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Abstract. In the preceding paper (Yamashiro, D. J., 
and E R. Maxfield. 1987. J. Cell Biol. 105:2713-2721), 
we have shown that there is rapid acidification of en- 
dosomal compartments to pH 6.3 by 3 min in wild- 
type Chinese hamster ovary (CHO) cells. In contrast, 
early acidification of endosomes is markedly reduced 
in the CHO mutants, DTF 1-5-4 and DTF 1-5-1. Since 
these CHO mutants are pleiotropically defective in en- 
docytosis (Robbins, A. R., S. S. Peng, and J. L. Mar- 
shall. 1983. J. Cell Biol. 96:1064-1071; Robbins, A. R., 
C. Oliver, J. L. Bateman, S. S. Krag, C. J. Galloway, 
and I. Mellman. 1984. J. Cell Biol. 99" 1296-1308), 
our results are consistent with a requirement for prop- 
er acidification of early endocytic compartments in 
many pH-regulated endocytic processes. In this paper, 
by measuring the pH of morphologically distinct endo- 
somes using fluorescence microscopy and digital im- 
age analysis, we have determined in which of the en- 
docytic compartments the defective acidification 
occurs. We found that the acidification of both the 
para-Golgi recycling endosomes and lysosomes was 
normal in the CHO mutants DTG 1-5-4 and DTF 
1-5-1. The mean pH of large endosomes containing ei- 

ther fluorescein-labeled r or fluores- 
cein-isothiocyanate dextran was only slightly less 
acidic in the mutant cells than in wild-type cells. 
However, when we examined the pH of individual 
large (150-250 nm) endosomes, we found that there 
was an increased number of endosomes with a pH 
>6.5 in the CHO mutants when compared with wild- 
type cells. Heterogeneity in the acidification of large 
endosomes was also seen in DTF 1-5-1 by a combined 
null point pH method and digital image analysis tech- 
nique. In addition, both CHO mutants showed a 
marked decrease in the acidification of the earliest en- 
dosomal compartment, a diffusely fluorescent compart- 
ment comprised of small vesicles and tubules. We sug- 
gest that the defect in endosome acidification is most 
pronounced in the early, small vesicular, and tubular 
endosomes and that this defect partially carries over to 
the large endosomes that are involved in the sorting 
and processing of ligands. The proper step-wise acidi- 
fication of the different endosomes along the endocytic 
pathway may have an important role in the regulation 
of endocytic processes. 

I 
N the preceding paper (40) we examined the kinetics of 
endosome acidification in wild-type and mutant Chinese 
hamster ovary (CHO) cells. We found in wild-type cells 

that there was a rapid (3-5 min) acidification of endosomes 
to pH 6.2-6.3. With time, ct~-macroglobulin (a2M) ~ and 
fluorescein-isothiocyanate dextran (F-Dex), molecules that 
are routed to lysosomes, are found in progressively more 
acidic endocytic compartments (pH < 6.0), while transferrin 
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1. Abbreviations used in this paper: a2M, u2-macroglobulin; a2M-gold, 
a2-macroglobulin adsorbed to colloidal gold; A A / MA ,  ammonium ace- 
tate/methylamine; F-a2M, fluorescein-labeled ct2-macroglobulin; F-Dex, 
fluorescein isothioeyanate dextran; F-Tf, fluorescein-labeled transferrin; 
LDL, low density lipoprotein; man 6-P, mannose 6-phosphate; R-ct2M, 
rhodamine-labeled u2-macroglobulin; Tf, transferrin; WTB, wild-type 
CHO cells. 

(TO, a ligand that recycles, is found in a more neutral com- 
partment (pH 6.5). Endosomes of the CHO mutants DTG 
1-5-4 and DTF 1-5-1 (13, 27, 28) also show differences in pH, 
along with a marked decrease in early acidification (40). 
These and other studies on the kinetics of endosome 
acidification (12, 29, 32) show that endosomes within the 
same cell can vary in their pH. 

Differences in acidification may be important in determin- 
ing the function of an endocytic compartment, because endo- 
cytic processes vary in their acidification requirements. Low 
density lipoprotein (LDL) and ct2M need only mildly acidic 
conditions (pH 6.5-6.7) to dissociate from their receptors (1, 
17), whereas lysosomal enzyme dissociation (8), iron release 
(3, 15, 26), and penetration of diphtheria toxin (5, 31) all re- 
quire a pH of <6.0. Therefore, measuring the pH of a specific 
type of endosome may help elucidate the role that endocytic 
compartment has in a particular physiologic process. 

From kinetic studies (12, 29, 32, 40) it is not clear whether 
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progressive acidification results from pH changes within an 
organelle or from passage among organelles that are regu- 
lated to different pH values. Several different types of endo- 
somes have been described in CHO cells (34, 39, 41). These 
include: (a) early, small vesicular and tubular endosomes of- 
ten located near the cell surface, (b) large endosomes with 
diameters of 150-250 nm, and (c) recycling endosomes com- 
prised of small vesicles and tubules located near the Golgi 
complex. The kinetics of passage through these compart- 
ments is not highly synchronous. As early as 5 min some Tf 
is found in the recycling endosomes and some F-Dex is found 
in large endosomes. Approximately half of the r is 
in large endosomes at that time (41). Upon further incubation 
more F-Dex and u2M is in large endosomes, and Tf moves 
into recycling endosomes. The half-time for exocytosis of Tf 
is ,~,10 min (19, 41). Delivery of r to lysosomes occurs 
over a period of 30-60 min (41). 2 That passage between 
these compartments is asynchronous means that measuring 
pH only as a function of time will provide an incomplete pie- 
ture since time-dependent changes in pH may occur from ei- 
ther changes in a single organdie or as a result of passage 
between organelles. 

