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Abstract. Adducin is an erythrocyte membrane skele- 
tal phosphoprotein comprised of two related subunits 
of 105,000 and 100,000 Mr. These peptides form a 
functional heterodimer, and the smaller of the two 
binds calmodulin in a calcium-dependent fashion. Al- 
though this protein has been physicochemically charac- 
terized, its function remains unknown. We have exam- 
ined the interaction of human adducin with actin and 
with human erythrocyte spectrin using sedimentation, 
electrophoretic, and morphologic techniques. 
Purified adducin binds actin at physiologic ionic 
strength and bundles it into arrays of laterally arranged 
filaments, the adducin forming cross-bridges between 
the filaments at 35.2 + 3.8 (2 SD) nm intervals. The 
stoichiometry of high affinity adducin binding to actin 
at saturation is 1:7, corresponding to a dimer of addu- 

cin for every actin helical unit. Adducin also promotes 
the binding of spectrin to actin independently of pro- 
tein 4.1. At saturation, each adducin promotes the as- 
sociation of one spectrin heterodimer. The formation 
of this ternary spectrin-actin-adducin complex is inde- 
pendent of the assembly path, and the complex exists 
in a readily reversible equilibrium with the free 
components. The binding of adducin to actin and its 
ability to stimulate spectrin-actin binding is down- 
regulated by calmodulin in a calcium-dependent fash- 
ion. These results thus identify a putative role for 
adducin, and define a calcium- and calmodulin- 
dependent mechanism whereby higher states of actin 
association and its interaction with spectrin in the 
erythrocyte may be controlled. 

T 
HE basic structural organization of the erythrocyte 
cytoskeleton is understood in reasonable detail. The 
predominant proteins involved, spectrin, protein 4.1, 

and actin, have been extensively characterized, and all par- 
ticipate in the formation of stable high molecular mass com- 
plexes in vitro (for reviews see Cohen, 1983; Bennett, 1985; 
Marchesi, 1985). The conclusions of studies using in vitro 
reconstitution have generally been in accord with those using 
a variety of techniques to directly visualize the erythrocyte 
membrane skeleton (Cohen et al., 1980; Pinder and Gratzer, 
1983; Beaven et al., 1985; Byers and Branton, 1985; Shen 
et al., 1986; Liu et al., 1987). The consensus that has emerged 
from these studies is that small, relatively stable complexes 
containing filamentous actin and protein 4.1 are joined by 
spectrin tetramers and oligomers to form the anastamosing 
protein array that lies beneath the erythrocyte membrane. 

The roles of several less prominent erythrocyte cytoskele- 
tal proteins remain to be elucidated. One of these is a cal- 
modulin-binding phosphoprotein heterodimer composed of 
subunits of 105,000 and 100,000 Mr. The presence of this 
protein in erythrocyte ghosts and in the erythrocyte cyto- 
skeleton appears to have been noted by many workers. Luna 
et al. (1979) first noted its presence after protease digestion 

A preliminary report of these findings has appeared in abstract form (1987. 
Z Cell Biochem. 11B:154). 

of erythrocytes, and named it band 3'. Subsequently, it has 
been identified as band 2.8 and 2.9 (Johnson et al., 1982), 
CamBP 103/97 (Gardner and Bennett, 1986), PK1 and PK2 
(Palfrey and Waseem, 1985), and 115/110 (Wolfe and Sahyoun, 
1986). In a recent abstract, Gardner and Bennett (1987) have 
also called it "adducin" (from the Greek adducere, meaning 
"to pull together"), since they suggested that the protein 
might play a role in sequentially guiding spectrin to actin. 
Our studies find no evidence of a pathway-dependent interac- 
tion between this protein, spectrin, and actin. However, as 
reported here, it does "gather" actin filaments to each other 
and promotes the binding of spectrin to actin. Thus, the 
name adducin is not inappropriate. While our preliminary 
reports of this molecule referred to it as p105/100 (Mische et 
al., 1987), in the interest of clarity and at the risk of propagat- 
ing a trivial name for a protein whose similarity to other 
actin-binding proteins is still unknown, we suggest that the 
name adducin be adopted for this protein. We will refer to 
it as such in this report. 

Adducin has been most extensively characterized by Gard- 
ner and Bennett (1986), who established that the protein, as 
purified from erythrocyte Triton X-100 shells, consists of a 
heterodimer of related but not identical subunits. These 
workers established that the smaller subunit bound calmodu- 
lin and estimated that ,~30,000 copies of the heterodimer 
were present in the mature erythrocyte. Adducin has also 
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been identified as a substrate for several protein kinases, in- 
cluding protein kinase C (Palfrey and Waseem, 1985; Ling 
et al., 1986; Wolfe and Sahyoun, 1986; and Cohen et al., 
1986), calcium-calmodulin-dependent protein kinase (Ling 
et al., 1986), and cAMP-dependent protein kinase (Cohen and 
Foley, 1986). The function of adducin, however, is unknown. 

In this report we present evidence that adducin can medi- 
ate the assembly of actin into discrete bundles of filaments, 
and that it promotes the association of spectrin with F-actin 
independently of protein 4.1. We also report that these activi- 
ties are both down-regulated by calmodulin in a calcium- 
dependent manner. 

Materials and Methods 

Membrane Preparation 
Erythrocytes were isolated from fresh human whole blood by tw~ sedimen- 
tations at 40C through 0.75% dextran I"-500 at unit gravity, in 4 vol of PBS 
(5 mM sodium phosphate, 135 mM sodium chloride, 1 mM EDTA, pH 7.5) 
(Bennett, 1983). Membranes were prepared by low ionic strength lysis of 
the washed erythroey~s as previously described (Morrow and Marchesi, 
1981). 

Purification of Adducin 
Adducin was prepared from white ghosts after extraction with ~iton X-100 
according to the procedure of Gardner and Bennett (1986) with minor 
modifications. The ion exchange chromatography step was performed using 
a 1.2 • 20-era column of DE-52 cellulose (Whatman Inc., Clifton, NJ) that 

was equilibrated in 10 mM Tris, pH 7.5, 50 mM NaCl, 0.25 mM EGI'A, 
0.1 mM dithiothreitol (DID, 0.05 mM phenylmethylsulfonyl fluoride 
(PMSF), and 2 I.tg/ml leupeptin (equilibration buffer). Alter sample appli- 
cation, the column was washed with 1 column volume of equilibration 
buffer, followed by 1 colunm volume of the same buffer containing 100 mM 
NaCI. The protein was eluted with a linear salt gradient (5 eolunm volumes) 
to 300 mM NaC1. Fractions containing adducin were pooled, dialyzed, and 
stored in 20 mM Tris-HCl, pH 7.4, 60 mM KCI, 10 mM NaCI, 0.25 mM 
EGTA, 0.1 mM DTT, 5 p.g/ml leupeptin. 

Preparation of Actin 
Chicken skeletal muscle actin was prepared from acetone-extracted and 
-lyophylized chicken breast muscle by the method of Spudieh and Watt 
(1971), and was stored at 4"C under conditions of continuous dialysis versus 
G buffer (2 mM Tris-HCl, 0.2 mM ATP, 0.2 mM calcium chloride, 0.5 mM 
DTT, 0.2% sodium azide, pH 8.0). The G-actin was spectrophotometrically 
determined using an extinction coefficient of 10.9 for a 1% solution. 

Preparation of Spectrin 
Speetrin was prepared from human erythroeyte ghosts by extraction at 37~ 
with 0.1 mM EDTA, pH 9.0, followed by separation of the dimer and 
tetramer forms by gel filtration on Sepharose CL-4B (Pharmacia Fine 
Chemicals, Piscataway, NJ) in 20 raM Tris-HCl, pH 7,5, 130 mid KC1, 
20 mM NaCI, 1 mM EDTA, 1 mM 2-mercaptoethanol, 0.05 mM PMSF 
(Morrow and Marchesi, 1981). 

Preparation of Protein 4.1 and Calmodulin 
Human erythroey~ protein 4.1 was prepared from 1 M KCI extracts of 
speetrin-depleted erythroeyte vesicles, as described by "Pyler et al. (1980). 
Calmodulin was prepared from frozen bovine brain by ion exchange and 

Figure L Adducin binds actin. (A) SDS-PAGE 
analysis of supernatants (lanes s) and pellets (lanes 
p) from a 100,000 g sedimentation of a solution of 
0.3 I~M adducin alone (pair 1) or of the same solu- 
tion of adducin with 5 I~M actin (pair 2). The 
buffer conditions used were 20 mM Tris-HC1, pH 
7.4, 120 mM KCI, 10 mM NaCI, 2 mM MgC12, 
0.25 mM EGTA, 0.1 mM DTT. The faint addi- 
tional bands of lower molecular mass (50-74,000 
Mr) that are evident in the analysis of adducin are 
proteolytic degradation products which have been 
identified by others (Gardner and Bennett, 1986). 
(B) Quantitation of the binding of adducin to actin. 
The amount of adducin bound to actin was deter- 
mined by elution of the Coomassie Blue dye from 
stained SDS gels. The binding is expressed as a ra- 
tio of adducin to actin sedimented. The binding 
conditions were as above, except that the concen- 
tration of KCI was 60 mM. The sigmoidal binding 
curve saturates near 0.143 (M/M). The apparent 
Ko for this interaction determined by nonlinear 
regression analysis is 283 riM. The Hill coefficient 
assumed for this fit is 2.09, as derived below; a 
binding ratio of adducin to actin of 1:7 (0.143) was 
assumed. (C) Scatchard analysis of the addu- 
cin-actin binding data presented above. The down- 
ward concave curve indicates the positively coop- 
erative nature of this interaction. Extrapolation of 
the regression curve from this analysis suggests a 
saturation binding value of 0.16 M/M. (Inset) Hill 
plot of the binding data. The slope of the regres- 
sion curve is 2.1 + 0.2 (2 SD), indicating strong 
cooperativity. The log [y/(1 - y)] is plotted on the 
ordinate; log[free (nM)] is plotted on the abscissa, 
(3, represents the fractional saturation: bound/ 
maximal binding). 
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affinity column chromatography as preciously described (Btrrgess et aL, 
1980). 

Cosedimentation Assays 

Aetin-binding assays were performed by eosedimentation with either co- 
polymerized or preformed F-actin (prepotymerized at 1.2 mg/ml by incuba- 
tion in 20 mM Tris-HCt, pH 7.4, 120 mM KCI, I0 mM NaCI, Od mM DTT, 
2 mM MgCI2, pH 7A). Various concentrations of adducin, spectrin, and 
protein 4.1 were used in 20 mM Tris-HC1, 10 mM NaCI, 0-250 mM KCI, 
0-10 mM magnesium chloride, 0.25 mM EGTA, 0.1 mM DTT. Actin 
(5 ttM) was added at time zero in all experiments. In the copolymerization 
assays, the samples were gently sheared by #petting several times during 
the first 15 rain of the incubation period to facilitate nucleation, and then 
incubated for 30 rain. 

In experiments containing calcium, all proteins were dialyzed before the 
experiment into the appropriate calcium-containing buffer in order to assure 
the proper levels of free calcium. For solutions with calcium concentrations 
below 10 gM, 10 mM calcium-EGTA buffers were used to control the free 
calcium level (Bartfai, 1979). 

Samples were cosedimented at either I00,000 g (high speed) for 45 min 
or at 10,000 g (low speed) for 20 win at 4~ in a rotor (42.2 Ti; Beckman 
Instruments, Inc., ~e r ton ,  CA). Supernatants and pellets were separated 
and the pellets were resuspended to their original volume. Identical volumes 
of each were analyzed by SDS-PAGE (Laemmli, 1970) and visualized by 
staining with Ccomassie Brilliant Blue. 

Quantitation of Binding 

Two methods were used to quantitate the amount of protein present in each 
of the Coomassie Blue-stained gel bands. Densitometric determinations 
were performed directly on gel slabs using a scanning densiton~-ter (model 
1650; BioRad Laboratories, Richmond, CA). The areas under the pea~ 
were measured using an electronic planimeter (model 1224 electronic 
digitizer; Numonics Corp., Lansdale, PA). Alternatively, the stained bands 
were sliced from the gels and the bound dye eluted with a constant volume 
of 25% pyridiue and quantitated by absorbauce at 605 nm (Fenner et al., 
1975). Standard curves were obtained for each protein by etution o~ Coomas- 
sie Blue-stained bands from known quantities of protein (spectrin, actin, 
adducin) analyzed on SDS-PAGE. Protein determinations were carried out 
by the method of Lowry et al. (1951). The binding data was analyzed by least 
squares regression analysis (linear and no~ainear). 

Electron Microscopy 

The complexes of the assembled proteins were viewed on carbon-parlodion 
grids with a Zeiss 10CA electron microscope after fixation with 0.2% 
glutaratdehyde and staining with 1% aqueous uranylacetate. 

Results 

Adducin Binds Actin and Bundles Actin Filaments 

Purified addncin was assayed for its ability to bind actin by 
cosedimentation at 100,000 g. In the absence of  actin, no ad- 
dncin is sedimented, while in the presence of  actin, a sub- 
stantial fraction of  the addncin sediments (Fig. 1,4). Increas- 
ing amounts o f  addncin cosediment with F-actin as the free 
concentration of  adducin is increased, until saturation is 
reached. These results are depicted quantitatively in Fig. 1, 
B and C. At saturation, one addncin binds an average of  six 
to seven actin monomers.  The apparem Kd for this reaction 
is 283 nM, as judged by nonlinear regression analysis of  the 
binding curve (Fig. 1 B) .  Sca tcha~  analysis o f  this binding 
data demonstrates that the binding of  addncin to actin is 
strongly cooperative (Fig. 1 C),  with a Hill coefficient of  
2.1 + 0.2 (2 SD) (Fig. 1 C, inset). The same degree of  actin 
binding is observed when adducin is added to either pre- 
formed F-actin or  when the actin is polymerized in the pres- 
ence of  adducin. 

The stoichiometry and the positive cooperativity of  the 
binding of  adducin to actJn suggested that it may be an actin- 
bundling protein (e.g., see references by Korn, 1982; Pol- 
lard, 1986). To examine this possibility, cosedimentation as- 
says at 10,000 g (low speed) were performed. Under these 
conditions, F-actin will not pellet unless cross-linked. Fig. 
2 A illustrates the effect of  adducin on actin sedimentation. 
In the absence o f  adducin, <15 % of  the F-actin sediments un- 
der these conditions (Fig. 2 A, experiment 2). In the pres- 
ence of 200 nM addncin, 92 % of the actin is pelleted (Fig. 
2 A, experiment I ) .  At higher levels o f  addncin, essentially 
all of  the actin is sedimented (clam not shown). 

Aliquots of  adducin-actin complexes were also examined 
by electron microscopy, and are shown in Fig. 3. Fixed and 
negatively stained samples revealed highly ordered linear ar- 
rays of  actin filaments, with ad_ducin decorating the filaments 
at periodic intervals of  35.2 + 3.8 (2 SD) nm (Fig. 3 B, in- 
set). This minimal repeat distance between adducin mole- 
cules bound to actin corresponds to the length of  the act.in 
filament helical repeat (14 actin monomers)  (Huxley and 
Brown, 1967). Therefore, if one assumes that a dimer of  ad- 
dncin is required for cross-linking, the stoichiometry of  ad- 
ducin binding to actin is 1.'7, similar to that determkned above 
by the cosedimentation assays. 

It  should be noted that br ief  fixation of  the adducin-actin 
com#exes  with glutaraldehyde was required in order for the 
complexes to withstand the conditions required for negative 
staining. Unfixed preparations retained virtually no addu- 
cin-actin complexes (data not shown). 

Adducin Promotes Spectrin-Actin Association 

At physiologic ionic strength, in the absence of  protein 4.1, 
human erythrocyte spectrin binds actin with low affinity 
(Fig. 4 A, pair 1). This binding is markedly enhanced in the 
presence of  adducin (0.165 gM),  as shown in Fig. 4 A, pair 
2. Time-course studies of  this interaction indicate that equi- 
librium between adducin, actin, and spectrin is achieved rap- 
idly, requiring <5  rain at 4~ (data not shown). Separate 
sedimentation velocity experiments demonstrate no stable 
direct interaction between spectrin and adducin. The en- 
hanced binding of  spectrin to actin that is dependent on addu- 
cin saturates at one to one and two-tenths spectrin heterodi- 
mers bound for every molecule of  addncin in the complex 

F~gure 2. Adducin bundles actin. 
SDS-PAGE analysis of supema- 
rants (lanes s) and pellets (lanes 
p) of a low speed sedimentation 
(10,000 g, 20 win) of a solution 
containing either 200 nM adducin 
and 5 I~M actin (pa i r / )  or actin 
alone (pair 2). Note that under 
these conditions most actin did not 
pellet in the absence of adducin. 
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Figure 3. The adducin-actin complexes may be visualized after 
negative staining. Electron micrographs of the pellet fraction after 
a 10,000 g sedimentation of a solution of F-acfin (4.5 ~tM) and 0.170 
IxM adducin. (,4) Extensive bundles of actin were formed, account- 
ing for the enhanced sedimentability of the actin in the presence of 
adducin. (B) Higher magnification view of the sample shown in A, 
demonstrating the presence of adducin molecules decorating the 
filaments. (Inset) Adducin decorated the actin bundles at minimum 
intervals of 35.2 + 3.8 (2 SD) nm, All samples were prepared by 
direct dilution into 0.2% glutaraldehyde and were viewed on parlo- 
dian-carbon coated grids after staining with 1% uranyl acetate. Fix- 
ation of the complexes was necessary for their preservation; rare 
complexes were observed in the absence of glutaraldehyde treat- 
ment. Bars: (A) 0.5 I~m; (B) 0.1 Ima; (inset) 50 nm. 

(Fig. 4, B and C). AS observed for the binding of adducin 
to actin, the binding curve for spectrin to the adducin com- 
plex is sigmoidal, with an apparent Kd as estimated by 
regression analysis (dotted curve) of 104 nM. The values of 
the Hill coefficient and the saturation binding value derived 
from this analysis were 2.2 and 1.00, respectively. The posi- 
tive cooperativity displayed by this interaction was also evi- 
dent in the downward concave nature of the Seatchard analy- 
sis (Fig. 4 C). Extrapolation of the nonlinear regression 
curve from fftis analysis indicated a saturation value of spec- 

trin to adducin of 1.2:1, very similar to the value derived 
directly from the analysis of the curve in Fig. 4 B. The Hill 
coefficient estimated directly from the Hill plot (not shown) 
was 2.1 • 0.2, identical to the value determined for the bind- 
ing of adducin to actin. 

Formation of the Ternary Complex of 
Spectrin-Adducin-Actin Is Independent of the 
Order of Assembly 
Adducin (0.2 ttM) and spectrin (0.3 ttM) were preincubated 
separately for 1 h with either G-actin (5.6 txM) or with pre- 
formed filamentous actin (6.6 ~tM). After 1 h, spectrin or ad- 
ducin was added to the respective preincubated binary com- 
plexes and the incubation was continued for an additional 
30 rain. The supernatants and pellets were analyzed after 
sedimentation at I00,000 g as in previous experiments. The 
results for F-actin are shown in Fig. 5. Pairs 1 and 2 show 
the results of the experiments with the speetrin-actin and the 
adducin-actin binary complexes, respectively. 

Pair 3 demonstrates the ternary complex formed by the 
addition of adducin to the sample used in pair 1; pair 4 
represents the ternary complex formed by the addition of 
spectrin to the sample used in pair 2. As can be seen, there 
are no differences in the amount of either adducin or spectrin 
cosedimented with actin in the two experiments. In addition, 
no differences were obseved when either spectrin dimer or 
tetramer were used in these experiments (data not shown). 
These results indicate that the final composition of the com- 
plex is independent of the assembly path. 

Association of Adducin with F-Actin and with 
Spectrin-Actin Is Dependent on Ionic Strength 
The ionic strength of the buffer chosen for adducin actin 
binding proved critical. Fig. 6 A shows an SDS-PAGE analy- 
sis of the con~lex formed at 60 and 150 mM ionic strength, 
with all other conditions remaining constant. As can be seen, 
less adducin and spectrin binds actin at the higher ionic 
strength. Increased osmolarity (600 mosM sucrose) does not 
alter the binding (data not shown), q]fis effect of ionic strength 
is depicted quantitatively in Fig. 6 B. 

The presence of spectrin does not alter the sensitivity of 
the the adducin-actin complex to ionic strength (Fig. 6 B). 
In addition, neither calcium alone (10-200 .IxM) (Fig. 8 A) 
or magnesium (1-10 mM) (data not shown) has any effect on 
the binding affinity of addur for actin. The interaction of 
adducin with actin is unaffected by variations in pH between 
6.8 and 7.6 (Fig. 6 C). 

Adducin and Protein 4.1 Can Simultaneously Stimulate 
Spectrin-Actin Binding 
The predominant spectrin-actin stabilizing protein in the 
erythrocyte is protein 4.1 (Tyler et al., 1980). Protein 4.1 
binds spectrin-actin with a Ka of 0.1 ~M (Tyler et al., I980), 
does not bind actin in the absence of spectrin (Ohanian et al., 
1984), and appears to interact predominately with the beta 
subunit of spectrin (Coleman et al., 1987), The effect of pro- 
tein 4.1 on the interaction of adducin with spectrin and actin 
was therefore of interest. Spectrin (0.17 gM), actin (5.0 IxM), 
and adducin (0.3 IxM) were incubated for 30 min, after 
which increasing quantities of protein 4.1 were added (0.5- 
3.75 t~M) and the incubation was continued for an additional 
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Figure 4. Adducin stimulates spectrin-actin bind- 
ing. (A) Coomassie Blue-stained SDS gels of the 
supernatants (lanes s) and pellets (lanes p) result- 
ing from a 100,000 g sedimentation of solutions 
containing spectrin (0.2 gM) and actin (5.0 ~tM) 
(.pair 1); or of spectrin, actin, and 0.16 ~tM addu- 
cin (pair 2). Buffer conditions were the same as in 
Fig. 1 A. Pair 3 shows the results when spectrin 
and adducin were sedimented under these condi- 
tions. (B) Quantitation of spectrin binding to addu- 
cin-actin. The conditions of this experiment were 
the same as in Fig. 1 B. The binding is expressed 
as the ratio of spectrin sedimenting to the amount 
of addncin sedimenting (M/M). Spectrin binding 
to addncin-actin saturated near a 1:1 molar ratio. 
The apparent Kd estimated from the regression 
analysis (dotted curve) for spectrin binding to the 
adducin-actin complex is 104 nM. The saturation 
value estimated from this curve is 1.00. (C) Scat- 
chard analysis of the data shown in B. The 
stoichiometry of spectrin to adducin in the spec- 
trin-actin-adducin complex estimated from this 
curve is 1.2:1. An estimation of the Hill coefficient 
from a Hill plot (not shown) yielded a value of 2.1 
+ 0.2 (2 SD), identical to the value determined for 
the binding of adducin to actin (Fig. 1 C). 

Figure 5. The formation of the spectrin-actin-adducin ternary com- 
plex is independent of the assembly path. Supematants (lanes s) and 
pellets (lanes p) of a 100,000 g sedimentation are shown after SDS- 
PAGE analysis. In pair 1, spectrin (0.3 gM) and actin were incu- 
bated for 1 h at room temperature under buffer conditions described 
in Fig. 1 B. In pair 2, adducin (0.2 IxM) and actin were incubated 
for a similar period of time. In pairs 3 and 4, adducin and spectrin 
were added respectively to samples from pairs I and 2, so that the 
final composition of the solutions in pairs 3 and 4 were identical. 
These samples were then incubated for an additional 30 rain, after 
which they were analyzed. The final actin concentration was 5 I~M. 
Note that there was no discernable difference in the amount of 
spectrin, actin, or adducin sedimenting in pairs 3 and 4, even 

30 min. These results are presented in Fig. 7. With increas- 
ing concentrations of  protein 4.1, there is increased binding 
of  spectrin to actin, but the amount of  adducin bound to actin 
remains constant (Fig. 7 A, lanes 2-5). Even with a substan- 
tial molar excess of  protein 4.1, there is no significant change 
in the amount of  adducin sedimenting with the spectrin- 
actin--4.1 complex. These results are presented quantitatively 
in Fig. 7 B. 

Similarly, when adducin is added to preformed spectrin- 
actin-protein 4.1 complexes, there is no significant change 
in the amount of  adducin bound when compared with its 
binding to similar complexes which lack protein 4.1 (cf. Fig. 
7 A, pair 6 with pair 1 or with Fig. 5). Correspondingly, 
there is also no significant reduction in the amount of  protein 
4.1 bound to the complex, even in the presence of significant 
excess adducin (Fig. 7 A, pair 7). Therefore, protein 4.1 and 
adducin do not compete directly for the same binding sites 
within the spectrin-actin complex, and their effect on spec- 
trin-actin binding is likely to be additive. 

Calmodulin Down-regulates the Ability of  Adducin to 
Bind Actin and to Stimulate Spectrin-Actin Binding 

Adducin has been shown to bind calmodulin in a calcium- 
dependent manner with moderate affinity (Gardner and Ben- 
nett, 1986; Anderson and Morrow, 1987). The effect of  cal- 
modulin (5-20 ~tM) in the presence of  200 IxM calcium on 
the binding of adducin to actin and on its ability to stimulate 

though in the former experiment adducin was added to preformed 
spectrin-actin complexes, while in the latter experiment, spectrin 
was added to preformed adducin-actin complexes. 
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Figure 6. Adducin-aetin binding is ionic strength dependent. (A) The effects of ionic strength on the adducin-actin interaction were deter- 
mined as above. The buffer conditions of this experiment were as described in Fig. 1 A, except that the ionic strength of the solution was 
varied by changing the concentration of KC1. Pairs 1 and 3 contain adducin and actin. Pairs 2 and 4 contain spectrin, adducin, and actin. 
Pairs I and 2 contain 150 mM ionic strength; pairs 3 and 4, 60 mM ionic strength. (B) Quantitation of the amount of adducin sedimenting 
with actin. The binding of adducin alone to actin (open symbols) was strongly ionic strength dependent. Adducin binding in the presence 
of spectrin (solid symbols) showed the same dependency. The stimulation of spectrin binding to actin by adducin paralleled these curves 
(data not shown). (C) In contrast to the strong ionic strength dependence, the binding of adducin to actin was insensitive to pH variations 
within the physiologic range. Symbols and experimental conditions were as described in A and B; the ionic strength of this experiment 
was 80 raM. 

spectrin-actin binding are shown in Fig. 8. As indicated 
above, calcium alone has no effect on the binding of  adducin 
to actin (Fig. 8 A, pairs I and 2). With the addition of  10 g M  
calmodulin, there is a marked inhibition of  binding (Fig. 8 
A, pairs 3 and 4). The addition of spectrin had no effect on 
this inhibition. 

The effect of calmodulin and calcium on the binding of ad- 
ducin to actin is presented quantitatively in Fig. 8 B. Half- 
maximal inhibition occurs near 4 ltM calmodulin, a value 

similar to the Kd determined for the binding of  calmodulin 
to adducin (Gardner and Bennett, 1986), and well within the 
physiologic range of the erythrocyte calmodulin concentra- 
tion. The ability of  adducin to stimulate spectrin-actin bind- 
ing is also down-regulated by calcium and calmodulin (Fig. 
8 B).  The inhibition of spectrin binding is more pronounced 
than that for the adducin alone, presumably due to the direct 
inhibitory action of calmodulin on spectrin-actin interac- 
tions (Anderson and Morrow, 1987). 

Figure 7. Protein 4.1 and adducin simultaneously augment spectrin-actin binding. (.4) The effects of increasing amounts of protein 4.1 
on the 100,000 g sedimentation of a solution of spectrin (0.17 gM), addncin (0.3 gM), and actin (5 lxM) are shown in pairs 1-5. Other 
conditions were as described in Fig. 1 A. The amount of protein 4.1 added to pairs 1-5 was: 0.0, 0.5, L0, 2.5, and 3.75 IxM, respectively 
(final concentration). In pairs 6 and 7, protein 4.1 (0.5 I~M) was preincubated for 30 min with spectrin and actin, after which adducin 
(0.6 and 1.8 gM, respectively) was added. Note the augmentation of spectrin binding by protein 4.1 without the loss of adducin from the 
complex. (B) Quantitation of the effects of protein 4.1 on the amount of adducin that sediments with actin. Open and solid symbols are 
for two independent experiments. Note that there is no significant effect of protein 4.1 on the amount of adducin sedimenting with actin. 
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Figure 8, Calmodulin down-regulates adducin binding to actin in a calcium-dependent manner. The effect of increasing amounts of calmodu- 
lin on the ability of adducin to bind actin was examined. In the absence of free calcium, calmodulin was without effect (data not shown). 
The conditions of this experiment were as described in Fig. 1 B. (A) Representative SDS-PAGE analysis of cosedimentation assays in the 
absence (pairs I and 2) or the presence (pairs 3 and 4) of 10 ttM calmodulin and 200 ttM calcium. Pairs I and 3 contained 0.5 I~M adducin 
and 5 ttM actin; pairs 2 and 4 also contained 0.25 ttM spectrin. (B) Quantitation of the effect of calmodulin on the binding of adducin 
to actin. Open symbols are from experiments with adducin and actin only. The solid symbols represent experiments with adducin, actin, 
and spectrin. The calmodulin concentration (final) is as indicated. Note that half-maximal inhibition is achieved near 4 ttM calmodulin. 

D i s c u s s i o n  

This report establishes that adducin, an erythrocyte calmo- 
dulin-binding protein: (a) is an actin-binding protein that 
bundles actin in vitro into discrete, ordered arrays of fila- 
ments; (b) stimulates spectrin-actin binding independently 
of protein 4.1; (c) forms a stoichiometric and reversible ter- 
nary complex with actin and spectrin; and, (d) forms com- 
plexes with actin and actin-spectrin that are down-regulated 
by calmodulin in a calcium-dependent manner. We also find 
that the final composition of the ternary complex of adducin, 
actin, and spectrin is independent of the sequence of assem- 
bly of the components; and that protein 4.1, while augment- 
ing the amount of spectrin bound to actin, does not inhibit 
the interaction of adducin with the actin-spectrin complexes. 
Adducin is thus similar to other calmodulin-binding mole- 
cules, such as caldcsmon, that form a class of qiip-flop" pro- 
teins that bind actin in a calcium-dependent manner (Sobue 
et al., 1983). 

The literature of actin-binding proteins (e.g., see reviews 
by Pollard and Cooper, 1986; Korn, 1982; Stossel et al., 
1985) describe several macromolecules that will bind actin 
filaments in vitro, but which do not appear to interact with 
actin in vivo. For the most part these proteins typically have 
basic isoelectric points, and are thought to bind electrostati- 
cally and nonspecifically to the acidic actin. Of greater sig- 
nificance are acidic or neutral proteins that bind actin. The 
isoelectric point of adducin is between 5.8 and 6.3 (p105 = 
5.8-6.1 and pl00 = 6.0-6.3) (data not shown), and it binds 
actin strongly (Ko = 283 nM) in a regulatable fashion. Ad- 
ducin thus appears to be a bonafide actin-binding protein. 

Adducin saturably binds actin at a molar ratio of one addu- 
cin to seven actin monomers. Negatively stained complexes 
examined by electron microscopy reveal that adducin bun- 
dies actin into ordered linear arrays with a minimal distance 
along the filament of 35 nm. This periodicity corresponds al- 
most precisely to the 36-nm repeat of the alpha helical turn 
of the actin filament (Huxley and Brown, 1967). Since each 
actin repeat contains 14 monomer units, it is likely that the 
divalency required for actin bundling is achieved by dimer- 
ization of the adducin heterodimer molecule. It is unknown 
whether the positive cooperativity observed for this binding 
arises from an allosteric transition within the protein, or is 
a consequence of enhanced ligand presentation once filament 
bundling begins. Additional experiments will be required to 
address these questions. 

It is also clear that while adducin can promote actin fila- 
ment bundling, this action is not required for its stimulation 
of spectrin-actin binding. Time-course experiments have 
shown that spectrin binding to adducin-actin complexes 
remains constant regardless of the degree of bundling (un- 
published observations). This would be unlikely if spectrin 
merely preferred bundled actin as a substrate. In addition, 
the amount of spectrin that is stimulated to bind to actin by 
adducin saturates at a unit stoichiometric ratio to adducin. 
Thus, it appears that adducin has two complementary ac- 
tions: the cross-linking of actin filaments, and the stimula- 
tion of spectrin-actin binding. 

Adducin stimulation of spectrin-actin binding is probably 
fundamentally different from the action of protein 4.1. Pro- 
tein 4.1 binds most strongly to spectrin and actin together, 
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although it will bind to spectrin alone but not to actin alone 
(Tyler et al., 1980; Ohanian et al., 1984; Cohen and Langley, 
1984). Conversely, adducin binds strongly to actin, and both 
adducin and protein 4.1 can simultaneously participate in 
complex formation. Therefore, it is clear that the two mole- 
cules act at different sites on spectrin and actin. We postulate 
that adducin creates a new or altered binding site on the actin 
filament, which has enhanced affinity for spectrin, while 
protein 4.1 may most directly regulate the affinity of the spec- 
trin heterodimer for actin. Additional experiments will be re- 
quired to test these hypotheses, and to exclude the alternative 
possibility that both protein 4.1 and adducin simply cross- 
link spectrin to actin. 

These results may have significant implications for our un- 
derstanding of the dynamics of the erythrocyte membrane 
skeleton. Previously, it has been assumed that protein 4.1 
must mediate all of the spectrin to actin binding in the eryth- 
rocyte, since the affinity of spectrin alone for actin at physio- 
logic ionic strength is low. This assumption should now be 
reexamined, as adducin provides an alternative mechanism 
by which the spectrin-actin linkage may be modulated. By 
inference, at least four levels of spectrin-actin stabilization 
may be envisioned: (a) maximally stabilized by both adducin 
and protein 4.1, (b) strongly stabilized by protein 4.1 alone, 
(c) moderately stabilized by adducin alone, and (d) unstabi- 
lized. In addition, the moderate binding affinity of adducin 
for actin under physiologic conditions and its ability to be 
regulated by calcium, calmodulin, and possibly covalent 
phosphorylation, suggests that this protein may play a pivotal 
role in the regulation of cytoskeletal interactions. Such puta- 
tive heterogeneity in the stability of the membrane skeleton 
may underlie the observation that the extractability of spec- 
trin can vary significantly between different preparations of 
erythrocyte membranes (Lux and Gratzer, 1985). 

The actin-bundling action of adducin also introduces the 
potential for additional activities that may be regulated in the 
erythroeyte membrane skeleton. The ability to bundle actin 
filaments in a calcium and calmodulin regulated way under 
physiologic conditions has not previously been recognized in 
any of the other erythrocyte cytoskeletal proteins, although 
an actin-bundling role has been ascribed to protein 4.9 (Sie- 
gel and Branton, 1985). Bundles of actin filaments are not 
generally thought to exist in the mature erythrocyte. How- 
ever, the exact state of actin in this cell remains somewhat 
controversial. Most studies have estimated that actin is found 
predominantly in the form of short filaments of,o26-41 nm, 
composed of ,010-17 actin monomers (Lin and Lin, 1979; 
Pinder and Gratzer, 1983; Byers and Branton, 1985; Shen et 
al., 1986). Based on these determinations, it has been esti- 
mated that there are 30,000 such short actin filaments per 
cell. The abundance of adducin has been estimated at 30,000 
copies per cell (Gardner and Bennett, 1986). Thus, on the 
average, each protomerie actin filament contains enough ad- 
ducin to promote filament cross-linking. Under certain con- 
ditions actin filaments larger than these protofilaments have 
been observed in erythrocytes (Shen et al., 1986; Atldnson 
et al., 1982; Weinstein et al., 1986; Schanus et al., 1985; Liu 
et al., 1987). Isolated oligomeric complexes from the mem- 
brane skeleton contain thicker actin filaments than those ex- 
tractexl with 150 mM KC1 (Shen et al., 1986), and the ability 
of these complexes to support further actin polymerization 
is eliminated at KC1 concentrations >50 mM (Fowler and 

Taylor, 1980). These salt conditions correspond to those that 
reduce the affinity of adducin for actin (Fig. 8), but not the 
ability of proteins 4.1 and 4.9 to interact with spectrin and 
actin (Cohen and Langley, 1984; Siegel and Branton, 1985). 
In addition, the most recent studies of stretched membrane 
skeletal preparations have also noted a heterogeneity in the 
size and shape of the actin-containing junctional complexes 
(Liu et al., 1987). Thus, while the evidence remains circum- 
stantial, the existence of tightly linked actin complexes in the 
native erythrocyte cytoskeleton cannot be excluded. 

Other roles for adducin are possible. It may simply en- 
hance the stability of the actin filaments within the spec- 
trin-actin complex. It may serve as a membrane anchor for 
actin, since adducin has been shown to bind phosphatidylse- 
rine. Interestingly, this binding appears to be under protein 
phosphorylation control (Wolfe and Sayhoun, 1986). Such 
an actin-membrane linking role may also serve to recruit 
filamentous actin or spectrin-actin complexes to the mem- 
brane during erythroid development. In this regard it is in- 
teresting that the reticulocytes of acetylphenylhydrazine- 
treated rats have larger membrane cytoskeletal complexes 
than mature erythrocytes (80-140 vs. 38-50 nm) (Liu et al., 
1987). The answers to these questions must await further in- 
vestigation. However, it is likely that whatever the actual role 
of adducin, it will be of general importance since analogues 
of adducin exist in other tissues (Palfrey and Waseem, 1985; 
Gardner and Bennett, 1986; Wolfe and Sayhoun, 1986; Mische, 
S. M., and J. S. Morrow, unpublished observations). 

It should also be noted that an abstract by Gardner and 
Bennett (1987) describing the calmodulin-dependent ability 
of adducin to stimulate spectrin-actin binding appeared co- 
incident with our own abstract describing this study (Mische 
et al., 1987). Their independent results are in basic agree- 
merit with the findings reported here with respect to the abil- 
ity of adducin to stimulate spectrin-actin binding. However, 
they find no direct interaction between actin and adducin, 
and suggest that the binding of adducin to spectrin-actin re- 
quires preformed spectrin-actin complexes. They also find 
a direct competition between protein 4.1 and adducin. We do 
not understand the reasons for these discrepancies, but note 
that they used porcine spectrin in their study. 
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