. The mutants define at 
least four genetic complementation groups (ldlA, ldlB, IdlC, 
and ldlD; Kingsley and Krieger, 1984). These complementa- 
tion groups probably represent four distinct genes required 
for normal LDL receptor function. Previous genetic studies 
suggested that the ldlA gene might be the structural gene for 
the LDL receptor whereas the ldlB, ldlC, and ldlD genes 
appear to be required for the expression or function of the 
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LDL receptor (Kingsley and Krieger, 1984; Kingsley et al., 
1986; Sege et al., 1984). 

To more fully define the defects in these mutant CHO cells, 
we have raised antibodies that recognize the CHO LDL 
receptor. In the current paper, we characterized these anti- 
bodies and compared the structure and processing of LDL 
receptors in human fibroblasts and in wild-type and ldlA 
mutant CHO cells. In the accompanying paper (Kingsley et 
al., 1986), we used these antibodies to examine the nature of 
the defects in the ldlB, ldlC, and ldlD mutants. 

Materials and Methods 

Materials 
Newborn calf and human lipoprotein-deficient sera were prepared as previously 
described (Krieger, 1983). Methionine-frec Ham's F-12 medium was obtained 
from K-C Biological Inc., Lenexa, KS. L-[3SS]Methionine (>800 Ci/mmol) was 
from New England Nuclear (Boston, MA). Freund's complete and incomplete 
adjuvants were purchased from Gibeo Laboratories (Grand Island, NY). Protein 
A-Sepharose CL-4B was from Pharmacia Inc. (Piscataway, N J). Sialidase (neur- 
aminidase, No. 480717) and pronase (No. 53702) were from Calbiochem/ 
Behring Diagnostics Corp. (La Jolla, CA). Peroxidase-conjugated and uncon- 
jugated goat anti-rabbit lgG antibodies were purchased from Cooper Biomed- 
ical, Inc. (Malvern, PA)/Cappel Laboratories Inc. (Cochranville, PA). Nitrocel- 
lulose paper (BA85) was obtained from Schleicher & Schuell, Inc. (Keene, NH). 
Phenylmethylsulfonyl fluoride (PMSF) and tunicamycin, purchased from 
Sigma Chemical Co. (St. Louis, MO), were dissolved in dimethylsulfoxide at 
concentrations of 400 mM and 2 mg/ml, respectively. Endoglycosidase H was 
provided by S. Catherine Hubbard and Phillips Robbins (MIT). All other 
reagents were from Sigma Chemical Co. or were obtained as previously de- 
scribed (Krieger, 1983). 

Cell Culture 
Parental and mutant CHO-KI cells and normal human fibroblasts (S.J., 
GM3349) were grown as described (Krieger, 1983) except that stock cultures 
of CHO cells were grown in medium I (Ham's 1=-12 medium containing 100 
U/ml penicillin, 100 ~,g/ml streptomycin, and 2 mM glutamine) supplemented 
with 5% (vol/vol) fetal bovine serum (medium If). Mutant clone ldlA-7 refers 
to clone 7 and RevA7 refers to the revertant clone RevA7- l, which was derived 
from ldlA-7 (Krieger et al., 1983; Kingsley and Krieger, 1984). The other IdtA 
mutants were isolated from parental cells after treatment with 400 #g/ml of 
ethyl methanesulfonate by MeLoCo-Amphotericin B selection (Kriager et al., 
1983; Kingsley and Krieger, 1984). The LDL receptor activities (percent of 
wild-type CHO) of some ldlA mutants as determined by [t251]LDL degradation 
(Krieger, 1983)were: ldlA-3, 1.5%; ldlA-5, 9%; ldlA-7, 0.4%; ldlA-9, 2.3%; and 
ldlA-15, 0.8 %. All mutants were members of the ldlA complementation group 
based on complementation assays (Kingsley and Krieger, 1984). LET-A-111 
cells are secondary transfectants isolated by transfection of IdlA-7 cells with 
DNA from a primary transfectant and selection for LDL receptor expression 
(Sege et al., 1984). All incubations were at 37 *C in a humidified 5% CO2/95% 
air incubator unless otherwise noted. 

Antibodies 
LDL receptor was partially purified from bovine adrenal cortex tissue as 
described by Schneider et al. (1982) through the DEAE-cellulose chromatog- 
raphy step and phosphatidylcholine/acetone precipitation (schneider et al., 
1980). A synthetic peptide corresponding to the C-terminal 14 amino acids of 
the bovine LDL receptor (Russell et al., 1984) was the gift of W. Schneider, M. 
Brown, and J. Goldstein (University of Texas Health Science Center, Dallas, 
TX). 

Antibodies were raised in New Zealand White rabbits to either the partially 
purified receptor (anti-R antibodies) or the the C-terminal peptide crosslinked 
via a bridging N-terminal cysteine residue to hemocyanin (anti-C antibodies) 
using standard procedures (Beisiegel et al., 1981 a; Russell ct al., 1984). Anti-R 
primarily recognized the disulfide-rich, LDL binding, N-terminal domain of 
the receptor. For example, unlike anti-C, anti-R did not recognize the reduced 
form of the receptor, and anti-R inhibited cellular binding and subsequent 
degradation of [t2SI]LDL (data not shown). 

All experiments were performed using IgG fractions prepared using a slight 
modification of the method of Beisiegel et al. (1981 b). IgG-C7, a mouse 
monoclonal antibody that recognizes the human but not the CHO LDL receptor 

(Beisiegel et al., 1981b; Scge et al., 1984), was provided by W. Schneider, Y. K. 
Ho, M. Brown, and J. Goldstein. 