To measure the pH of specific endocytic compartments we 
have used fluorescence microscopy and digital image analy- 
sis (18, 35, 37). We have previously shown in wild-type 
CHO cells that the recycling endosomes have a pH of 6.4, 
while the large endosomes have a pH of 5.2 (41). We have 
now used digital image analysis to measure the pH of mor- 
phologicaUy distinct endosomes in both wild-type and mu- 
tant CHO cells. A null point pH method (40) has also en- 
abled us to extend the use of digital image analysis to 
examine the pH of early endosomes. We found that the pH 
of the diffusely distributed early endosomes was higher in 
the mutants than in wild-type cells. The pH of some large 
vesicular endosomes was also elevated, but the pH of many 
of these large endosomes was in the normal range (pH 
5.0-6.0). The pH of the para-Golgi recycling endosomes 
and lysosomes was essentially the same in the mutant and 
wild-type cells. Our results suggest that the proper function- 
ing of pH regulatory components in early endosomes is re- 
quired for normal sorting and processing of ligands and 
receptors. 

Materials and Methods 

Cells 
Wild-type CHO cells (WTB) and the mutants DTF 1-5-t and DTG 1-5-4 
were grown as described (40). 

Ligands 
Fluorescein-labeled r (F-ct2M), fluorescein isothiocyanate dextran 
(F-Dex), and fluorescein-labeled Tf (F-T0 were prepared as described 
(40). ct2M was adsorbed to colloidal gold (~hM-gold) as described (36). 

Fluorescence Microscopy and Digital Image Analysis 
Fluorescence experiments were conducted on a Leitz Diavert fluorescence 
microscope system (E. Leitz, Inc., Rockleigh, NJ), which has been previ- 
ously described in detail (18). The microscope is equipped with interchange- 
able 450- and 490-rim band pass filters, an image intensification video sys- 
tem, and a Leitz MPV microscope spectrofluorometer. To measure the pH 
of endocytic compartments cells were incubated with a fluorescein-tabeled 

2. Yamashiro, D. L, and E R. Maxfield. Manuscript in preparation. 

ligand, rinsed free of unbound ligand, and then reincubated for the times 
indicated. Cells were then rinsed with medium 1 (NaCI 150 mM, KCI 
5 mM, CaCI2 1 raM, glucose 10 mM, and Hepes 20 mM, pH 7.4), and ob- 
served by fluorescence microscopy. Video images of fluorescence at 450- 
and 490-nm excitation were obtained using either a model 65 MKII SIT 
camera (Dage-MTI, Inc., Wabash, MI) or a Zeiss-Venus TV3M camera 
(Carl Zeiss, Inc., Thornwood, NY) and recorded on a Panasonic NV 8030 
videotape recorder. Video output from the recorder was passed through a 
model CCDHPS time base corrector (Fortel Inc., Norcross, GA), and im- 
ages were digitized on a model 1P8500 image processor (Gould, Inc., San 
Jose, CA), with a MicroVAX II (Digital Equipment Corp., Marlboro, MA) 
as host computer. Digitized images were further processed as described (10, 
18, 37, 41). Briefly, 490- and 450-nm images were divided into 64 pixel • 
64 pixel regions (13.4 gm • 13.4 gm), and the background fluorescence 
(defined as the median [50th percentile] intensity of the region) was sub- 
tracted from each pixel. To identify structures corresponding to the indi- 
cated endocytic compartment, a threshold value was chosen from the 
490-nm background corrected image (10). The pixels above this intensity 
were used for the intensity measurements. The intensity of the correspond- 
ing pixels of the 450-nm background corrected image were then used to cal- 
culate the 14~o1149o ratio, pH values were assigned by comparison of the 
14~149o to a pH calibration curve as described previously (18, 37, 39). With 
our microscope system, as configured for these experiments, the I4~1~ 
ratio is ,~1.3 at pH 5, and falls to 0.4 at pH 7. This procedure has been exten- 
sively tested (18, 37, 4t) and provides a method for measuring vesicle pH 
against a diffuse background. In-cell calibration curves were made using the 
same incubations as for the experiments, and pH values agree with the solu- 
tion calibration curves to +0.2 pH units over the range 5.0--6.8. Although 
the definition of vesicles is somewhat arbitrary (due to threshold), pH is not 
affected by this since exactly the same pixels are used in the 490- and 
450-nm images (18, 37). In all cases, the intensity response of the video sys- 
tem was monitored, and appropriate corrections for nonlinearity were made 
when necessary. 

The acidification of punctate and diffuse endocytic compartments was ex- 
amined by a null point method similar to that described for whole cell mea- 
surements (40) except that video images were recorded instead of photomet- 
ric measurements of fluorescence intensity. To quantify the changes in 
fluorescence intensity that occurred after the addition of ammonium ace- 
tate/methylamine (AA/MA), images were digitized and the fluorescence in- 
tensities of corresponding areas were determined. For the diffuse endocytic 
compartment 10 x 10 pixel (2.1 x 2.1 Inn) areas were measured, and for 
the ptmctate endocytic compartment 4 • 4 pixel (0.84 x 0.84 gm) areas. 
The percent change in intensity for each area was then calculated. 

Electron Microscopy and Acid Phosphatase 
Cytochemistry 
Cells were incubated with a2M-gold as specified in the text. Cells were 
then fixed in 1% glutaraldehyde, 2% paraformaldehyde in 0.1 M sodium 
cacodylate, pH 7.4 for 30 rain at 23~ Cells were rinsed in 0.1 M sodium 
cacodylate containing 7% sucrose, pH 7.4, and stored overnight in the same 
buffer. To stain for acid phosphatase, cells were rinsed in 50 mM sodium 
acetate, 7 % sucrose, pH 5.0 (acetate buffer), and then incubated with 10 mM 
[3-glycerolphosphate and 1 mg/ml lead nitrate in acetate buffer for 1 h at 
34~ Cells were rinsed with acetate buffer and postfixed in 1% OsO, re- 
duced with 1% potassium ferrocyanide in 0.1 M sodium cacodylate pH 7.4 
for 1 h at 4~ Samples were rinsed with water, dehydrated by passage 
through graded ethanols, and embedded in the culture dish with EPON resin 
(SPI Supplies, West Chester, PA). Thin sections were cut using a Sorvall 
MTS000 microtome (DuPont Instruments, Newtown, Clr), counterstained 
with uranyl acetate, and observed with either a Jeol 100S or a Phillips 301 
electron microscope operated at 80 kV. 

To measure total cell acid phosphatase, cells grown in 75-cm 2 flasks 
were removed by trypsinization and then pelleted in McCoy's 5A medium 
containing 5 % FBS. Cells were then rinsed, pelleted, and resuspended in 
hypoosmotic buffer (Hepes 10 mM, pH 7.4). Cells were broken open by 
freezing and thawing, and then sonicated in hypoosmotic buffer containing 
0.2% Triton X-100. Acid phosphatase activity was measured as described, 
using 4-nitrophenyl phosphate as substrate (21). 

Results 
To measure the pH of morphologically distinct endocytic 
compartments we used the pH-dependent properties of 
fluorescein and image-intensified fluorescence microscopy 
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Figure L Acidification of large 
endosomes containing F-0tzM. 
Cells were incubated with F-ct:M 
(150 ~tg/ml) for 15 min at 34~ 
and then rinsed with medium 1. 
WTB (a), DTG 1-5-4 (c), and 
DTF 1-5-1 (e) cells were observed 
at 490-nm excitation. The iono- 
phore monensin (10 IxM) was 
added to dissipate the pH gra- 
dient, and WTB (b), DTG 1-5-4 
(d), and DTF 1-5-1 ( f )  cells were 
observed 2 min later. Images 
were obtained witk a Zeiss-Venus 
TV3M image intensifier camera, 
videotaped, and digitized on the 
Gould IP8500. The images were 
redisplayed on a high resolution 
monitor and photographed. Bar, 
8 ~tm. 

combined with digital image analysis (18, 35, 37). Fluores- 
cein excitation at 490 nm is highly pH dependent, with 
fluorescence intensity increasing as pH increases from 5 to 
7. Since fluorescein fluorescence at 450-nm excitation rises 
less sharply between pH 5 and 7, a pH calibration curve can 
be constructed from the ratio of  fluorescence intensities at 
the two excitation wavelengths (145o/149o). With digital image 
analysis we can subtract the fluorescence contributed by cel- 
lular autofluorescence and cell surface fluorescein from our 
measurements. Individual bright spots corresponding to sin- 

gle large endosomes or a collection of small vesicles and tu- 
bules (e.g., the para-Golgi recycling endosomes [41]), can 
be identified by light microscopy, and the pH is calculated 
from the 145o/149o. 

pH of  Endosomes Containing F-a2M 

We first examined the pH of large endosomes containing 
F-a2M. Cells were incubated with F-a2M for 15 min, 
rinsed free of ligand, reincubated for 2 min, and then ob- 
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Table I. pH of Endosomes by Digital Image Analysis 

pH 

Ligand Condition WTB DTG 1-5-4 DTF 1-5-1 

F-ct2M 15 min/2 min 5.2 + 0.1 (n = 179)* 5.7 + 0.1 (n = 121) 
+ Methylamine >7.0 (n = 198) nd 

F-Dex 5 min/5 min 5.8 + 0.1 (n = 116) 6.0 + 0.1 (n = 106) 
15 min/30-45 min 5.2 + 0.1 (n = 164) 5.2 + 0.1 (n = 160) 

F-Tf 18 min/2 min 6.4 + 0.1 (n = 69)* 6.3 + 0.1 (n = 40) 

5.6 + 0.1 (n = 171) 
>7.0 (n = 124) 

6.0 + 0.1 (n = 103) 
5.3 + 0.1 (n = 139) 

6.4 + 0.1 (n = 51) 

Cells were incubated with F-Q2M (150 I~g/ml), F-Dex (5 mg/ml), or F-Tf (100 ltg/ml) in McCoy's 5A medium containing Helms (20 mM) and either BSA or 
ovalbumin (1 mg/ml) at 34~ for the times indicated and then rinsed with medium and reincubated. The cells were placed in medium 1 and the pH of the fluorescein 
containing structures determined by digital image analysis as described in the Materials and Methods section. For a2M and F-Dex these structures are primarily 
large endosomes. For F-Tf the structures are para-Golgi recycling endosomes. The pH values are the mean -I- standard error of the mean of 3-12 fields of cells. 
For F-a2M, methylamine (40 mM) was added at the end of the experiments and the pH measured, rid, not determined. 
* Values in parentheses indicate the number of vesicles or discrete structures from which the pH was determined. 
* The data on pH of F-Tf in WTB cells have been published previously in Yamashiro et al. (41). 

served by fluorescence microscopy, e - t t 2 i  w a s  found in a 
punctate pattern in both wild-type and mutant cells (Fig. 1). 
As described below, the majority of these structures were 
large nonlysosomal endosomes. To ascertain whether these 
large endosomes were acidic, we observed the fluorescence 
intensity at 490-rim excitation (Fig. 1, a,  c, and e). After the 
addition of monensin, there was a marked increase in the flu- 
orescence intensity of  the large endosomes in both the wild- 
type and mutant cells (Fig. 1, b, d, and f ) ,  indicating that 
these endosomes were acidic in all three cell types. 

To quantify the pH of these large endosomes, we used digi- 
tal image analysis and fluorescence images obtained at 490- 
and 450-nm excitation. The 145o/149o of the vesicles was cal- 
culated, and a mean pH value was determined from a pH 
calibration curve. We found that the large endosomes acidi- 
fied to average pH values below 6.0 in both DTG 1-5-4 (pH 
5.7) and DTF 1-5-1 (pH 5.6, Table I). The large endosomes 
in wild-type cells were slightly more acidic, with an average 
pH 5.2. Addition of the weak base methylamine (17, 25) col- 
lapsed the endosomal pH gradient (pH > 7.0, Table I). 

lntraceUular Localization of a2M 

To interpret the fluorescence measurements it was necessary 
to characterize the a2M-containing structures by electron 
microscopy and cytochemistry. To determine the prelyso- 
somal character of  the endosomes we used acid phosphatase 
cytochemistry. Acid phosphatase in contrast to other acid 
hydrolases is not deficient in I-cell fibroblasts, suggesting 
that this enzyme is not routed to lysosomes via the mannose- 
6-phosphate (man-6-P) receptor (14). Use of a lysosomal en- 
zyme that is not carried by the man-6-P receptor was neces- 
sary since those enzymes are decreased in the CHO mutants 
(27, 28). We confirmed that acid phosphatase is not depleted 
in the mutant cells by measuring the total cell enzyme levels. 
Using 4-nitrophenyl phosphate as substrate, we found that 
acid phosphatase levels were actually elevated in the mutants 

1-5-4 (141% of WTB, normalized per cell) and DTF 1-5-1 
(174% of WTB),  indicating that this enzyme is a valid marker 
for lysosomes in the CHO mutants. 

For electron microscopy, we incubated cells with 0 t 2 i -  

gold and stained the cells for acid phosphatase using 13-glyc- 
erolphosphate as substrate. We optimized the acid phospha- 
tase staining, so that lysosomes were heavily labeled but 

there was little nonspecific staining in the cytoplasm and nu- 
cleus. After 15 min of endocytosis, the majority of a2M-gold 
in the wild-type and mutant cells was in large, acid phospha- 
tase negative endosomes (Table II). About 15-21% of the 
a2M-gold was in small vesicular and tubular endosomes 
(diameter <120 nm), often located near the cell surface (Fig. 
2 a). Less than 10% of the a2M-gold was in lysosomes 
(Fig. 2 b) at this time (Table II). Large endosomes and lyso- 
somes would both appear as bright dots by fluorescence 
microscopy. The electron microscopic cytochemistry dem- 
onstrates that only ~10% of the large vesicles contain de- 
tectable acid phosphatase at the time of our pH measure- 
merits with F-a2M. An endosomal localization was also 
supported by studies on the degradation of uSI-a2M. We 
have previously shown that <10% of a2M is degraded in 
WTB cells after a 10-min incubation and 10-rain chase (41). 

With a 10-min pulse and a 35-min chase, 26% of the 
a2M-gold in DTF 1-5-1 and 17% in ~ 1-5-4 was in lyso- 
somes (Table II). These data and biochemical analysis of  the 
internalization and degradation of a2M (footnote 2) demon- 
strate that the endocytosis pathway of Ix2 i  is not severely 
altered in the mutant cells. 

Table IL Intracellular Distribution of azM-Gold 

Cells Condition 

% Distribution of a2M-Gold* 

Large 
SV/T endosome Lysosome Particles 

WTB 10 min/5 min 19 73 8 n = 799 
10 min/35 min 8 65 27 n = 590 

DTG 1-5-4 10 min/5 min 21 74 5 n = 732 
10 min/35 min 11 72 17 n = 816 

DTF 1-5-1 10 min/5 min 15 77 8 n = 661 
10 min/35 min 3 71 26 n = 431 

Ceils were incubated with a2M-gold (10 Ixg/ml equivalent a2M) in McCoy's 
5A medium containing Hepos (20 raM) and BSA (i mg/ml) for 10 min at 34~ 
Cells were then rinsed with medium and reincubated for either 5 or 35 min. 
Cells were fixed and processed for acid phosphatase cytoehemistry and elec- 
tron microscopy as described in the Materials and Methods section. 
*r containing structures were categorized as SV/T (small vesicle/ 
tubular endosome, diameter <0.12 Ixm), large endosome (diameter >0.12 lam), 
or lysosome (acid phosphatase positive). Particles were counted either from 
electron micrographs or directly from the viewing screen. 
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bigure 2. Ultrastructural localization of tt2M-gold. DTG 1-5-4 and 
DTF 1-5-1 cells were incubated with ct2M-gold (10 I.tg/ml equiva- 
lent ~t2M) in McCoy's 5A medium containing Hepes (20 raM) and 
BSA (1 mg/ml) for 10 min at 34~ Cells were then rinsed with 
medium and reincubated for 5 rain. Cells were fixed and processed 
for acid phosphatase cytochemistry and electron microscopy as de- 
scribed in the Materials and Methods section. In DTG 1-5-4 (a) the 
arrowheads indicate tt2M-gold in a small vesicle/tubular endo- 
some, and a small arrow indicates ~2M-gold in a large endosome. 
In DTF 1-5-1 (b) arrows indicate the location of tl2M-gold in a 
large endosome (small arrow) and in an acid phosphatase positive 
lysosome (/arge arrow). The colloidal gold particles can be seen 
easily over the background of the acid phosphatase reaction prod- 
uct. Bar, 0.2 gin. 

Endocytosis of Tf 
In wild-type cells Tf rapidly segregates from ct2M and 
enters recycling endosomes of pH 6.4 located near the Golgi 
complex (41). This segregation becomes observable within 
5 min. Essentially identical sorting of F-Tf from R-ct2M was 

observed in the mutant and wild-type cell lines when exam- 
ined by fluorescence microscopy (data not shown). We mea- 
sured the pH of the F-Tfpara-Golgi recycling endosomes by 
digital image analysis. The pH of these endosomes in DTG 
1-5-4 and DTF 1-5-1 (pH 6.3-6.4) was similar to that of wild- 
type cells (Table I), indicating that acidification of the recy- 
cling endosomes was not affected in the mutants. 

pH of Endosomes and Lysosomes Containing F-Dex 
We also measured the pH of large endosomes and lysosomes 
containing the fluid phase marker F-Dex (Table I). Cells 
were incubated with F-Dex for 5 min, rinsed, and rein- 
cubated for 5 min. The mean pH of endosomes identified by 
our image processing method at this time was pH 5.8 in 
WTB, pH 6.0 in DTG 1-5-4, and pH 6.0 in DTF 1-5-1. This 
population of vesicles is endosomal, since after 10 min of en- 
docytosis, the vast majority of F-Dex was in a light density 
endosomal fraction after Percoll density centrifugation (28). 
The pH of lysosomes was also determined by incubating cells 
with F-Dex for 10 min, and then reincubated for 30--45 min. 
We found that lysosomes in the mutants and WTB had simi- 
lar mean pH values of 5.2-5.3. 

Although the mean pH of endosomes containing F-Dex is 
nearly the same in the mutant and wild-type cells, the distri- 
bution of pH values of individual large endosomes is more 
heterogeneous in the mutant cells. Fig. 3 (left) shows the pH 
histograms of large endosomes labeled with F-Dex for 5 min, 
and reincubated for 5 min (these endosomes were used to 
compute the average pH in Table I). For comparison, the 
standard deviation of pH of individual endosomes in fixed 
cells equilibrated to pH 6.0 is 0.3 pH units. The distribution 
of endosomal pH was essentially unimodal in WTB, with a 
population of endosomes having a pH centered near 5.6. 
There were, however, a significant number of endosomes in 
wild-type cells with pH values above 6.5. In DTF 1-5-1, the 
distribution of endosomal pH was clearly bimodal, with one 
group having a pH near 5.6 and the second group having a 
pH near 7.0. In DTG 1-5-4, the pH of endosomes had a heter- 
ogeneous distribution. 

Distribution of lysosomal pH was similar in wild-type and 
mutant cells, having a unimodal distribution centered around 
a pH value of ~5.2 (Fig. 3, right). These results indicate that 
there is a defect in the acidification of a population of large 
endosomes in the mutant DTF 1-5-1 and to a lesser extent in 
DTG 1-5-4. The mutants, however, still have a large popula- 
tion of large endosomes that acidify to values below pH 6. 

Acidification of Diffuse and Punctate 
Endocytic Compartments 
In our studies of the kinetics of acidification based on pho- 
tometry measurements of whole cells, we found that acidi- 
fication of endosomes containing F-Dex after a 5-min in- 
cubation and 5-min chase was significantly altered in the 
mutant cell lines (40). As shown here, the mean pH of the 
large endosomes at that time is only slightly more alkaline 
in the mutants. This suggested that the altered pH might be 
more pronounced in endosomes such as the early small vesi- 
cle and tubules, which would not appear as discrete vesicles 
by fluorescence microscopy. To test this directly, we com- 
bined the null point method described in the preceding paper 
(40) with digital image analysis to separately measure the pH 
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Figure 3. pH histogram of large endosomes and lysosomes containing F-Dex. The endosomes and lysosomes used to compute the mean 
pH shown in Table I were analyzed individually. The I45o/149o of individual vesicles was calculated and the pH determined by comparison 
to an in cell calibration curve as described in Materials and Methods. Endosomes were grouped into pH bins of 0.25 pH units. The upper 
and lower bins contain endosomes with I45o/149o corresponding to pH >7.0 and pH <5.0, respectively. (See Table I, F-Dex data, for number 
of vesicles.) To estimate the error of an individual pH measurement, cells were fixed, and placed in a buffer of known pH. The standard 
deviation of the [450/[49o values in these fixed cells corresponds to a pH range of :t:0.3 pH units. 

in endosomes giving diffuse fluorescence (i.e., early endo- 
somes) and endosomes giving punctate fluorescence (i.e., 
large endosomes). The null point method determines average 
pH by lowering the pH of the extracellular medium using a 
nonpermeant buffer and then equilibrating the pH of the in- 
tracellular compartments with the external (test) pH by using 
a weak base/weak acid mixture such as AA/MA. If the pH 
of the intracellular compartment is below the test pH, then 
the fluorescence intensity at 490-nm excitation will increase 
upon addition of AA/MA. 

