Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Oct 1;103(4):1509–1515. doi: 10.1083/jcb.103.4.1509

Regulation of glucose-6-phosphate dehydrogenase activity in sea urchin eggs by reversible association with cell structural elements

PMCID: PMC2114359  PMID: 3771646

Abstract

In unfertilized eggs of the sea urchin, Strongylocentrotus purpuratus, glucose-6-phosphate dehydrogenase (G6PDH) associates with the particulate elements remaining either after homogenization or extraction of eggs with non-ionic detergent in low ionic-strength media. At physiological ionic strength, the extent of G6PDH binding to these particulate elements is proportional to the total protein concentration in the extracts. In fertilized eggs this association is prevented by one or more low molecular weight solutes. The dissociation is reversible, and there are no permanent modifications of either G6PDH or its particulate binding site that affect binding. After fertilization, the time course of dissociation of G6PDH from particulate elements is too fast to be caused by a change in intracellular pH, but it could be triggered, but not maintained, by an increase in the intracellular calcium concentration. Binding of G6PDH to the particulate fraction lowers its catalytic activity at all substrate concentrations. Therefore, release of the enzyme into the cytoplasm may be an important part of the suite of events causing metabolic activation of the egg at fertilization.

Full Text

The Full Text of this article is available as a PDF (823.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barber M. L., Kolan D. M., Yabuta C., Nielsen B. Mechanisms of G6PD isozyme pattern changes at fertilization. J Exp Zool. 1982 Feb 20;219(3):369–376. doi: 10.1002/jez.1402190312. [DOI] [PubMed] [Google Scholar]
  2. Clegg J. S. Properties and metabolism of the aqueous cytoplasm and its boundaries. Am J Physiol. 1984 Feb;246(2 Pt 2):R133–R151. doi: 10.1152/ajpregu.1984.246.2.R133. [DOI] [PubMed] [Google Scholar]
  3. Epel D. Mechanisms of activation of sperm and egg during fertilization of sea urchin gametes. Curr Top Dev Biol. 1978;12:185–246. doi: 10.1016/s0070-2153(08)60597-9. [DOI] [PubMed] [Google Scholar]
  4. Esen A. A simple method for quantitative, semiquantitative, and qualitative assay of protein. Anal Biochem. 1978 Aug 15;89(1):264–273. doi: 10.1016/0003-2697(78)90749-2. [DOI] [PubMed] [Google Scholar]
  5. Fulton A. B. How crowded is the cytoplasm? Cell. 1982 Sep;30(2):345–347. doi: 10.1016/0092-8674(82)90231-8. [DOI] [PubMed] [Google Scholar]
  6. Helmerhorst E., Stokes G. B. Microcentrifuge desalting: a rapid, quantitative method for desalting small amounts of protein. Anal Biochem. 1980 May 1;104(1):130–135. doi: 10.1016/0003-2697(80)90287-0. [DOI] [PubMed] [Google Scholar]
  7. Ii I., Rebhun L. I. Release of glucose-6-phosphate dehydrogenase from cortex of Spisula eggs at fertilization and its recombination after meiosis. Dev Biol. 1982 May;91(1):171–182. doi: 10.1016/0012-1606(82)90020-3. [DOI] [PubMed] [Google Scholar]
  8. Isono N., Yasumasu I. Pathways of carbohydrate breakdown in sea urchin eggs. Exp Cell Res. 1968 Jun;50(3):616–626. doi: 10.1016/0014-4827(68)90423-0. [DOI] [PubMed] [Google Scholar]