SDS-Polyacrylamide Gel Electrophoresis 
and Autoradiography 

SDS-polyacrylamide gel electrophoresis was carded out according to the 
method of Laemmli (1970). The molecular mass standards (Sigma Chemical 
Co.) were: myosin (205 kd), #-galactosidase (116 kd), phospborylase B (97.4 
kd), and bovine albumin (66 kd). Gels were fixed, stained with Coomassie 
Blue, impregnated with Autofluor (National Diagnostics Inc., Somerville, N J), 
dried, and exposed to pre-flashed (Laskey, 1980) Kodak XAR-5 X-ray film at 
-80"C. 

lmmunoblots 
Cells were plated in 10 ml of medium III (medium I supplemented with 3% 
[vol/vol] newborn calf lipoprotein-deficient serum) in 100-mm dishes (1.5 x 
106 cells/dish) and 2 d later were harvested with a rubber policeman. Solubilized 
cell membranes were prepared (Schneider et al., 1980, 1982) and were subjected 
to electrophoresis and transfer to nitrocellulose paper (Beisiegel et al., 1982). 
The blots were calibrated by staining the standards with india ink (Hancock 
and Tsang, 1983). For immunoblotting, the nitrocellulose paper was blocked 
with buffer A (5% [wt/vol] Carnation non-fat dry milk, 50 mM Tris-C1, pH 8, 
2 mM CaC12, 0.05% Twcen-20, and 0.01% Antifoam A emulsion [Johnson 
and Elder, 1983; Russell et al., 1984]; 2 h, room temperature) and then 
incubated with 10 t~g/ml anti-R IgG in buffer A for 1.5 h. The paper was 
washed in buffer A (Beisiegel el al., 1982), then incubated in buffer A containing 
peroxidase-conjugated goat anti-rabbit IgG (12 #g/ml of antibody protein; 1 
h). The paper was washed once in buffer A and four times in PBS, pH 7.4; 5 
min/wash) and developed with 4-chloro-l-naphthol (Hawkes et al., 1982; PBS 
substituted for Tris-buffered saline). 

Cell Labeling 
Parental and mutant CHO cells were plated on day 0 in 3 ml of medium Ill 
either in 60-ram dishes (300,000 cells/dish) or in six-well dishes (150,000 cells/ 
well). On day 2, monolayers were washed with PBS, then incubated in methi- 
onine-free medium III (medium III prepared with methionine-free Ham's F- 
12) for 15 min, after which labeling medium (methionine-free medium III 
supplemented with [3~S]methionine) was added. For pulse-chase experiments, 
after labeling for 30 min, the monolayers were washed with complete Ham's 
F-12, and refed with 3 ml of medium III. In the detailed time-course experi- 
ments, the chase medium was supplemented with 1 mM unlabeled methionine. 
In some experiments 2 ~g/ml tunicamycin was included in a 3-h pretreatment 
(medium III) and in the subsequent labeling and chase media. 

Ceils were lysed and the extracts prepared for immunoprecipitation as 
described by Tolleshaug et al. (1982) with the following exceptions. Lysis buffer 
contained PBS without calcium and magnesium, 1% Triton X-100, 1 mM 
methionine, I mM PMSF, and 0.1 mM leupeptin and the cell extracts were 
clarified by centrifugation at 4"C for 15 rain in a microfuge (Beckman Instru- 
ments, Inc., Fullerton, CA). 

Membrane fractions from labeled cells were prepared as described above for 
immunoblots. The first high speed supernatant was designated the nonmem- 
brahe-associated fraction. 

Immunoprecipitation 

Reagents were added as follows: 50 #1 of 10 mg/ml BSA, 100 ~1 of cell extract 
(~0.25 × 106 cells), 150 ~1 of a detergent mixture (0.1 M Tris-Cl, pH 8, 1% 
Triton X-100, 1% 1wt/vol] sodium deoxycholate, 0.5% [wt/vol] SDS, and 2 
mM PMSF), and 9 ~1 (36 zg) of anti-R, anti-C, or preimmune lgG. The 
mixtures were incubated at 37"C for 1 h, then 30 zl (0.36 mg of antibody 
protein) of goat anti-rabbit IgG was added and samples were incubated at 4"C 
overnight. The immunoprecipitates were subjected to centrifugation (900 g, 10 
min, 4"C) and the pellets washed three times in 2.8 ml of buffer B (0.5% Triton 
X-100, 0.5% sodium deoxycholate, 0.25% SDS, and 1 mM PMSF), followed 
by SDS-polyacrylamide gel electrophoresis. 

lmmunoprecipitations using IgG-C7 were performed as described above for 
cell extracts except that antibody was added as a preformed immune complex 
and incubations and washes were performed as previously described (Tolleshaug 
et al., 1983; Sege et al., 1984). 

Endoglycosidase H and Sialidase Treatment 
Endoglycosidase H. After washing, immunoprecipitates were resuspended in 
20 ~1 of endo H buffer (30 mM sodium citrate, pH 5.5, 0.75% SDS, 2% (vol/ 
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vol) #-mercaptocthanol, and 1 mM PMSF). The samples were boiled (5 min), 
cooled, sodium azide was added to a final concentration of 0.1% (wt/vol), and 
then 2 ~1 of 30 mM Na citrate (pH 5.5) with or without 0.3 ug/ml endoglycos- 
idase H was added. Samples were incubated at 37"C overnight before eleclre~ 
phoresis. 

Sialidase. After washing, immunoprecipitates were resuspended in 45 t~! of 
sialidase buffer (50 mM sodium acetate, pH 5.5, 154 mM NaCI, 4 mM CaCI2, 
1 mM PMSF, and 0.1% sodium azide) in the absence or presence of 0.045 U 
of sialidase. Samples were incubated at 4*C overnight on a rotary shaker, then 
the precipitates were washed once in buffer B before eleetrophoresis. A specific 
sialidase inhibitor, 2,3-dehydro-2@xy-N-acetyl-neuraminic acid (Boehringer 
Mannheim Diagnostics, Inc., Houston, TX) was used to confirm the specificity 
of the sialidase preparation (data not shown). 