Cells were incubated with F-Dex for 5 min, rinsed free of 
ligand, and then reincubated for 1 min. The cells were then 

cooled, the external pH lowered to pH 6.4, and the cells ob- 
served by fluorescence microscopy (Fig. 4, a, c, and e). Af- 
ter the addition of AA/MA at pH 6.4, there was an increase 
in the fluorescence intensity of many large endosomes in all 
three cell lines (Fig. 4, b, d, and f ) ,  demonstrating that these 
endosomes had a pH <6.4. When we determined the change 
in the fluorescence intensity of the entire field, so that all the 
intracellular compartments were included, we found for 
WTB that the fluorescence increased (+4.1%), indicating 
that the average pH was <6.4. For both DTG 1-5-4 and DTF 
1-5-1, we found that the fluorescence intensity decreased 
(-7.3 % and -3 .4%,  respectively) after the addition of AA/ 
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Figure 4. Acidification of punc- 
tate and diffuse structures using 
the null point method. Cells were 
incubated with F-Dex for 5 rain, 
rinsed, and reincubated for 1 
min. The external pH was low- 
ered to pH 6.4 as described in 
Materials and Methods. The 
fluorescence intensity at 490-nm 
excitation was observed for WTB 
(a), DIG 1-5-4 (c), and DTF 1-5-1 
(e). AA/MA was then added to 
equilibrate the pH of the intracel- 
lular compartment with the exter- 
nal pH and the fluorescence in- 
tensity of WTB (b), DTG 1-5-4 
(d), and DTF 1-5-1 (f)  was ob- 
served after 90 s. Arrows indicate 
vesicles that increased in inten- 
sity after addition of AA/MA, 
demonstrating that the pH of the 
vesicles was <pH 6.4. Bar, 4 lam. 

MA, indicating that the average pH was >6.4. These results 
agree with our previous results from whole cell photometry 
measurements, where we found that the average pH of the 
endocytic compartments at this time was pH 6.2 for WTB 
and pH 6.7 for both DTG 1-5-4 and DTF 1-5-1 (40). 

To quantify the changes in the fluorescence intensity of the 
punctate endocytic compartments and the diffuse endocytic 
compartments, we determined the average fluorescence in- 
tensity of 2 Ixm • 2 tim areas for diffusely fluorescent 
regions lacking any detectable punctate fluorescence and 0.8 

~tm • 0.8 ~tm areas centered on bright dots of bright dots 
of fluorescence. We then determined the change in the flu- 
orescence intensity for both the diffuse and punctate areas af- 
ter the addition of AA/MA. These results are shown as a 
histogram (Fig. 5). The addition of AA/MA caused an in- 
crease in the fluorescence intensity in the majority of punc- 
tate structures for WTB (74% of vesicles) and ~ 1-5-4 
(64%). In DTF 1-5-1, many of the dots decreased in fluores- 
cence intensity (55 %), indicating that approximately half of 
these large endosomes had a pH >6.4. These results support 
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Figure 5. Histogram of punctate and diffuse endocytic compartments. The change in fluorescence intensity of diffuse and punctate areas 
was determined as described in Materials and Methods. Cells were incubated with F-Dex for 5 min, rinsed, and reincubated for 1 min. 
The test pH was pH 6.4. Those areas whose pH was below pH 6.4 have a positive Aintensity, while those areas whose pH was above 
pH 6.4 have a negative Aintensity. A total of 100 punctate areas and 45 diffuse areas were measured from two separate experiments. 

our finding from the pH histogram of individual endosomes 
(Fig. 3), that DTF 1-5-1 has a defect in the acidification of 
some of its large endosomes. 

There was a marked difference in the acidification of the 
diffusely fluorescent endocytic compartment. For WTB, the 
majority of the diffuse areas increased in fluorescence in- 
tensity (73 %), indicating that the pH of the diffuse compart- 
ment is also below pH 6.4. However, for both DTG 1-5-4 and 
DTF 1-5-1, the majority of the diffuse areas decreased in 
fluorescence intensity (76 % and 91%, respectively), indicat- 
ing that the pH of the diffuse compartment is >pH 6.4. These 
results demonstrate that a major component of the reduced 
acidification seen in the mutants is due to altered acidifica- 
tion of early endosomes. The alteration in these early small 

vesicle and tubule endosomes is much more pronounced 
than in the large endosomes. Even at early times (e.g., 5-min 
incubation, l-rain chase) many of the endosomes in both mu- 
tant cell lines have a pH <6.4 (Fig. 5). 

Discuss ion 

After endocytosis via coated pits, molecules pass through a 
series of endocytic compartments and are either recycled to 
the cell surface or delivered to lysosomes for degradation. 
In CHO ceils several distinct organelles can be identified by 
light and electron microscopy. At early times ~t2M-gold and 
Tf-ferritin are found in small vesicles and tubules near the 
surface (41). These are shown schematically as =early endo- 
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Figure 6. Models of the endocytic pathways in wild-type and mutant CHO cells. These are working models of the endocytic pathways found 
in wild-type cells (A) and in the CHO mutants DTG 1-5-4 and DTF 1-5-1 (B). Enzymes bearing man 6-P (M) bound to the man 6-P 
receptor (MR), diphtheria toxin (D), diferric (f)  transferrin (T) bound to the transferrin receptor (TR), and a2M (a) to the ct2M receptor 
(aR) are internalized through coated pits into small vesicular and tubular "early endosomesY The pH of the early endosomes is pH 6.2-6.3 
in the wild-type cells and pH 6.7-6.8 in the CHO mutants. Early endosomes are sufficiently acidic to dissociate ct2M from its receptor. The 
ligands and their receptors move to a large vesicle, with tubular extensions, termed %orting endosomes" The sorting endosome has a pH 
below 6.2 in wild-type cells and a pH >6.2 in the mutants. The sorting endosome in the wild-type cells, but not the mutants, is the site 
where man 6-P ligands dissociate from their receptors, iron is released from transferrin, and diphtheria toxin penetrates into the cytosol. 
Apotransferrin bound to its receptor, and the receptors for both ct2M and man 6-P ligands recycle back to the cell surface via "recycling 
endosomes" found near the Golgi complex. The dissociated man 6-P ligand and ~t2M move to late, prelysosomal endosomes, and finally 
to lysosomes. In the CHO mutants, man 6-P bound to its receptor, diferric transferrin, and ct2M receptors recycle back to the cell surface. 
Only r moves to late, prelysosomal endosomes and is then degraded in lysosomes. 

somes" in Fig. 6. These vesicles are not observable as dis- 
crete structures in our fluorescence experiments; they appear 
as diffusely distributed fluorescence. Within a few minutes 
some Tf-ferritin and most of the ct2M-gold appears in "large 
endosomes" with diameters of 150-250 nm (41). These large 
endosomes are visible as discrete bright dots in our fluores- 
cence microscopy experiments. In the schematic diagram in 
Fig. 6, two types of large endosomes are shown. The "sorting 
endosomes" contain recycling membrane components that 
are absent from the"late, prelysosomal endosomes: The late 
prelysosomal endosomes are observable by fluorescence mi- 
croscopy as structures containing R-(x~M after segregation 
from F-Tf (41). 

With further time of incubation, most of the ct2M-gold is 
delivered to lysosomes, and Tf-ferritin accumulates in small 
vesicles and tubules (recycling endosomes) near the Golgi 
complex before release to the cell surface (41). By fluores- 
cence microscopy the lysosomes are not distinguishable 
from large endosomes. The recycling endosomes in CHO 
cells are observed by fluorescence microscopy as a cloud of 
fluorescence near the nucleus, which is not resolvable into 
the individual vesicles. The juxtanuclear concentration dis- 
tinguishes the recycling endosomes from the early endo- 
somes. This has allowed us to separately measure the pH of 

recycling endosomes in CHO cells by digital image analysis 
(41; Table I). 

The names we have assigned to the various endosomes are 
based on our current understanding of the different endocytic 
pathways in CHO cells. The endosomes that we describe are 
similar, if not identical, to those previously identified in 
other cell types (2, 9, 24, 33). Early endosomes have also 
been termed "peripheral endosomes" due to their frequent lo- 
calization near the cell surface. Large endosomes is a broad 
category and includes endosomes termed "endocytic vesi- 
cles" "receptosomes," "late endosomes; "internal endo- 
somes; and "multivesicular endosomes." The sorting endo- 
some is essentially the CURL (compartment of uncoupling 
receptor and ligand) described by Geuze et al. (6) in hepa- 
toma cells. Like CURL, the tubular extensions of the sorting 
endosome (Fig. 6) could concentrate the recycling receptors 
in a low volume/high surface area compartment and thus ex- 
clude luminal ligand (6, 7). The late, prelysosomal endo- 
somes is the last organelle before lysosomes, and lacks recy- 
cling elements and would correspond to receptor-negative 
endosomes (22). 

Based on the pH measurements reported in this paper and 
our previous papers (40, 41) pH values have been assigned 
to these organelles as shown in Fig. 6. At very early times 
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(i.e., 3-5 min) the average pH of F-Dex or F-Tf containing 
compartments is 6.2-6.3 (40), and the pH of diffusely 
fluorescent endosomes containing F-Dex is <6.4 (Fig. 5). 
Thus, we assign a pH of 6.2-6.3 to the early endosomes. The 
pH of large endosomes containing F-tt2M or F-Dex at late 
times is in the range from 5.2-5.8 under various conditions 
(Table I), and we have assigned this pH to the late, 
prelysosomal endosomes. There are no separate pH mea- 
surements on well defined sorting endosomes. From the in- 
crease in vesicle brightness when equilibrated to pH 6.4 (Fig. 
4, a and b, and 5) it is clear that most large endosomes are 
well below pH 6.4 as early as 5 min. Furthermore, a pH of 
6.2 or below would be required for such functions as remov- 
ing iron from "IT (3, 15, 26) and dissociating lysosomal en- 
zymes from man-6-P receptors (8). Based on this, we have 
assigned a pH of<6.2 to the sorting endosome. Further work 
will be required to specifically measure the pH of this com- 
partment. The pH of recycling endosomes is based on a 
previous study using F-Tf (41), and the lysosomal pH is deter- 
mined from long incubation with F-Dex (Table I). 