  9. Johnson C. H., Epel D. Intracellular pH of sea urchin eggs measured by the dimethyloxazolidinedione (DMO) method. J Cell Biol. 1981 May;89(2):284–291. doi: 10.1083/jcb.89.2.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. KRAHL M. E. Oxidative pathways for glucose in eggs of the sea urchin. Biochim Biophys Acta. 1956 Apr;20(1):27–32. doi: 10.1016/0006-3002(56)90258-x. [DOI] [PubMed] [Google Scholar]
  11. Kliman H. J., Steck T. L. Association of glyceraldehyde-3-phosphate dehydrogenase with the human red cell membrane. A kinetic analysis. J Biol Chem. 1980 Jul 10;255(13):6314–6321. [PubMed] [Google Scholar]
  12. Levy H. R. Glucose-6-phosphate dehydrogenases. Adv Enzymol Relat Areas Mol Biol. 1979;48:97–192. doi: 10.1002/9780470122938.ch3. [DOI] [PubMed] [Google Scholar]
  13. Liu S. C., Palek J. Hemoglobin enhances the self-association of spectrin heterodimers in human erythrocytes. J Biol Chem. 1984 Sep 25;259(18):11556–11562. [PubMed] [Google Scholar]
  14. Masters C. J. Interactions between soluble enzymes and subcellular structure. CRC Crit Rev Biochem. 1981;11(2):105–143. doi: 10.3109/10409238109108700. [DOI] [PubMed] [Google Scholar]
  15. Minton A. P. The effect of volume occupancy upon the thermodynamic activity of proteins: some biochemical consequences. Mol Cell Biochem. 1983;55(2):119–140. doi: 10.1007/BF00673707. [DOI] [PubMed] [Google Scholar]
  16. Mirande M., Le Corre D., Louvard D., Reggio H., Pailliez J. P., Waller J. P. Association of an aminoacyl-tRNA synthetase complex and of phenylalanyl-tRNA synthetase with the cytoskeletal framework fraction from mammalian cells. Exp Cell Res. 1985 Jan;156(1):91–102. doi: 10.1016/0014-4827(85)90264-2. [DOI] [PubMed] [Google Scholar]
  17. Poenie M., Alderton J., Tsien R. Y., Steinhardt R. A. Changes of free calcium levels with stages of the cell division cycle. Nature. 1985 May 9;315(6015):147–149. doi: 10.1038/315147a0. [DOI] [PubMed] [Google Scholar]
  18. Schmidt T., Epel D. High hydrostatic pressure and the dissection of fertilization responses. I. The relationship between cortical granule exocytosis and proton efflux during fertilization of the sea urchin egg. Exp Cell Res. 1983 Jul;146(2):235–248. doi: 10.1016/0014-4827(83)90126-x. [DOI] [PubMed] [Google Scholar]
  19. Shen S. S., Steinhardt R. A. Intracellular pH and the sodium requirement at fertilisation. Nature. 1979 Nov 1;282(5734):87–89. doi: 10.1038/282087a0. [DOI] [PubMed] [Google Scholar]
  20. Strapazon E., Steck T. L. Interaction of the aldolase and the membrane of human erythrocytes. Biochemistry. 1977 Jun 28;16(13):2966–2971. doi: 10.1021/bi00632a025. [DOI] [PubMed] [Google Scholar]
  21. Suprynowicz F. A., Mazia D. Fluctuation of the Ca-sequestering activity of permeabilized sea urchin embryos during the cell cycle. Proc Natl Acad Sci U S A. 1985 Apr;82(8):2389–2393. doi: 10.1073/pnas.82.8.2389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Van Noorden C. J. Histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase. Prog Histochem Cytochem. 1984;15(4):1–85. doi: 10.1016/s0079-6336(84)80001-7. [DOI] [PubMed] [Google Scholar]
  23. Whitaker M. J., Steinhardt R. A. Ionic regulation of egg activation. Q Rev Biophys. 1982 Nov;15(4):593–666. doi: 10.1017/s0033583500003760. [DOI] [PubMed] [Google Scholar]
  24. Whitaker M. J., Steinhardt R. A. The relation between the increase in reduced nicotinamide nucleotides and the initiation of DNA synthesis in sea urchin eggs. Cell. 1981 Jul;25(1):95–103. doi: 10.1016/0092-8674(81)90234-8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES