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Abstract. In avian embryos, somites constitute the 
morphological unit of the metameric pattern. Somites 
are epithelia formed from a mesenchyme, the segmen- 
tal plate, and are subsequently reorganized into derma- 
tome, myotome, and sclerotome. In this study, we 
used somitogenesis as a basis to examine tissue 
remodeling during early vertebrate morphogenesis. 
Particular emphasis was put on the distribution and 
possible complementary roles of adhesion-promoting 
molecules, neural cell adhesion molecule (N-CAM), 
N-cadherin, fibronectin, and laminin. 

Both segmental plate and somitic cells exhibited in 
vitro calcium-dependent and calcium-independent sys- 
tems of cell aggregation that could be inhibited respec- 
tively by anti-N-cadherin and anti-N-CAM antibodies. 
In vivo, the spatio-temporal expression of N-cadherin 
was closely associated with both the formation and lo- 
cal disruption of the somites. In contrast, changes in 
the prevalence of N-CAM did not strictly accompany 
the remodeling of the somitic epithelium into der- 
mamyotome and sclerotome. It was also observed that 
fibronectin and laminin were reorganized secondarily 
in the extracellular spaces after CAM-mediated con- 

tacts were modulated. In an in vitro culture system of 
somites, N-cadherin was lost on individual cells 
released from somite explants and was re, expressed 
when these cells reached confluence and established 
intercellular contacts. In an assay of tissue dissociation 
in vitro, antibodies to N-cadherin or medium devoid 
of calcium strongly and reversibly dissociated explants 
of segmental plates and somites. Antibodies to 
N-CAM exhibited a smaller disrupting effect only on 
segmental plate explants. In contrast, antibodies to 
fibronectin and laminin did not perturb the cohesion 
of cells within the explants. 

These results emphasize the possible role of cell 
surface modulation of CAMs during the formation and 
remodeling of some transient embryonic epithelia. It is 
suggested that N-cadherin plays a major role in the 
control of tissue remodeling, a process in which 
N-CAM is also involved but to a lesser extent. The 
substratum adhesion molecules, fibronectin and lami- 
nin, do not appear to play a primary role in the regu- 
lation of these processes but may participate in cell 
positioning and in the stabilization of the epithelial 
structures. 

ARLY embryonic morphogenesis proceeds with the 
formation of a succession of transient tissues that are 
remodeled into the definitive organs that are estab- 

lished in shape and function. In this remodeling, epithe- 
lium-mesenchyme interconversion is one of the most com- 
monly found processes. In many systems, this conversion 
involves rapid modulations of both cell-cell and cell-sub- 
stratum adhesion (Wessels, 1977; Hay, 1981; Yamada, 1983; 
Bernfield et al., 1984; Edelman, 1985; Edelman and Thiery, 
1985). Recent progress in defining molecules mediating 
these adhesion events provides the opportunity to analyze 
these processes in causal terms. 

The formation and subsequent reorganization of the so- 
mites in the avian embryo is a striking example of rapid tissue 
remodeling and constitutes a convenient model system to 
study some of the roles of adhesion molecules during early 
morphogenesis. Somites are metameric units found along the 

body axis and, in part, they constitute the primordia of the 
skull and muscles in the trunk (reviewed in Lash, 1985; Bel- 
lairs et al., 1986). They form from an apparently homoge- 
neous rod of mesenchyme, the segmental plate, located in the 
caudal region of the embryo. The process of formation of so- 
mites is continuous until the total number of segments 
specific for each species is reached. The sequential forma- 
tion of somites involves aggregation of cells, epithelializa- 
tion, and separation from the rest of the segmental plate 
(Lash, 1985). Within a few hours after their appearance, so- 
mites undergo further transformations that lead to the 
production of a double-layered epithelium, the dermamyo- 
tome, and a mesenchyme, the sclerotome; the former 
differentiates into the dermis and skeletal muscles, whereas 
the latter gives rise to the cartilage of the vertebrae. 

The processes leading to the formation and reorganization 
of the somites are not yet understood. It has been proposed 
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that an increase in cell-cell adhesion among segmental plate 
cells could play a role in somite formation (Bellairs et al., 
1978; Cheney and Lash, 1984) and a related idea is that 
fibronectin may play such a role (Lash et al., 1984). Particu- 
larly because of their role in promoting diverse forms of cell 
adhesion, cell-cell and cell-substratum adhesion molecules 
might be mutually involved in some aspects of somito- 
genesis. 

Cell-adhesion molecules (CAMs) ~ mediate intercellular 
adhesion in many tissues, and their distribution and expres- 
sion are correlated with inductive events, tissue shaping, and 
tissue remodeling (Edelman, 1985; Edelman and Thiery, 
1985; Obrink, 1986). The major CAMs presently known to 
play a role during the early events of morphogenesis include 
N-CAM (neural-CAM) initially isolated from neural tissues 
(Thiery et al., 1977), L-CAM (liver-CAM; Gallin et al., 
1983) present on many epithelial cells and apparently the 
same as uvomorulin (Hyafil et al., 1980), E-cadherin (Yo- 
shida-Noro et al., 1984), Arc-1 (Imhof et al., 1983), or cell- 
CAM 120/80 (Damsky et al., 1983), and lastly N-cadherin 
first described on neural tissues (Hatta et al., 1985; Hatta and 
Takeichi, 1986) and sharing similarities with the adherens 
junction-specific A-CAM (adherens junction-CAM; Volk 
and Geiger, 1984; Geiger et al., 1985; Volk and Geiger, 
1986a, b). 

Cell-substratum adhesion is mediated by complexes of 
extracellular molecules, substratum adhesion molecules 
(SAMs), associated with specific receptors at the cell surface 
and is also thought to play a key role in a wide variety of mor- 
phogenetic events including cell migration, cell aggregation, 
and tissue remodeling (Ekblom, 1981; Thiery et al., 1985; 
Duband et al., 1987). Fibronectin (FN) and its 140-kD re- 
ceptor complex (Hynes and Yamada, 1982; Yamada, 1983; 
Yamada et al., 1985; Hynes, 1985; Pytela et al., 1985; Hor- 
witz et al., 1985; Chen et al., 1985; Leptin, 1986; Tamkun 
et al., 1986), and laminin (LN) and its corresponding 67-kD 
receptor (Timpl et al., 1983; Brown et al., 1983; Liotta et 
al., 1985; Yamada et al., 1985; Yamada et al., 1987) consti- 
tute the two major systems that mediate direct cell-substra- 
tum adhesion of both mesenchymal and epithelial cells. 

It is important to determine the conjugate and complemen- 
tary roles of CAMs and SAMs in morphological events dur- 
ing early embryogenesis. In this study, we have examined the 
distribution of these adhesion molecules during somitogene- 
sis. We then focused on the possible role of these molecules 
in the maintenance and reorganization of somitic cell clusters 
using in vitro perturbation experiments. Our results demon- 
strate that N-cadherin and N-CAM are involved in cell adhe- 
sion during somitogenesis and suggest that the regulation of 
N-cadherin expression might play a key role particularly in 
the formation and disruption of the somitic epithelium. 

Materials and Methods 

Embryos 

White Leghorn chick and Japanese quail embryos were used throughout the 
study. Eggs were incubated at 38 =t= I°C in a humidified air chamber, and 

1. Abbreviations used in this paper: A-CAM, adherens junction CAM; 
CAM, cell adhesion molecule; FN, fibronectin; HCMF, Hepes-calcium and 
magnesium-free PBS; L-CAM, liver CAM; LN, laminin; N-CAM, neural 
CAM; SAM, substratum adhesion molecule. 

the ages of the embryos were determined according to the number of somite 
pairs as well as according to Hamburger and Hamilton stages (1951). 

Antibodies 

Rat monoclonal antibodies to N-cadherin (NCD-2) have been described 
elsewhere (Hatta and Takeichi, 1986). These antibodies were selected on 
the basis of their inhibitory effect on the calcium-dependent aggregation of 
neural retina cells (Hatta and Takeichi, 1986). A mouse monoclonal anti- 
body to N-CAM called anti-N-CAM No. 1, which could immunoprecipitate 
N-CAM molecules and inhibit aggregation of retinal cells, was described 
elsewhere (Hoffman et al., 1982). It should be stressed that both monoclonal 
antibodies to N-cadherin and N-CAM did not show any agglutination activ- 
ity when used as divalent antibodies. Monovalent and divalent rabbit anti- 
bodies to L-CAM (Gallin et al., 1983) and to N-CAM (Thiery et al., 1977) 
were produced as described previously (Brackenbury et al., 1977). Antibod- 
ies to laminin were raised in rabbits using essentially the same procedure 
as Timpl et al. (1979), and goat anti-fibronectin antibodies were kindly 
provided by Dr. Kenneth M. Yamada (National Cancer Institute, Bethesda, 
MD). A mouse monoclonal antibody to the adberens junction-specific mol- 
ecule A-CAM was a generous gift of Dr. Benjamin Geiger (The Weizmann 
lnsitute, Rehovot, Israel). 

Embryonic Cell Cultures 

Cultures of somites and segmental plates were generatexi as follows. The 
trunk regions of embryos incubated for 60 h (i.e., at stage 15 of Hamburger 
and Hamilton) were excised with a scalpel. Fragments corresponding to the 
rostral part of the unsegmented region and to the region containing the last 
four formed somites were incubated for 30-60 rain at room temperature 
with 750 U/ml dispase (Godo Shusei, Tokyo, Japan) in DME. Segmental 
plates and somites were teased apart with tungsten needles until free of con- 
tarainating tissues. After dissociation, tissues were allowed to recover from 
enzyme treatment by an incubation in DME for 30 rain. Tissues were then 
processed for cell adhesion assays, dissociation experiments, or for im- 
munofluorescence labeling (see below). 

Cell Adhesion Assays 
Segmental plates and somites were dissociated by two different treatments 
to prepare cells that retain either calcium-dependent or calcium-indepen- 
dent adhesion systems (Urushihara et al., 1979; Brackenhury et al., 1981; 
Aoyama et ai., 1985). After treatment with a dispase solution and 30-rain 
recovery in DME (see above), segmental plates and somites were exten- 
sively washed in 10 mM Hepes-calcium and magnesium-free PBS, pH 7.4 
(HCMF). Tissues were then incubated for 20 min at 37°C in the presence 
of either 0.001% trypsin (type XI; Sigma Chemical Co., St. Louis, MO) 
and 1 mM EDTA in HCMF (light trypsin-EDTA treatment) or 0.01% trypsin 
and 1 mM CaC12 in HCMF (trypsin-calcium treatment); in the case of the 
somites, trypsin-calcium treatment was performed with 0.02% trypsin in- 
stead of 0.01% trypsin. Explants were collected in a microfuge tube and 
gently dissociated to single ceils with pipetting. After centrifugation at 1,000 
rpm for 10 min to remove the bulk of the trypsin, excess soybean trypsin 
inhibitor (type II-S; Sigma Chemical Co.) was added to the cell suspension, 
and the cells were washed twice with HCME Aggregation of dissociated 
cells was carded out in 96-well tissue culture seroclusters with U-bottom 
wells (Costar, Cambridge, MA) previously coated with 0.5% (wt/vol) BSA 
in HCMF for 5 h at 37°C. In each well, "~2-3 x 103 cells were incubated 
in 50 gl of HCMF with or without 1 mM CaC12 and with or without 10 
gl solution of FalY fragments of N-CAM antibodies and/or monoclonal anti- 
bodies to N-cadherin at final concentrations of 1 mg/ml and 50 I~g/ml, 
respectively. After a 1-h incubation at 37°C in a gyratory shaker at 150 rpm, 
50 I.tl of 2% glutaraidehyde solution was added to each well. The wells were 
observed with a Leitz inverted microscope and total number of particles was 
counted. The degree of aggregation of cells was measured by the decrease 
in particle number (% aggregation = [1 - number of particles after the 
aggregation assay/initial particle number] x 100). The inhibition of cell 
aggregation by antibodies to N-CAM or to N-cadherin was expressed as % 
inhibition (1 - [ % aggregation with antibodies/% aggregation without anti- 
bodies] x 100). 

Histological Sections 
The distribution of adhesion molecules was studied by immunofluorescent 
labeling of cryostat sections. After fixation in 3.7% formaldehyde in PBS 
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for 1-4 h, and extensive washes in PBS, embryos were embedded in a gradu- 
ated series of sucrose solutions in PBS (12-18 % wt/vol) and frozen in Tissue 
Tek (Miles Laboratories Inc., Naperville, IL) in liquid nitrogen. Sections 
were cut at 7-12 ~tm on a cryostat (Bright Instrument Co. Ltd., Huntington, 
England) and mounted on slides coated with gelatin. 

Immunofluorescent Staining 
Immunofluorescent staining of sections was performed essentially as de- 
scribed previously (Duband et al., 1986). Simultaneous staining for N-cad- 
herin, N-CAM, fibronectin, and laminin was performed on successive sec- 
tions. For staining of cultures, explants of somites were deposited on 
coverslips previously coated with 20 ~tg/ml human plasma FN, and cultured 
for 24 h or 4 d at 37°C in a humidified 7% CO2/93% air chamber in the 
presence of DME supplemented with 10% serum. Cultures were fixed for 
1 h in 3.7% formaldehyde in PBS and processed for immunofluorescence 
as described elsewhere (Duband et al., 1986). Sections and cultures were 
examined and photographed on a Leitz Orthoplan epifluorescent micro- 
scope. 

Dissociation Experiments 

For assays of explant dissociation in the presence of molecules interfering 
with adhesion molecules, tissues from embryos at stage 15 of Hamburger 
and Hamilton were explanted into 1-cm-diam wells consisting of a section 
of polyethylene tubing mounted on petri dishes or into Terasaki wells (Fal- 
con Labware, Oxnard, CA). They were then cultured at 3"/°C in a hu- 
midified 7% CO2/93% air chamber in the presence of antibodies to adhe- 
sion molecules at various concentrations in DME supplemented with 10% 
newborn calf serum, in calcium-free DME (Flow Laboratories, Inc., 
McLean, VA), or in a 1 mM EDTA solution in DME. Cultures of explants 
were observed and photographed under a Leitz Diavert inverted micro- 
scope. In each case, the effect of the medium were tested on a total of 20 
explants in five different experiments. 

Results 

Specificity of CeU Adhesion in Cultured 
Segmental Plate and Somitic Cells 

Segmental plate and somitic cells were first tested for cal- 
cium-independent and calcium-dependent cell adhesion sys- 
tems using a microaggregation assay adapted from previ- 
ously described procedures (see Materials and Methods). 

As shown on Table I, segmental plate and somitic cells 
possessed both types of cell-cell adhesion systems. (a) In 
the calcium-dependent system, cells treated with trypsin- 
calcium aggregated very poorly in calcium-depleted medium 
but aggregated strongly when calcium was present in the 
medium; this aggregation could be specifically and strongly 
inhibited by antibodies to N-cadherin but not by antibodies 
to N-CAM. These results suggest that the calcium-dependent 
mechanism of aggregation of segmental plate and somitic 
ceils was mediated by N-cadherin. (b) In relation to the 
calcium-independent system, cells treated with light trypsin- 
EDTA could aggregate both in the presence and in the ab- 
sence of calcium; this aggregation could be partly inhibited 
by antibodies to N-CAM and only weakly by antibodies to 
N-cadherin. These results suggest that the calcium-inde- 
pendent mechanism of aggregation of segmental plate and 
somitic cells could be mediated by N-CAM. No significant 
differences in rate of aggregation could be detected between 
segmental plate and somitic cells under both conditions of 
cell dissociation. In contrast, the sizes of the aggregates var- 
ied according to the dissociation treatment. Trypsin-calcium 
treatment of segmental plate cells usually gave much larger 
aggregates than light trypsin-EDTA treatments (not shown). 

In Situ Distribution of Adhesion Molecules 
during Formation and Reorganization of Somites 

Somitogenesis could be studied either at different levels in 
the same embryo or at a specific level in different embryos 
at consecutive stages. We have carried out a detailed study 
of the distribution of N-cadherin, N-CAM, FN, and LN dur- 
ing somite formation and reorganization using immunofluo- 
rescence labeling of sagittal and transverse cryostat sections 
of embryos at the 25-somite stage (i.e., stage 15 of Ham- 
burger and Hamilton) and of different embryos between 20 
and 35-somite stages (i.e., stage 13-18 of Hamburger and 
Hamilton). Very similar results were obtained in both cases. 
As previously shown (Thiery et al., 1984), L-CAM was 
never detected on cells that composed segmental plates, so- 
mites, sclerotomes, and dermamyotomes. 

Formation of Somites. The process of somite formation 
could be subdivided into four stages according to tissue orga- 
nization and distribution of adhesion molecules. In the first 
step, segmental plate cells were organized as a loose mesen- 
chyme with no apparent orientation of cells. These cells were 
weakly stained for both N-cadherin and N-CAM (Fig. 1, a 
and b, stage I). LN and FN could be detected only min- 
imally (Fig. 1, c and d, stage 1) and, when present, FN stain- 
ing was sparse and punctate. The only areas where LN and 
FN were found were the basal surface of the ectoderm and 
endoderm (Fig. 1, c and d). These patterns of distribution 
of adhesion molecules in the segmental plate differed strik- 
ingly from that in the lateral mesoderm. The latter was orga- 
nized into two epithelial sheets exhibiting high amounts of 
N-CAM and N-cadherin. These sheets were limited by FN- 
and LN-rich basement membranes (not shown). 

In the second stage, the segmental plate underwent com- 
paction: intercellular spaces were diminished among cells 
located in the periphery of the plate, which soon became or- 
ganized as an epithelial-like structure. In contrast, cells lo- 
cated in the internal part of the segmental plate retained a 
mesenchymal structure. Concomitantly, staining for N-cad- 
herin and N-CAM was significantly increased, particularly 
among aggregating cells (Fig. 1, a and b, stage 2). FN was 
also increased in quantity along the segmental plate but was 
undetectable in its central portions (Fig. 1 d, stage 2), while 
LN staining was still weak (Fig. 1 c, stage 2). 

In the third stage, epithelialization was almost complete 
particularly in the dorsal and ventral aspects of the future so- 
mite, and the process of delineation began. N-CAM re- 
mained on the whole cell surface of epithelial cells, whereas 
N-cadherin became predominantly concentrated on their 
apical surfaces (Fig. 1, e and f, stage 3). FN was organized 
as a nearly continuous sheet in the dorsal and ventral side 
of the nascent somite but could not be detected in the area 
of separation from the rest of the segmental plate (Fig. 1 h, 
stage 3). LN could now be clearly evidenced as a punc- 
tate pattern on the basal surface of epithelial cells (Fig. 1 g, 
stage 3). 

In the last stage, the nascent somitic precursor separated 
from the rest of the segmental plate, resulting in the forma- 
tion of an additional somite. This consisted of a ball-shaped 
structure composed of mesenchymal cells (core cells) en- 
tirely surrounded by a continuous epithelium. Epithelial 
cells exhibited staining for N-CAM on their whole mem- 
brane and a bright staining for N-cadherin, which was 
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Table I. Specificity of  Aggregation of Segmental Plate and Somite Cells 

Condition of dissociation Condition of aggregation 

Segmental plate cells Somite cells 

% Aggregation % Inhibition % Aggregation % Inhibition 

Trypsin Ca ++ 

Trypsin Ca ++ 

Light trypsin EDTA 

Light trypsin EDTA 

- C a  ++ - Ab 7 ± 5 - 21 + 2 - 
- C a  ++ + anti-N-cadherin 13 ± 8 - 6 ± 5 70 ± 30 
- C a  ++ + anti-N-CAM 20 ± 3 - 16 + 4 24 ± 12 
- C a  ++ + anti-(N-CAM + N-cadh.) 26 ± 6 - 4 + 3 80 + 20 

+Ca  ++ - Ab 92 + 2 - 73 + 7 - 
+Ca  ++ + anti-N-cadherin 54 ± 3 44 ± 5 2 ± 2 98 ± 2 
+Ca  ++ + anti-N-CAM 84 ± 2 9 ± 2 50 + 1 32 + 5 
+Ca  ++ + anti-(N-CAM + N-cadh.) 33 ± 6 63 5 :6  2 + 2 98 + 2 

-Ca ++ - Ab 72 ± 1 - 76 ± 2 - 
-Ca ++ + anti-N-cadherin 73 5:2 2 + 1 73 + 4 7 + 3 
-Ca  ++ + anti-N-CAM 46 + 5 37 ± 7 59 + 5 23 ± 7 
-Ca ++ + anti-(N-CAM + N-cadh.) 29 ± 2 59 ± 3 51 ± 5 34 _+ 7 

+Ca  + + -  Ab 83 ± 1 - 61 ± 4  - 
+Ca  ++ + anti-N-cadherin 65 ± 3 22 + 4 61 ± 3 - 
+Ca  ++ + anti-N-CAM 47 + 2 43 ± 2 47 ± 2 22 ± 10 
+Ca  ++ + anti-(N-CAM + N-cadh.) 29 ± 3 65 + 3 43 ± 5 31 + 8 

Cells were dissociated in the presence of either 0.001% trypsin and 1 mM EDTA (light-trypsin EDTA) or 0.01% trypsin and 1 mM CaC12 (trypsin Ca ++) to pre- 
pare ceils that retain either calcium-independent or calcium-dependent adhesion systems. Cells were then allowed to reaggregate in wells containing PBS with 
calcium (+Ca ++) or without calcium ( -Ca  ++) and in the presence of no antibodies (-Ab),  of antibodies to N-cadherin (+anti-N-cadherin), antibodies to 
N-CAM (+ anti-N-CAM), or lastly of both antibodies (+ anti-IN-CAM + N-cadh.]). The total number of particles was counted in each well. The degree of aggrega- 
tion of cells was expressed as the percentage of aggregation, i.e., (1 - number of particles after the aggregation assay/initial particle number) x 100. The inhibition 
of cell aggregation by antibodies was expressed as the percentage of inhibition, i.e., (1 - % aggregation with antibodies/% aggregation without antibodies) × 100. 
Values represent the mean of 12 wells in four different experiments. 

predominantly found on the apical surface. Cells located 
in the core of the somite were uniformly stained for both 
N-cadherin and N-CAM; the staining for N-cadherin was 
weaker on these cells than on epithelial cells (Fig. 1, e and 
f, stage 4). FN and LN were now mostly distributed in a con- 
tinuous basement membrane entirely surrounding the so- 
mitic epithelium; they could also be detected as a punctate 
staining in the core (Fig. 1, g and h, stage 4). In mature so- 
mites (Fig. 1, e-h, stage 4), staining for adhesion molecules 
remained essentially similar. 

Reorganization of Somites. In embryos at stage 13-18 of 
Hamburger and Hamilton, the disruption of the somitic epi- 
thelium could be visualized morphologically at the level of 
the fifth somite rostral to the last formed somite. However, 
at the level of the third somite rostral to the last formed so- 
mite, i.e., well before any morphological sign of reorganiza- 
tion could be detected, the staining for N-cadherin decreased 
sharply in the medio-ventral region of the somitic epithelium 
and among cells in the core (i.e., the presumptive sclero- 
tome), while it remained intense in the dorso-lateral region 
destined to form the dermamyotome (Fig. 2, a and e). At the 
same level, N-CAM, FN, and LN distributions were not 
significantly altered (Fig. 2, b-d). During the time course 
of somite reorganization, N-CAM remained present in 
noticeable amounts on both sclerotome and dermamyotome 
(Fig. 2 g); we detected a shift of N-CAM among sclerotomal 
cells only well after the complete reorganization of the so- 
mite (data not shown, but see Thiery et al., 1982). The distri- 
bution pattern of FN and LN changed gradually in the 
medio-ventral region of the somite only after cell dissocia- 
tion could be detected. Staining for FN and LN first became 
interrupted in many areas where cells were no longer assem- 

bled into an epithelium. Later on, when the somite reorgani- 
zation into sclerotome and dermamyotome was completed, 
LN disappeared progressively from the environment of the 
released sclerotomal cells, while FN was found around the 
dissociated cells (Fig. 2, g and h). 

Distribution of  Adhesion Molecules on 
Cultured Somitic Cells 

Explants of somites cultured in vitro on FN substrata sponta- 
neously dissociated and the released cells spread onto the FN 
and started migrating. Within 3-4 d of culture, these cells be- 
came stationary and established contacts with their neigh- 
bors (see also Duband et al., 1986). It was thus of interest 
to determine whether adhesion molecules show noticeable 
prevalence regulation during somitic tissue remodeling in 
vitro in a similar way as previously observed in vivo. 

Somitic cells that were separated from their explants and 
flattened on the substratum were negative for N-cadherin 
(Fig. 3, a and b). N-CAM staining gradually decreased from 
cells located near the explant and became negative on cells 
in the periphery (Fig. 3 c). Closely neighboring cells in the 
explant showed a strong staining for both cell adhesion 
molecules (not shown) and for LN (Fig. 3 d). When somitic 
cells became stationary and established contacts after 4 d in 
culture, N-cadherin but not N-CAM became apparent in the 
regions of intercellular junctions (Fig. 3, e and f ) .  LN was 
undetectable on both migratory and stationary cells (Fig. 3, 
d and g). As previously shown (Duband et al., 1986), migra- 
tory somitic cells leaving the explant did not express FN in 
contrast to stationary cells, which deposited a dense FN 
meshwork. 
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Figure 1. In situ immunofluorescent distribution of adhesion molecules during the formation of the somite in an embryo at stage 15 of 
Hamburger and Hamilton. (a-d) The segmental plate and (e-f) nascent somites and last somites of the same embryo, a, c and e, g and 
b, d and f h show two consecutive sagittal sections double stained for N-cadherin and LN on one side and N-CAM and FN on the other 
side. Four different stages can be distinguished regarding the distribution of the adhesion molecules and the organization of the tissues; 
these stages are separated by dotted lines represented on the pictures. While stage l is marked by the low level of all adhesion molecules, 
stage 2 is characterized by the increase of N-cadherin, N-CAM, and FN but not of LN, concomitantly with an increase in cell-cell adhesion. 
In stage 3, the nascent somite starts separating from the rest of the segmental plate; N-cadherin becomes polarized in the apical surface 
of the epithelial cells, and FN and LN organize into a basal lamina. The formation of the somite is achieved in stage 4; a continuous basal 
lamina entirely surrounds the somitic epithelium. Ant. andpost, cranial and caudal sides of the sections, c, core (of the somite); e, ectoderm; 
en, endoderm; se, somitic epithelium; sp, segmental plate. Bar, 50 gm. 
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Figure 3. Immunofluorescent detection of adhesion molecules on cultured somitic fibroblasts. Explants of somites were deposited on FN- 
coated coverslips, grown for 1 d (a-d) or 4 d (e-g), and stained for N-cadherin (a, b, and e), N-CAM (c and f ) ,  and LN (d and g). 
(b) Phase-contrast image of a. Cells that emigrated from freshly explanted somites are devoid of N-cadherin (a and b) but still express 
N-CAM (c); the staining for N-CAM progressively decreases as cells are distant from the explant (arrows in c). LN can only be detected 
on the explant (d). When cells become stationary and establish contacts with their neighbors, N-cadherin (e), but neither N-CAM (f)  
nor LN (g) appears on the areas of cell contacts (arrowheads in e and f) .  Bar, 10 I.tm. 

Effects o f  Antibodies to Adhesion Molecules 
on Cell-Cell  Adhesion in Intact  Segmental Plates 
and Somites In Vitro 

To determine the possible role of adhesion molecules in the 
compaction of  segmental plate ceils and in the maintenance 
of  the epithelial structure of somites, we cultured explants 
of  these tissues in the presence of  molecules that interfere 
with the function of adhesion molecules. For this purpose, 
we used: (a) monoclonal antibodies to N-cadherin and to 
N-CAM; these antibodies were known to inhibit the function 
of  the molecule and could not induce aggregation of dis- 
sociated individual cells even when used as divalent forms 
(Hoffman et al., 1982; Hatta and Takeichi, 1986; see also the 
first section of  the Results); (b) monovalent and divalent anti- 
bodies to N-CAM and to FN and LN; and (c) medium devoid 
of calcium or containing EDTA. 

Incubation of  segmental plates with antibodies to N-cad- 
herin caused an extensive alteration in the morphology of  the 
tissues (Fig. 4, a-c). Cells detached from the explants within 
2-4  h and, after 15 h, segmental plates completely lost their 

organization (Fig. 4, a-c). A very similar but even more 
rapid effect was obtained in calcium-depleted or EDTA-con- 
taining medium in the absence of  antibodies (not shown). 
Both monoclonal and monovalent polyclonal antibodies to 
N-CAM also caused the dissociation of  explants of  segmental 
plates but the effect was slower and weaker than in medium 
without calcium, or with EDTA, or with antibodies to 
N-cadherin; only cells located in the periphery of  the explant 
escaped from it, and at no time did we observe complete dis- 
sociation of  segmental plates (Fig. 4 g). In contrast to 
monovalent antibodies to N-CAM, divalent antibodies to 
N-CAM did not dissociate explants of  the segmental plate 
(not shown). The combination of  N-cadherin and N-CAM 
antibodies did not significantly increase the dissociation rate 
of  the explants (not shown). Monovalent and divalent anti- 
bodies to LN and FN, a combination of  these antibodies, and 
nonimmune monoclonal and polyclonal antibodies were to- 
tally devoid of effect on the cohesion of  cells within the ex- 
plants (Fig. 4, d-f, h and i). In the presence of  these antibod- 
ies, the explants acquired the ball shape that is obtained 

Figure 2. In situ immunofluorescent distribution of adhesion molecules during the reorganization of the somite. (a-d) At the level of the 
second, third, and fourth somite rostral to the last one in an embryo at stage 15 of Hamburger and Hamilton; (e-f) at the same level in 
an embryo at stage 17 of Hamburger and Hamilton. a, c and e, g and b, d and f, h show two consecutive sagittal sections double stained 
for N-cadherin and LN on one side and N-CAM and FN on the other side. The first detectable event in somite reorganization (a-d) is 
the disappearance of N-cadherin from the ventral side of the third somite (s3) rostral to the last formed somite (arrowheads). Note that 
in the second one (s2), N-cadherin is still present in the ventral side. N-CAM, LN, and FN remain unchanged in their distributions (compare 
with Fig. 1, e and f, stage 4). After the complete disruption of the somite (e-h), N-cadherin and LN are absent from the sclerotome, while 
N-CAM is still detectable on them and FN is now organized as a meshwork typical of mesenchyme. Ant. and post., cranial and caudal 
sides of the sections, d, dermamyotome; e, ectoderm; en, endoderm; sc, progenitor cell of the sclerotome; s2, s3, and s4, the second, 
third, and fourth somite rostral to the last formed somite. Bar, 50 lam. 
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Figure 4. Effect of antibodies to adhesion molecules on explants of segmental plates. Explants were incubated in the presence of monoclonal 
antibodies to N-cadherin (a-c), control monoclonal Ig (d-f) both at the concentration of 50 Itg/ml, and monovalent antibodies to N-CAM 
(g), FN (h), and LN (i) at 1 mg/ml. The effects of the antibodies were recorded on the same explant after several periods of time. The 
dissociating effect of antibodies to N-cadherin can be clearly seen within 3 h (a) and is complete within 15 h (c). In contrast, other antibodies 
do not alter the cohesion of cells within the explant (d-f, h, and i), with the exception of anti-N-CAM antibodies, which induce the dissocia- 
tion of cells located only in the periphery of the explant (g). Bar, 50 gm. 
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Figure 5. Quantification of the effect of anti- 
bodies to adhesion molecules on explants of 
segmental plates as a function of time (a) 
and as a function of the concentration of the 
antibodies after 10 h of incubation (b). Ex- 
plants were incubated in the presence of 
monoclonal antibodies to N-cadherin at 
concentrations ranging from 2 to 100 I~g/ 
ml, control monoclonal Ig at a concentra- 
tion of 50 Ixg/ml, monovalent antibodies to 
N-CAM at concentrations between 0.2 to 
5 mg/ml, and monovalent antibodies to FN 
and LN at 1 mg/ml. The areas of the ex- 
plants were recorded at various times, and 
the results are expressed as the increase or 
decrease of these areas with respect to the 
initial one. It should be mentioned that the 
measurement of the area of explants does 
not take into account the spread cells. Note 
that the antibodies to N-cadherin are effec- 
tive at concentrations as low as 2 Izg/ml. 
The values represent the mean of 20 ex- 
plants in five different experiments. 

under normal conditions. As a control of the effect of the an- 
tibodies to N-cadherin and N-CAM, we used a monoclonal 
antibody directed to A-CAM for several reasons. A-CAM 
shows great similarities with N-cadherin both in its molecu- 
lar weight and in its in vivo distribution on segmental plates 
and somites (Volk and Geiger, 1986a, b; Duband, J.-L., 
T. Volberg, J. P. Thiery, and B. Geiger, manuscript in prepara- 
tion); in addition, the monoclonal antibody to A-CAM does 
not perturb the function of the molecule (Volk and Geiger, 
1986a, b). We never observed, in our assay of tissue dissoci- 
ation in vitro, that this monoclonal antibody affects notice- 
ably the cohesion of cells within the explants of segmental 
plates (Duband, J.-L., T. Volberg, J. P. Thiery, and B. Gei- 
ger, manuscript in preparation). 

The dissociating effect of the antibodies and of the absence 
of calcium in the medium was quantified by measuring the 
total area of the explants. It appeared that the dissociating 
effect of the antibodies to N-cadherin was effective in both 
a time- and a dose-dependent manner (Fig. 5). It was notice- 
able that these antibodies produced a detectable effect on seg- 
mental plates even at very low concentrations (2 I.tg/ml). The 
effects of the absence of calcium or of the presence of EDTA 
in the medium were also significant, since within 1 h the 
areas of the explants were increased by 160 % and in 10 h by 
more than 300% (not shown). 

To rule out possible artifacts due to variable penetration of 

antibodies to N-cadherin and to N-CAM into the tissue ex- 
plants, we examined the morphology of the segmental plate 
explants after incubation with these antibodies. After brief 
fixation in a 3.7% formaldehyde solution, the cultured ex- 
plants were sectioned on a cryostat and processed for im- 
munofluorescence. Antibodies to N-cadherin, even at con- 
centrations as low as 2 lag/ml, and monovalent and divalent 
antibodies to N-CAM at 0.5 mg/ml could be detected inside 
of the segmental plate (not shown). Explants incubated with 
either divalent antibodies to N-CAM or control antibodies 
showed a morphology very similar to that observed in vivo. 
In the presence of monovalent antibodies to N-CAM, only 
cells located in the periphery of the explants were dis- 
sociated, while those present in the core of the segmental 
plate were still compacted even though antibodies had 
penetrated deeply inside of the explant. In contrast, cells in 
explants incubated in the presence of antibodies to N-cad- 
herin were all dissociated and no compact aggregate could 
be observed in the explants. 

Similar results were obtained when explants of somites 
were used (Fig. 6). However, quantitation of the dissociating 
effect of the antibodies revealed that the effect of antibodies 
to N-cadherin was delayed and weaker as compared with 
segmental plates, and the antibodies to N-CAM, FN, and LN 
were totally ineffective (Fig. 7). 

The dissociating effect of antibodies to N-cadherin and of 
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Figure 6. Effect of antibodies to adhesion molecules on explants of somites. Explants were incubated in the presence of monoclonal antibod- 
ies to N-cadherin (a-c), control monoclonal Ig (d-f) both at the concentration of 50 txg/ml, and monovalent antibodies to N-CAM (g), 
LN (h), and FN (i) at 1 mg/ml. The effects of the antibodies were recorded on the same explant after several periods of time. Antibodies 
to N-cadherin are strongly effective on somites but their effect can only be seen after 5 h (a-c). Control monoclonal antibodies (d-f) and 
monovalent antibodies to other adhesion molecules (g-i) are totally ineffective. Bar, 25 Ixm. 

calcium-free medium on segmental plates and somites could 
not be attributed to a cytotoxic effect of the antibodies, since 
the removal of the antibodies from the culture medium 
resulted either in a de novo aggregation of cells into segmen- 
tal plate- and somite-like structures or at least in the arrest 
of the dissociation effect of the antibodies (Fig. 8). Neverthe- 
less, cells failed to reassociate after prolonged exposure to 
the antibodies (not shown). 

D i s c u s s i o n  

In this study, we have analyzed the spatio-temporal distribu- 
tions and possible functional roles of several adhesion 
molecules (N-cadherin, N-CAM, fibronectin, and laminin) 
during somitogenesis. We were particularly interested in the 
correlation of key events with various forms of cell surface 
modulation. Our major findings are: (a) segmental plate and 
somitic cells exhibit both calcium-dependent and calcium- 
independent systems of cell aggregation in vitro; these two 

mechanisms are mediated by N-cadherin and N-CAM, 
respectively; (b) in vivo, the prevalence and cell surface 
modulations of N-cadherin is strongly correlated with 
epithelialization ar.d de-epithelialization of the somitic tis- 
sue; (c) N-CAM also increases at the surface of segmental 
plate cells during epithelialization; however, its expression 
is not as markedly correlated with these events; (d) the cell- 
substratum adhesion molecule fibronectin, first found in low 
amounts within the segmental plate, localizes progressively 
in the basement membrane of the newly formed somites; the 
basal lamina component laminin is also found to appear late 
in the process of epithelialization; (e) antibodies to N-cad- 
herin show a noticeable and reversible dissociating effect on 
explants of segmental plates and somites in contrast to anti- 
bodies to N-CAM, which have a weak effect, and to antibod- 
ies to FN and LN, which have no effect. 

In the vertebrate embryo, the axial mesoderm that is des- 
tined to form segmental plates and somites originates during 
gastrulation and its metameric pattern is laid down very 
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Figure 7. Quantification of the effect of anti- 
bodies to adhesion molecules on explants of 
somites as a function of time and of the con- 
centration of the antibodies. Explants were 
incubated in the presence of monoclonal an- 
tibodies to N-cadherin at concentrations be- 
tween 10 and 100 ttg/ml, control mono- 
clonal Ig at a concentration of 50 Ixg/ml, 
and monovalent antibodies to N-CAM, LN, 
and FN at 1 mg/rnl. Note that antibodies to 
N-cadherin do not increase the area of the 
somitic explants as considerably as on 
segmental plates; additionally, these anti- 
bodies are not active at concentrations be- 
low 10 gg/ml. 

early, well before it can be visualized (Meier, 1979). The so- 
mitic mesoderm derives from epiblast ceils located close to 
Hensen's node and it organizes into segmental plates and sub- 
sequently into somites under the action of several inductors 
including the neural plate, the notochord, and the regressing 
Hensen's node (Nicolet, 1970; Lipton and Jacobson, 1974). 
Once the mesoderm of the segmental plates is laid down, so- 
mites form gradually and regularly until they reorganize into 
sclerotome and dermamyotome. 

During embryogenesis, adhesion molecules appear as 
early as before gastrulation, cells frequently carrying several 
distinct adhesion molecules with different specificities (Edel- 
man, et al., 1983; Crossin et al., 1985; Edelman, 1986). Be- 
fore gastrulation in the chick, epithelial cells from the epi- 
blast express both L-CAM and N-CAM (Edelman et al., 

1983). During gastrulation, a population of epiblast cells 
(i.e., those that participate in the conversion into the mesen- 
chyme of the mesoderm) has been shown, so far, to express 
three CAMs: L-CAM, N-CAM, and N-cadherin (Edelman 
et al., 1983; Hatta and Takeichi, 1986). In addition, these 
cells are also associated with LN and FN, possibly through 
distinct receptors including the 140-kD FN receptor complex 
(Duband and Thiery, 1982; Mitrani, 1982; Sanders, 1982; 
Duband et al., 1986; Krotoski et al., 1986). When cells have 
acquired a mesenchymal state, they readily lose L-CAM, 
whereas N-CAM diminishes only progressively from their 
surface and N-cadherin increases in prevalence (Edelman et 
al., 1983; Hatta and Takeichi, 1986). The expression of 
N-cadherin decreases only later on the surface of mesoder- 
mal cells destined to form the segmental plate. When Hen- 

Figure 8. Reversibility of the effect of antibodies to N-cadherin. Explants of segmental plates (a-c) and somites (d-f) were incubated in 
the presence of antibodies to N-cadherin until dissociation could be clearly detected, i.e., 4 and 6 h, respectively (a and d). Antibodies 
were then removed by extensive washing, and the explants were then incubated in the presence of fresh medium; after 15 h, both segmental 
plates and somites recovered a compacted shape (b and e). In contrast, explants that remained in the presence of antibodies to N-cadherin 
were completely dissociated (c and f) .  Bar in c, 100 I.tm; a-c are at the same magnification; bar in f, 25 I.tm; d- f  are at the same 
magnification. 
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sen's node regresses, allowing mesenchymal cells to assem- 
ble into a segmental plate, a subset of adhesion molecules, 
N-CAM and N-cadherin, is reexpressed progressively on 
these cells. In contrast to CAMs, the FN-receptor complex 
as detected by immunofluorescence studies remained on the 
surface ofmesodermal cells throughout these processes (Du- 
band et al., 1986; Krotoski et al., 1986), even though FN was 
present in low amounts among them (see also Ostrovsky et 
al., 1983). 

As judged by immunofluorescence labeling, the expres- 
sion of N-cadherin increases rapidly at the onset of epithe- 
lialization of the segmental plate; subsequently, N-cadherin 
shows polarity modulation and localizes predominantly on 
lateral surfaces facing the lumen of newly formed somites. 
In contrast, N-CAM and the FN receptors do not redistribute 
as dramatically on the surface of the somitic epithelial cells 
(see also Duband et al., 1986). The sclerotome, a new set 
of mesenchymal cells deriving from part of the somitic epi- 
thelium, loses N-cadherin very rapidly, whereas N-CAM 
and the FN receptor do not diminish as drastically (see also 
Duband et al., 1986). Recently, it has been shown that a 
newly discovered SAM, called cytotactin (Grumet et al., 
1985), is assembled as a basement membrane component of 
the somites in a cephalocaudal wave and subsequently ac- 
cumulates very rapidly within the sclerotome at the time of 
its formation (Crossin et al., 1986). The role of this molecule 
in regulating structure and movement patterns in and around 
somites remains to be explored. 