Other Assays 

The amounts of [~25I]LDL degradation by cell monolayers at 37"C were 
measured as previously described (Krieger, 1983) and expressed as the percent 
of wild-type CHO activity measured in the same experiment. Protein concen- 
trations were determined by the method of Lowry et al. ( 1951 ) using BSA as a 
standard. Pronase treatment of labeled monolayers was carded out according 
to the method of Tolleshaug et al. (1983). 

Figure 1. Immunoprecipitation of LDL receptors using anti-C and 
anti-R antibodies. On day 0, CHO cells (300,000 cells/dish) were 
plated in 3 ml of medium III and human fibroblasts (500,000 cells/ 
dish) were plated in 3 ml of medium IV (medium I supplemented 
with 10% (vol/vol) human lipoprotein-deficient serum) in 60-ram 
dishes. On day 2, CHO cells were pulse-labeled for 30 min in 
methionine-free medium III and human cells were labeled in methi- 
onine-free medium IV, both containing 200 #Ci/ml of [35S]methio- 
nine. The cells were then washed and chased for 1 h in medium III 
(CHO cells) or medium IV (human cells). The cells were lysed by 
detergent and the extracts subjected to immunoprecipitation with 
one of the following antibodies: lanes 1 and 3, anti-C (polyclonal 
anti-bovine LDL receptor C-terminal peptide); lanes 2 and 4, preim- 
mune control for anti-C; lane 5, anti-R (polyclonal anti-bovine LDL 
receptor); lane 6, preimmune control for anti-R. Proteins in the 
immunoprecipitates were separated by SDS-polyacrylamide gel elec- 
trophoresis and visualized by autoradiography as described in Mate- 
rials and Methods. The arrow indicates the mature form of the LDL 
receptor. 

Figure 2. Comparison of LDL receptors from CHO and human 
fibroblast (H) cells. On day 0, CHO cells (300,000 cells/dish) and 
normal human fibroblasts (500,000 cells/dish) were plated in 3 ml of 
medium III in 60-mm dishes. On day 2, the cells were labeled with 
200 #Ci/ml of [35S]methionine for 0.5 h, and immediately harvested 
or chased in medium III as indicated. To inhibit N-linked glycosyla- 
tion, some of the cells (lanes 3, 4, 7, 8, 11, and 12) were treated with 
tunicamycin as described in Materials and Methods. After immuno- 
precipitation with the anti-C antibody, some of the immunoprecipi- 
tates were treated without (lanes 5-8) or with (lanes 9-12) sialidase 
as described in Materials and Methods. The precursor form of the 
CHO LDL receptor (125 kd) is indicated by p, and the mature form 
(155 kd) is indicated by rn. The band labeled x represents a contam- 
inant also present in control immunoprecipitations of human cells 
using preimmune antibody (see Fig. I, lane 2). 

R e s u l t s  

Comparison o f  CHO and H u m a n  L D L  Receptors 

Fig. 1 compares LDL receptors immunoprecip i ta ted  from 
h u m a n  and  CHO cells using two different an t i -LDL receptor 
antibodies, anti-C and  anti-R. These antibodies recognize the 
receptor's C- and  N-terminal  domains,  respectively. After a 
30-min pulse-labeling with [35S]methionine and  a 1 h chase, 
the mature  form (arrow) of  the LDL receptor was specifically 
immunoprec ip i ta ted  from h u m a n  fibroblasts (lane 1) by the 
anti-C antibody. IgG-C7, a monoc lona l  ant i - receptor  anti-  
body that recognizes h u m a n  but  no t  CHO LDL receptors 
(Sege et al., 1984; Beisiegel et al., 1981 b), and  ant i -R specific- 
ally immunoprec ip i ta ted  the same protein from these cells 
(data no t  shown). Ant i -C (lane 3) and  ant i -R (lane 5) also 
immunoprec ip i ta ted  the LDL receptor (155 kd) from CHO 
cells. The unidentif ied bands seen in the autoradiograms were 
present in immunoprec ip i ta t ions  using control p r e immune  
IgG (lanes 2, 4, and  6). 

A detailed comparison of  CHO and  h u m a n  receptors im- 
munoprecipi ta ted with the a n t i - C  ant ibody is shown in Fig. 
2. The h u m a n  LDL receptor is synthesized as a precursor 
which is converted by extensive glycosylation to a mature  
form (Goldstein et al., 1985). After pulse-labeling for 30 min ,  
both the precursor (p) and mature  (m) forms of  the receptors 
in CHO (Fig. 2, lane 1) and  h u m a n  (H, lane 2) cells were 
observed. A band  of  high molecular  weight, designated x (lane 
2), was also present in control p r e i m m u n e  immunoprec ip i -  
tat ions (Fig. l ,  lane 2) from labeled h u m a n  cells and  thus 
appears to be a nonspecific product  of  the immunoprec ip i ta -  
t ion procedure. The CHO precursor (125 kd) was - 5  kd larger 
than the h u m a n  precursor (120 kd). Since inhibi t ion of  N- 
l inked glycosylation with tun icamycin  decreased the molec- 
ular masses of  both precursors by - 8  kd (Fig. 2, lanes 3 and  
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Figure 3. Processing of LDL receptors in wild-type CHO cells. (a) 
Kinetics of processing. CHO cells were pulse-labeled with 300 uCi/ 
ml [~S]methionine for 30 rain, chased for the indicated times, and 
subjected to immunoprecipitation (anti-C antibody), electrophoresis, 
and autoradiography as described in Materials and Methods. The 
degradation product of the LDL receptor (l 18 kd) is indicated by d. 
(b) Characterization of carbohydrates on the precursor, mature, and 
degradation forms. CHO cells were pulse-labeled with 200 uCi/ml of 
[35S]methionine for 30 rain and immediately harvested (lanes 1-6) or 
chased for 6.4 h (lanes 7-18). Some of the cells were treated with 
tunicamycin (TM, lanes 2, 8, and 14). After immunoprecipitation 
(anti-C antibody), some of the immunoprecipitates were treated with 
endoglycosidase H (Endo 11, lanes 4, 10, and 16) or with sialidase 
(SAse, lanes 6, 12, and 18) or subjected to control incubations without 
the enzymes (lanes 3, 5, 9, 11, 15, and 17) before electrophoresis and 
autoradiography as described in Materials and Methods. 

4), the precursors apparently have similar amounts of N- 
linked oligosaccharides. As previously shown for human LDL 
receptors (Cummings et al., 1983), the precursor form of the 
CHO receptor was sensitive to endoglycosidase H (contains 
high mannose N-linked sugars) and resistant to sialidase (see 
Fig. 3 b below). The different sizes of the human and CHO 
precursors may be due to differences in the primary structure 
or in the number or type of sugars added to the precursors 
(Cummings ct al., 1983; Goldstein et al., 1985). 

The mature forms of the receptors observed after a 1-h 
chase (Fig. 2, lanes 5 and 6) had identical electrophoretic 
mobilities (155 kd) and identical sensitivities to tunicamycin 
(10 kd shift). They also were endoglycosidase H resistant 
(Cummings et al., 1983; Fig. 3b, lanes 9 and 10). Thus, the 
mature form of the CHO receptor contained complex type 
N-linked glycans (Kornfeld and Kornfeld, 1980). Sialidase 
treatment, which removes terminal sialic acid residues from 
both N- and O-linked chains, reduced the size of the mature 
receptors by ~ 17 kd, although the effect on human receptors 
(Fig. 2, lane 10) was somewhat greater than on CHO receptors 
(lane 9). This difference between human and CHO receptors 

was also observed when N-linked sugar-deficient receptors 
from tunicamycin-treated cells were treated with sialidase 
(lanes 11 and 12). Thus, as was the case for human receptors 
(Cummings et at., 1983), most of the shift in electrophoretic 
mobility from precursor to mature form was due to the 
processing of the O-linked sugars. 

We have previously isolated and characterized CHO cells 
that were transfected with human DNA and contain and 
express functional human LDL receptor genes (Sege et at., 
1984). The electrophoretic mobilities and glycosidase sensitiv- 
ities of the precursor and mature forms of human LDL 
receptors in these transfected CHO cells (LET-A-111 cells) 
were essentially identical to those in human fibroblasts (data 
not shown). Therefore, the small differences in the structures 
of the human and CHO receptors must be due to small 
differences in the receptors themselves and not to differences 
in the availability of the types of sugars added or the activities 
of the enzymes responsible for posttranslational processing. 

Taken together, these data show that the structures and the 
posttranslational processing of human and CHO LDL recep- 
tors are similar, that extensive N- and O-linked oligosaccha- 
ride processing is responsible for the precursor to mature 
transition, and that it is reasonable to interpret results from 
wild-type and mutant CHO cells based on the well-character- 
ized human receptor (Goldstein et at., 1985). 

Identification o f  a Third Form o f  the L D L  Receptor 

The pulse-chase experiment in Fig. 3 a shows that in wild- 
type CHO cells the precursor form of the receptor was rapidly 
converted to the mature form. Subsequently, the mature form 
was slowly degraded (~50% remained after 15-20 h). After 2 
h of chase, a third form of the receptor, - I  18 kd (d), was 
detected. It seemed likely that this 118-kd protein was a 
degradation product of the mature form of the receptor. 

To test this possibility, the oligosaccharide structure of the 
118-kd form of the receptor was compared with the oligosac- 
charide structures of the precursor and mature forms of the 
receptor (Fig. 3 b). The precursor form of the receptor (lanes 
1-6) was sensitive to tunicamycin or endoglycosidase H but 
resistant to sialidase, while the mature form (lanes 7-12) was 
sensitive to tunicamycin or sialidase but resistant to endogly- 
cosidase H. The oligosaccharides on the degraded form (118 
kd) of the LDL receptor resembled those on the mature form. 
The apparent molecular weight of the degraded form was 
reduced by 10 kd after cells were treated with tunicamycin 
(lanes 13 and 14) and by 13 kd after sialidase digestion (lanes 
17 and 18). The degraded form was resistant to endoglycosi- 
dase H treatment (lanes 15 and 16). The 118-kd form of the 
receptor was readily detected using anti-C (Fig. 3, a and b) 
but not anti-R (data not shown). Since anti-R primarily 
recognizes the N-terminal region of the receptor (see Materials 
and Methods), it is likely that this protein was formed by the 
proteolytic removal of an apparently ungiycosylated fragment 
from the N-terminus of the mature receptor. 

Structure o f  Abnormal  Receptors in ldlA Mutants  

Previous experiments have indicated that the ldIA locus is the 
structural gene for the LDL receptor (Kingsley and Krieger, 
1984; Sege et al., 1984). The effects of ldlA mutations on the 
structures of the LDL receptors in 15 receptor-deficient ldlA 
clones were examined using the anti-C and anti-R antibodies. 
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Figure 4. Comparison of LDL receptors from three classes of ldlA 
mutant. The indicated cells were labeled with 160 gCi/ml [3~S]- 
methionine for 5 h, subjected to immunoprecipitation with either the 
anti-C antibody (lanes 1-5) or control preimmune antibody (lanes 6- 
10) before eleetrophoresis and autoradiography as described in Ma- 
terials and Methods. 