The most clear cut change in endosomal pH in the mutant 
cell lines is in the early endosomes. Based on whole cell 
measurements (40) and measurements of diffusely fluores- 
cent structures at early times (Fig. 5), we conclude that the 
pH of early endosomes in both mutants is ,o6.7-6.8. In con- 
trast, the acidification of recycling endosomes and lysosomes 
is normal in the mutants. The pH of large endosomes in the 
mutants is more complex. On the average, the pH of the large 
endosomes is slightly less acidic in the mutants than in the 
wild-type cells (Table I). More striking is the heterogeneity 
in the pH of these endosomes in the mutants (Fig. 3). We 
speculate that the higher pH large endosomes are the sorting 
endosomes; this would be consistent with the inefficiency of 
the cells in releasing iron from "IT (13, 40) and in delivering 
endocytosed lysosomal enzymes to lysosomes (27, 28). 
Based on this we assign a pH >6.2 to the sorting endosomes 
and a pH of 5.2-6.0 to the late prelysosomal endosomes in 
the mutants. 

Based on the pH values for the various endosomes we can 
suggest specific roles for each compartment in endocytic 
processes. In wild-type cells, the pH of 6.2 found in the early 
endosomes could allow the dissociation of both ct2M and 
LDL to occur while inside that organelle. Subsequent fusion 
of an early endosome with a sorting endosome would trans- 
fer luminal contents and membrane components to an or- 
ganelle that could segregate the recycling receptors from the 
ligands destined for lysosomes. Studies in hepatocytes have 
shown that dissociation of asialoglycoproteins from its 
receptor is a discrete event that precedes segregation (38). 
Ligands that require a more acidic pH to dissociate from 
their receptor (e.g., lysosomal enzymes) might uncouple in 
later, more acidic compartments. Thus, whether a compart- 
ment functions in the uncoupling of a ligand from a receptor 
would depend on the pH sensitivity of the particular ligand. 

The altered endosomal pH pattern in the mutants is con- 
sistent with many of their properties. A pH >6.2 in early 
endosomes and sorting endosomes is in agreement with the 
failure to release iron from Tf and inability to release endo- 
cytosed lysosomal enzymes since both processes require a 
pH <6.0. On the other hand, the pH in the sorting endo- 
somes, and possibly the early endosomes as well, is suffi- 

ciently low to release ~t~M and LDL from their receptors (1, 
17). This allows these ligands to be delivered normally to 
lysosomes in DTG 1-5-4 and DTF 1-5-1 (27; Table 11). 2 Sim- 
ilar results have been found with temperature-sensitive, en- 
docytosis CHO mutants from the same complementation 
groups (30). 

The decreased sensitivity of the mutant cells to diphtheria 
toxin may be partially attributed to the defect in acidifica- 
tion of either early or sorting endosomes, suggesting that 
penetration may occur from one of those organelles. How- 
ever, since the bulk of toxin is degraded in lysosomes (4), 
exposure to the acidic pH of late, prelysosomal endosomes 
is apparently not sufficient to cause penetration of the toxin 
into the cytoplasm. Recent evidence has suggested that 
acidification is required for processing of the toxin and inser- 
tion into the membrane, but that entry into the cytosol is acid- 
independent (11). Other factors may be involved in determin- 
ing the sensitivity of a cell to diphtheria toxin (23). Thus, the 
resistance of the mutants to diphtheria toxin could in part be 
determined by other characteristics of the cells in addition 
to the alterations in pH. 

Penetration of Semliki Forest virus requires exposure to a 
pH of 6.2 or below and occurs after a lag of a few minutes 
after internalization in various cell types (12, 16). This is 
consistent with penetration occurring from large endosomes. 
The resistance of the mutant cell lines to enveloped viruses 
(27, 28) would appear to be in conflict with our finding that 
many of the large endosomes in the mutants have a pH <6.2. 
However, studies of the kinetics of Semliki Forest virus un- 
coating and penetration have shown that these processes are 
very similar in the mutants and wild-type cells (Marsh, 
M., A. Helenius, and I. Mellman, personal communica- 
tion). This is consistent with our pH measurements and indi- 
cates that the virus resistance occurs at another step of the 
infection. 

Our finding that the primary acidification defect in the mu- 
tants resides in early endosomes provides important infor- 
mation regarding mechanisms of pH regulation. It is clear 
that early and late prelysosomal endosomes are regulated to 
different pH values by distinct mechanisms. In addition, our 
finding that the pH of the para-Golgi recycling endosomes 
is not only less acidic than the large endosomes but also un- 
altered in the mutants, indicates that there may be a third pH 
regulatory mechanism for the recycling pathway. Our work 
also suggests that early endosomes and some large endo- 
somes share part of their acidification mechanism, since 
defective acidification of early endosomes carries over to 
some large endosomes. At present it is not known how the 
different endocytic compartments are regulated to different 
pH values (20). 

Our work with both the mutant and wild-type CHO cells 
illustrates the complexity and importance of early and late 
endosomal acidification. Further effort will be required to 
fully understand the consequence of this stepwise acidifica- 
tion and to isolate the mechanisms involved in pH regulation 
of the various compartments. 
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