These descriptive studies of the prevalence and polarity 
modulation of CAMs and SAMs suggest that they each play 
different roles at different stages of development. For in- 
stance, N-cadherin is first evidenced at the level of the primi- 
tive streak particularly in cells egressing from the epiblastic 
epithelium (Hatta and Takeichi, 1986), thus becoming as- 
sociated with migratory cells losing their epithelial struc- 
ture. Conversely, N-cadherin is expressed during the assem- 
bly of segmental plate cells into the somitic epithelium and 
is lost in cells destined to form the mesenchyme of the sclero- 
tome. Thus, during somitogenesis, the modulation of the ex- 
pression of N-cadherin is consistent with a role expected for 
CAMs in mediating cell-cell adhesion. N-CAM expression 
is increased during the formation of epithelia such as the 
epiblast and the somite but is not regulated strictly during 
their reorganization (Edelman et al., 1983). Both epithelial 
and mesenchymal cells continuously maintain the FN recep- 
tor on their surface whether they are in motion or in a station- 
ary state, while FN deposition in the environment of these 
cells may vary considerably (Duband et al., 1986). 

The specificity differences, differences in calcium depen- 
dency, and different spatio-temporal distributions of the two 
CAMs involved in somite cell adhesion also suggest that they 
have different roles at various stages of somitogenesis. In 
vitro, dissociated segmental plate and somitic cells all expose 
functional N-cadherin and N-CAM. However, the effects of 
antibodies to N-cadherin in the cell dissociation assay on 
explanted tissues were greater than those of antibodies to 
N-CAM and, in vivo, N-cadherin disappearance is more 
closely associated with somite reorganization than N-CAM. 
Even though combined antibodies to both molecules did not 
show additive effects, it cannot be excluded that both N-CAM 
and N-cadherin may act together in crucial stages of somito- 
genesis. One possible interpretation of our data is that 

N-cadherin is strongly associated with tissue remodeling and 
is critical to the formation of epithelial structures. This may 
be the case because of its polarity modulation on cells and 
its possible role in the formation of adherens junctions if it 
is confirmed that it is closely related to A-CAM (Volk and 
Geiger, 1986a, b). An alternative view is that both N-cad- 
herin and N-CAM must act synergistically to lead to tissue 
remodeling. At least for the formation of the somites, such 
a hypothesis is in accord with a previous report showing that 
Axolotl mesoderm segmentation is in vivo sensitive to tryp- 
sin treatment both in the absence and presence of calcium 
(Gillespie et al., 1985). 

The present data do not allow a sharp choice between the 
two alternatives mentioned above for a number of reasons: 
(a) the number of molecules per cell and the relative binding 
strength of each CAM are unknown; (b) the binding strength 
and attachment sites of the respective antibodies and Fab 
fragments are unknown; and (c) the scoring of dissociation 
in the in vitro assay may not truly reflect more detailed com- 
plementary modulation of the two CAMs in vivo, particu- 
larly in the case of the somites. 

It thus cannot be excluded that other CAMs associated 
with differentiated junctions may also participate to the 
processes of cell adhesion occurring during somitogenesis. 
There is now evidence that desmosomes and intermediate 
junctions, but not so far tight junctions, are assembled tran- 
siently during the formation of epithelia (Aoyama et al., 
1985; Geiger, B., unpublished data). In particular, the adhe- 
sion molecule A-CAM, which is adherens junction-specific 
and shows similarities with N-cadherin (Volk and Geiger, 
1986a, b), progressively accumulates in developing inter- 
mediate junctions during somitogenesis (Duband, J.-L., T. 
Volberg, J. P. Thiery, and B. Geiger, manuscript in prepara- 
tion). In addition to A-CAM, desmocollins, the putative 
adhesion molecules ofdesmosomes (Cowin et al., 1984) may 
be involved in the stabilization of the somitic epithelium. 

In our study, a direct role has not been found for FN in 
the compaction and subsequent epithelialization of the seg- 
mental plate. However, it has been shown that addition of 
synthetic peptides containing the major binding site for the 
FN receptor or addition of cellular but not plasma FN 
resulted in a premature induction of somites in explanted 
segmental plates (Lash et al., 1984; Lash and Yamada, 
1986). Similar results were also obtained in vivo with the ad- 
dition of cellular FN but not of plasma FN (Lash et al., 
1984). While these results cannot be interpreted unequivo- 
cally, particularly because both plasma and cellular FN con- 
tain the same cell-binding site, it is still a provocative idea 
that the major cell-binding domain of FN behaving like a 
hormone through the FN receptor is a potential inducer of 
somitogenesis. 

Somitogenesis is a multistep process that results from a se- 
ries of-inductive events operating throughout gastrulation 
(Nicol~t, 1970; Lipton and Jacobson, 1974). The regulated 
expression of CAMs and SAMs is reminiscent of similar sit- 
uations observed with the ontogeny of neural crest cells (for 
a review, see Thiery et al., 1985), the development of the kid- 
ney (Ekblom, 1981; Thiery et al., 1982, 1984), the patterning 
of the otic placodes (Richardson et al., 1987), and of the 
feathers (Chuong and Edelman, 1985a, b; Gallin et al., 
1986). Simultaneous and/or reiterative expressions of CAMs 
and SAMs reflected in cell surface modulation events have 

The Journal of Cell Biology, Volume 104, 1987 1372 



been described during the morphogenesis and differentiation 
of all of these different structures (Gallin et al., 1986). It is 
intriguing to postulate that CAM regulation is a major pri- 
mary event in inductive processes. In the case of the somites, 
our results indicate that, in association with N-CAM, N-cad- 
herin plays a predominant role possibly in relation to the for- 
mation of specific cellular junctions in the mechanisms es- 
tablishing cell polarity. One of the most challenging tasks for 
the future will be to identify and trace the biochemical sig- 
nals responsible for the various modulations seen in struc- 
tures such as somites. 
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