Figure 5. Kinetics of processing of LDL receptors in wild-type CHO 
cells and ldlA-7, a class 2 mutant. Cells were pulse-labeled with 300 
~tCi/ml [35S]methionine for 30 rain, chased for the indicated times, 
and subjected to immunopreeipitation (anti-C antibody), electropho- 
resis, and autoradiography as described in Materials and Methods. 
Forms of the LDL receptor which appear to be intermediates in 
processing not seen in wild type cells are indicated by i. 

Both the anti-C and ant i-R antibodies yielded essentially 
identical results for all cell types examined (data for anti-R 
not shown for immunoprecipitation experiments). Three gen- 
eral classes of  ldlA mutants were observed after labeling with 
[35S]methionine for 5 h (Fig. 4). The mature form of the LDL 
receptor was observed in wild-type CHO cells (lanes I and 5, 
preimmune controls for all cells are shown in lanes 6-10). No 
LDL receptor was detected in nine class 1 mutants such as 
clone ldlA-15 (lane 2). An abnormally small cross-reacting 
protein (125-130 kd) and very little mature LDL receptor 
was observed in five class 2 mutants such as clone ldlA-7 (lane 
3). A mature form with wild-type mobility was seen in the 
only class 3 mutant identified (clone ldlA-3, lane 4). None of  
these mutants could bind or degrade significant amounts of  
[125I]LDL (see Materials and Methods and data not shown). 
Each of  the three clones in Fig. 4 was examined in greater 
detail. 

ldlA-15, a Class 1 M u t a n t  

Clone ldlA-15 cells were subjected to both short (30-45 min) 
and long (5 h) [35S]methionine pulse-labeling protocols. In 
neither case did anti-C or anti-R detect cross-reacting material 
in the cells (e.g., Fig. 4, lane 2). Since these antibodies recog- 

nize both the N- and C-termini of  LDL receptors, it is likely 
that the ldlA mutation in this clone either blocks transcription, 
results in an unstable or untranslatable mRNA, or leads to a 
grossly abnormal protein product. 

ldlA-7, a Class 2 M u t a n t  

The synthesis and processing of  the abnormal form of LDL 
receptor observed in clone ldlA-7 was examined in the pulse- 
chase experiment shown in Fig. 5. In these mutant cells, a 
precursor with an apparently wild-type mobility was detected 
immediately after the 30-min pulse-labeling (0 chase). In 
contrast to the rapid and complete processing to the mature 
form seen in wild-type CHO cells (top), the precursor in ldlA- 
7 cells was slowly and only partially converted to a mature 
form (bottom). This delayed processing was similar to that 
observed in some human FH mutants (Schneider et al., 1983). 
However, unlike these human mutants, most of  the precursor 
in ldlA-7 cells was converted slowly and continually to slightly 
larger processing intermediates (indicated by i) which were 
not observed in wild-type cells. At the end of  the 24-h chase, 
three forms of  the receptor were observed: a form with mature 
receptor mobility (155 kd), the abnormal intermediate (~ 130 
kd), and a 118-kd form which appears to be similar to the 
degraded form in wild-type cells. The LDL receptor in this 
clone was markedly less stable than receptors in wild-type 
cells. In contrast to the wild-type cells in which the LDL 
receptors diminished to 50% of maximum after 15-20 h of  
chase (see above), the receptors synthesized by ldlA-7 cells 
diminished to 50% of maximum after 4-6 h of  chase. 

To qualitatively assess the relative steady-state levels of  
receptor in ldlA-7 and wild-type cells, we used immunoblot- 
ting of  unreduced specimens to visualize the receptors in 
unlabeled cells (Fig. 6). The apparent molecular weight of  the 
wild-type LDL receptor (lanes 1 and 3) was 130 kd. The 
difference in electrophoretic mobilities of  the unreduced and 
reduced receptors (130-155 kd, compare Figs. 6 and 1) was 
probably due to the unfolding of  the receptor after reduction 
of  its many disulfide bonds (Daniel et al., 1983). LDL recep- 
tors in the ldlA-7 cells (Fig. 6, lane 4) were essentially unde- 
tectable by immunoblotting. This low steady-state level of  
receptors in ldlA-7 cells was not due to abnormal secretion, 

Figure 6. Immunoblot analysis 
of sleady-state levels of LDL re- 
ceptors. In two separate experi- 
ments, membranes were isolated 
from wild-type and ldlA-3 (class 
3) or ldlA-7 (class 2) mutants as 
described in Materials and Meth- 
ods and subjected to electropho- 
resis followed by transfer to ni- 
trocellulose filters. The filters 
were then probed with the anti- 
R antibody followed by horse- 
radish peroxidase- conjugated 
goat anti-rabbit IgG and visual- 
ization with 4-chloro-1-naphthol 
as described in Materials and 
Methods. 
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Figure 7. Effects of pronase treatment of cell monolayers on LDL 
receptors in CHO and ldlA-7 cells. Cells were labeled with 160 #Ci/ 
ml [35S]methionine for 2 h, chased for 22 h, then treated with (lanes 
2 and 4) or without (lanes I and 3) pronase (20 min) before harvesting, 
immunoprecipitation (anti-C antibody), electrophoresis, and autora- 
diography as described in Materials and Methods. 

Figure 8. LDL receptors in heterozygous ldlA mutants: effects of 
pronase treatment. Wild-type, mutant (ldlA-7), heterozygous mutant 
(ldlA-5), and heterozygous revertant (RevA7, derived from mutant 
ldlA-7) cells were labeled with 100 ~Ci/ml [3SS]methionine for 2.25 
h, and treated with (lanes 2, 4, 6, and 8) or without (lanes 1, 3, 5, and 
7) pronase (20 rain) before harvesting, immunoprecipitation (anti-C 
antibody), electrophoresis, and autoradiography as described in Ma- 
terials and Methods. 

as no receptor was detected in the culture medium (data not 
shown). In addition, in ldlA-7 ceils, as in wild-type cells, the 
receptor was membrane associated (no significant receptor in 
the nonmembrane-associated fraction; data not shown). 

In ldlA-7 cells, both the precursor form and an intermediate 
isolated after a 6.5-h chase were endoglycosidase H sensitive 
and sialidase resistant (data not shown). Therefore, some of 
the intermediate forms probably do not reach the trans region 
of the Golgi complex (Dunphy et at., 1981; Roth and Berger, 
1982; Goldberg, and Kornfeld, 1983) or the cell surface. The 
latter possibility was tested by determining the location (sur- 
face or internal) of the various forms of the receptor in intact 
cells using an extracellular pronase sensitivity assay (Tolle- 
shaug et al., 1983). When wild-type cells were pulse-labeled 
for short times to visualize the precursor form of the receptor, 
the precursor was resistant to pronase degradation (Kingsley 
et al., 1986). Fig. 7 shows the effects of pronase on cells that 
were labeled with [35S]methionine for 2 h and then chased 
with unlabeled methionine for 22 h. Essentially all of the 
mature receptors in wild-type CHO cells were degraded by 
pronase (compare lanes I and 2), indicating that under these 
conditions all of the wild-type receptors were accessible at the 
cell surface. In the ldlA-7 cells, little intermediate remained 
after this long chase (Fig. 5); however, the remaining inter- 

mediates were still resistant to pronase (Fig. 7, lanes 3 and 4). 
Similar pronase resistance was observed immediately after 
labeling cells for 2.25 h (Fig. 8, lanes 5 and 6). The mature 
(155 kd) form of the ldlA-7 receptor, however, was similar to 
the wild-type mature form in that it was degraded by extra- 
cellular pronase (Fig. 7, lanes 3 and 4) and was endoglycosi- 
dase H resistant and sialidase sensitive (data not shown). 
Taken together, these experiments suggest that the receptor- 
deficient phenotype of ldlA-7 cells is due to the abnormal 
processing and instability of the LDL receptors and that the 
intermediates are primarily intracellular. 

This abnormal processing of a glycoprotein in ldlA-7 cells 
was limited to the endogenous LDL receptors. For example, 
when ldlA-7 cells were infected with vesicular stomatitis virus, 
the N-linked oligosaccharide chains of the viral G glycopro- 
tein were processed normally (Kingsley et al., 1986). Further- 
more, transfected ldlA-7 cells which contain and express 
functional human LDL receptor genes (LET-A-111 cells) 
processed human LDL receptors normally while still express- 
ing the mutant ldlA-7 allele (data not shown). 

Four other independently isolated receptor-negative IdlA 
mutants also exhibited abnormal LDL receptor processing 
(data not shown), and along with ldlA-7, have been designated 
class 2 mutants. In these mutants, the conversion of precursor 
to mature receptor was slow. The processing of the precursor 
form to increasingly higher apparent molecular weight inter- 
mediates (125-139 kd), as with ldlA-7, was continuous. How- 
ever, the rates of processing and electrophoretic mobilities of 
intermediates differed somewhat from those of ldlA-7 cells, 
suggesting that they represent different alleles. The bulk of 
the LDL receptor synthesized in these mutants was less stable 
than wild-type receptors. The pronase sensitivity of the inter- 
mediate form of the receptor in one of these mutants, ldlA-9, 
was examined. 4 h after labeling, the intermediate was pronase 
resistant (data not shown). Thus, as with ldlA-7 cells, the 
intermediate apparently remained intracellular. 

ldlA-3, a Class 3 Mutan t  

The ldlA-3 cells synthesized mature LDL receptors which had 
the same electrophoretic mobility as wild-type receptors (Fig. 
4, lane 4). The structure of these mutant receptors was indis- 
tinguishable from wild-type receptors when analyzed under a 
variety of conditions. For example, the rate of conversion of 
precursor to mature form and the stability of [35S]methionine- 
labeled receptor in pulse-chase experiments were essentially 
identical to those in wild-type cells (data not shown). The 
mature form of the receptor was endoglycosidase H resistant 
and sialidase sensitive and, in intact cells, the mature form 
was located on the cell surface (pronase sensitive, data not 
shown). 

To assess the relative steady-state levels of receptor in ldlA- 
3 and wild-type cells, we used immunoblotting to visualize 
the receptors in unlabeled cells (Fig. 6). It is unlikely that the 
relatively modest reduction in steady state level (Fig. 6, lane 
2, compare with wild-type, lane 1, and the undetectable levels 
of LDL receptor in the ldlA-7 cells, lane 4) accounts for the 
extremely low levels of receptor activity in this mutant (1.5 %). 
The ldlA-3 cells are probably receptor-deficient because the 
mature form of the receptor cannot bind LDL with high 
affinity. 

The Journal of Cell Biology, Volume 102, 1986 1572 



Figure 9. LDL receptor processing in a heterozygous ldlA mutant 
(ldlA-5) and a heterozygous ldlA revertant (RevA7). The indicated 
cells were labeled with 300/~Ci/ml [35S]methionine for 30 min, chased 
for the indicated times, and subjected to immunoprecipitation (anti- 
C antibody), electrophoresis, and autoradiography as described in 
Materials and Methods. 

Heterozygous ldlA Mutants  

After 2.25 h of continuous [35S]methionine labeling, when 
only the mature form of the receptor was visible in wild-type 
CHO cells (Fig. 8, lane 1), the ldlA-5 mutant contained two 
distinct immunoprecipitable forms of the LDL receptor (lane 
3). These forms resemble the wild-type mature form (lane 1) 
and the abnormal intermediate form seen in ldlA-7 cells (lane 
5). As in ldlA-7 cells, the intermediate form in ldlA-5 cells 
was endoglycosidase H sensitive and sialidase resistant, while 
the mature form was endoglycosidase H resistant and sialidase 
sensitive (data not shown). The mature but not the interme- 
diate form was sensitive to pronase treatment of intact cells 
(lane 4). A small fraction of the pronase-treated receptor (lanes 
2 and 4) had an apparent molecular weight of 118 kd. Thus, 
this pronase-digestion product may have a structure similar 
to that of the degraded form (118 kd) observed during normal 
turnover of the receptor (see Fig. 3 a, above). 

The kinetics of synthesis and processing of both forms of 
receptor in the ldlA-5 cells was examined in the pulse-chase 
experiment shown in Fig. 9. During the chase period, some 
of the precursor form of the receptor was abnormally pro- 
cessed to an intermediate form similar to that in ldlA-7 cells 
while the remainder appeared to be processed normally and 
exhibited normal stability. In ldlA-5 cells, the steady-state 
concentration of the mature but not the abnormal interme- 
diate form was sufficient to permit visualization in immuno- 
blotting experiments (data not shown). Despite the presence 
of some LDL receptors with apparently normal molecular 
weight and stability, the ldlA-5 cells expressed little LDL 
receptor activity as determined by binding and degradation 
of [125I]LDL (Materials and Methods and data not shown) or 

uptake and accumulation of fluorescently labeled LDL (data 
not shown; Kingsley and Krieger, 1984). Thus, the ldlA-5 
mutant appeared to be a genetic compound with a class 2 
allele similar to that in ldlA-7 cells and a second allele which 
codes for an abnormal receptor of essentially wild-type elec- 
trophoretic mobility (class 3). 

Previous studies suggested that a spontaneous revertant, 
RevA7, derived from the ldlA-7 mutant, is also heterozygous 
at the ldlA locus (Kingsley and Krieger, 1984). The RevA7 
cells have approximately half of normal LDL receptor activ- 
ity. Fig. 8 (lane 7) shows that these cells also synthesize two 
distinct forms of the receptor: an intermediate form and a 
mature form. The mature, but not the intermediate form, was 
readily accessible to extracellular pronase after labeling for 
2.25 h (Fig. 8, lane 8) and after a 4-h chase (data not shown). 
In addition, the mature form was endoglycosidase H resistant 
and sialidase sensitive (data not shown), and was as stable as 
the mature form in wild-type cells (Fig. 9). Receptor process- 
ing in RevA7 resembled that in ldlA-5 in that some of the 
precursor was rapidly convened to a mature form and some 
was converted to an unstable intermediate form as in ldlA-7 
cells (Fig. 9). Synthesis of both forms of LDL receptors in the 
RevA7 cells was suppressed by the addition of either LDL or 
exogenous sterols to the medium (data not shown). Thus, the 
receptors were subject to normal sterol-mediated regulation, 
and as previously shown (Kingsley and Krieger, 1984), LDL 
could provide cholesterol to the RevA7 cells. In contrast, 
although receptor synthesis in ldlA-7 cells was suppressed by 
exogenous sterols, synthesis could not be suppressed by LDL 
(data not shown). Thus, the abnormally processed and inac- 
tive (< 1% activity) LDL receptors in ldlA-7 cells were subject 
to sterol-mediated regulation. 

Discussion 

To examine the structure and processing of LDL receptors in 
wild-type and LDL receptor-deficient mutant CHO cells, we 
have prepared two distinct polyclonal antibodies. Using these 
two antibodies, we found that both the structure and the 
processing of the CHO LDL receptor were similar to those of 
the extensively characterized human LDL receptor (Tolle- 
shaug et al., 1982, 1983; Goldstein et al., 1985). Both were 
synthesized as precursors (CHO, 125 kd; human, 120 kd) 
containing high mannose N-linked oligosaccharides. The pre- 
cursors were processed rapidly without detectable intermedi- 
ates to substantially larger mature forms (CHO and human, 
155 kd) containing complex N-linked and O-linked oligosac- 
charides. 

In the course of these studies, we observed a degraded form 
of the CHO LDL receptor which had not been characterized 
previously. This degraded form (118 kd) appeared to be an 
intermediate in normal receptor turnover which arose after 
the removal of an apparently unglycosylated portion of the 
receptor's cysteine-rich N-terminus. A C-terminal degraded 
form of the human LDL receptor in human fibroblasts has 
recently been observed (Lehrman et al., 1985) and is probably 
analogous to the degradation product characterized in this 
study. 

The structure and processing of LDL receptors was also 
examined in a small sample of our collection of ldlA mutants. 
We found multiple mutant forms of the receptor in ldlA 
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mutants, suggesting that the ldlA locus is the structural gene 
for the LDL receptor. In addition, the observation that two 
independent forms of the LDL receptor can coexist in the 
same cells (clones ldlA-5 and RevA7) rules out the possibility 
that the ldlA mutants are abnormal because of pleiotropic 
processing defects. The assignment of the ldlA locus to the 
structural gene of the LDL receptor is consistent with conclu- 
sions from our previous genetic studies which included so- 
matic cell complementation (Kingsley and Krieger, 1984) and 
gene transfer (Sege et al., 1984) experiments. The assignment 
of the ldlA locus to the structural gene of the LDL receptor 
has recently been verified directly using cloned LDL receptor 
cDNA and a genomic clone representing a portion of the 
hamster LDL receptor gene (Sege, R., K. Kozarsky, and M. 
Krieger, manuscript in preparation). 

The characteristics of the mutant receptors in ldlA cells 
were similar although not identical to those of three of the 
four previously identified classes of mutant receptors in hu- 
man FH cells (Goldstein et al., 1985): null alleles (class 1), 
alleles that code for abnormally processed receptors (class 2), 
and alleles that code for normally processed, cell surface 
receptors that do not bind LDL (class 3). We have recently 
characterized another mutant allele which encodes a trun- 
cated receptor which is abnormally processed and remains 
intracellular (Sege, R., K. Kozarsky, and M. Krieger, manu- 
script in preparation). We have not yet characterized mutant 
alleles in CHO cells that are analogous to the internalization 
defective alleles (class 4) in human FH cells. 

The class 2 ldL4 mutants differed somewhat from the class 
2 human FH mutants (Schneider et al., 1983; Goldstein et 
al., 1985). In class 2 ldlA mutants, the 125-kd precursor form 
of the LDL receptor was apparently synthesized normally 
while the conversion to the mature form was abnormal. The 
rate at which the precursor was converted to the 155-kd 
mature form was dramatically slower than that for wild-type 
cells and only a small fraction of the precursor was fully 
processed to a mature form. As in wild-type cells, the 155-kd 
mature form resided on the cell surface. However, much of 
the precursor in these ldlA mutants was processed to unstable 
intracellular intermediate forms (125-139 kd) not previously 
observed in wild-type CHO cells. In contrast to the processing 
of precursors in wild-type CHO cells and in normal and 
naturally occurring class 2 FH mutant human cells (Goldstein 
et al., 1985), the processing of the precursors in several differ- 
ent class 2 mutants was continuous; in pulse-chase experi- 
ments, increasingly larger intermediates were observed at 
progressively later times of chase. We do not know whether 
the abnormal, intermediate receptor structures were the con- 
sequences or causes of the very slow processing and rapid 
degradation of the receptors in these mutants. 

Several experiments were performed to clarify the molecu- 
lar basis for the continual increases in apparent molecular 
weight of the abnormal intermediates in the class 2 ldlA-7 
cells. Glycosidase treatment indicated that the increases were 
not due to the conversion of the high mannose N-linked 
sugars of the precursor to trimmed and complex oligosaccha- 
rides (for review see Kornfeld and Kornfeld, 1980). Addi- 
tional, but incomplete, processing of O-linked oligosaccha- 
rides or other modifications such as sulfation, fatty acylation, 
phosphorylation, or abnormal N-linked glycosylation may be 
responsible for the processing observed. Abnormal posttrans- 

lational processing of glycoproteins has been observed in 
many other systems in which there are mutations in the 
structural genes for glycoproteins (Hercz and Harpaz, 1980; 
Rose and Bergman, 1983; Haguenauer-Tsapis and Hinnen, 
1984; Doyle et al., 1985; Schauer et al., 1985). However, none 
of these has exhibited a similar type of continual processing 
to intermediate forms. The location of the intermediates 
within class 2 ldlA mutants and the site(s) of degradation have 
not yet been determined. The limited oligosaccharide struc- 
tural data raise the possibility that the receptors may not gain 
access to the medial or trans regions of the Golgi complex 
(Dunphy et al., 1981; Roth and Berger, 1982; Goldberg and 
Kornfeld, 1983). Since the defects in class 2 ldlA mutants are 
in the structural gene for the receptor, these mutants are 
fundamentally different from other types of mutants in which 
the cellular apparatus associated with glycoprotein processing 
is disrupted (Novick et al., 1981; Robbins et al., 1984; Stanley, 
1985; and Kingsley et al., 1986). 

Two ldlA mutants each contained two different forms of 
the LDL receptor. One, ldlA-5, was directly isolated from 
mutagen-treated wild-type cells and the other, RevA7, was a 
spontaneous revertant from clone ldlA-7 and expressed ~50% 
of wild-type receptor activity (Kingsley and Krieger, 1984). 
These apparently heterozygous cells strongly support our con- 
clusion from previous genetic studies (Kingsley and Krieger, 
1984) that the ldlA locus is diploid in CHO cells. Clone ldlA- 
5 contained two distinct alleles which both code for inactive 
receptors while RevA7 contained one active and one inactive 
form of the receptor. The processing and the structures of the 
active receptors in RevA7 cells were similar to those of wild- 
type receptors. 

The frequencies at which ethyl methanesulfonate-induced 
ldlA cells were isolated from wild-type cells (1-25 x 10-6; 

Kingsley and Krieger, 1984) and from RevA7 heterozygous 
revertants (10-4-10-3; Kingsley and Krieger, 1984) are con- 
sistent with the ldlA locus being diploid since mutagen-in- 
duced rates of mutation of ~ 10 -3 per haploid locus have been 
observed in a number of eukaryotes (e.g., Brenner, 1974; 
Bode, 1984). We presume that the mutants that appear to 
have only one form of the receptor protein (e.g., clones ldlA- 
7, -6, -9, and -3) either have two similar mutant alleles or are 
compound heterozygotes containing a null allele and the allele 
that codes for an inactive receptor protein. Recent experi- 
ments using a cloned fragment of the hamster LDL receptor 
gene have confirmed that the ldlA locus is diploid (Sege, R., 
K. Kozarsky, and M. Krieger, manuscript in preparation). 

Because ldlA mutants can be isolated simply and efficiently 
after treating cells with a variety of mutagens (ethyl methane- 
sulfonate, ICR-19 l, gamma rays), it may be possible to isolate 
additional classes of LDL receptor mutants. Since ldlA cells 
can be used as recipients for the introduction of exogenous 
LDL receptor genes (Sege et al., 1984) and since the LDL 
receptor gene has been cloned (Russell et al., 1984; Yama- 
moto et al., 1984), the consequences of specific in vitro 
mutagenesis of the receptor can be investigated readily using 
these cells. The study of mutations derived from somatic cell 
mutants or in vitro mutagenesis of the cloned gene undoubt- 
edly will continue to provide the kinds of insights into the 
structure and function of the LDL receptor which have al- 
ready begun to be derived from the study of naturally occur- 
ring human mutations (Goldstein et al., 1985). 
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