Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Nov 1;105(5):2417–2425. doi: 10.1083/jcb.105.5.2417

Rat hepatocytes in serum-free primary culture elaborate an extensive extracellular matrix containing fibrin and fibronectin

PMCID: PMC2114843  PMID: 3316251

Abstract

Adult rat hepatocytes cultured on type IV collagen, fibronectin, or laminin and maintained in serum-free medium were examined by indirect immunofluorescence using polyclonal antibodies against extracellular matrix proteins. An extensive fibrillar matrix containing fibronectin and fibrin was detected in all hepatocyte cultures irrespective of the exogenous matrix substratum used to support cell adhesion. Fibrils radiated from the cell periphery and covered the entire culture substratum. In addition, thicker fibers or bundles of fibers were localized on top of hepatocytes. This matrix did not contain laminin or the major types of collagen found in the liver biomatrix (types I, III, and IV). Isolation of the fibrillar matrix and analysis on polyacrylamide gels under reducing conditions demonstrated a major 58- kD polypeptide, derived from beta-fibrinogen as indicated by immunoblotting and two-dimensional peptide mapping. Plasmin rapidly dissolved the matrix. Deposition of the fibrin matrix in hepatocyte cultures was arrested by hirudin, by specific heparin oligosaccharides that potentiate thrombin inhibition by antithrombin III, and by dermatan sulfate, an activator of heparin cofactor II-mediated inhibition of thrombin. The results indicate that hepatocytes in culture synthesize and activate coagulation zymogens. In the absence of inhibitory and fibrinolytic mechanisms, a fibrin clot is formed by the action of thrombin on fibrinogen. Fibronectin attaches to this fibrin clot but fails to elaborate a fibrillar matrix on its own in the presence of coagulation inhibitors.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amrani D. L., Mauzy-Melitz D., Mosesson M. W. Effect of hepatocyte-stimulating factor and glucocorticoids on plasma fibronectin levels. Biochem J. 1986 Sep 1;238(2):365–371. doi: 10.1042/bj2380365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aplin J. D., Hughes R. C. Protein-derivatised glass coverslips for the study of cell-to substratum adhesion. Anal Biochem. 1981 May 1;113(1):144–148. doi: 10.1016/0003-2697(81)90057-9. [DOI] [PubMed] [Google Scholar]
  3. Baumann H., Firestone G. L., Burgess T. L., Gross K. W., Yamamoto K. R., Held W. A. Dexamethasone regulation of alpha 1-acid glycoprotein and other acute phase reactants in rat liver and hepatoma cells. J Biol Chem. 1983 Jan 10;258(1):563–570. [PubMed] [Google Scholar]
  4. Baumann H., Jahreis G. P., Sauder D. N., Koj A. Human keratinocytes and monocytes release factors which regulate the synthesis of major acute phase plasma proteins in hepatic cells from man, rat, and mouse. J Biol Chem. 1984 Jun 10;259(11):7331–7342. [PubMed] [Google Scholar]
  5. Bissell D. M., Guzelian P. S. Phenotypic stability of adult rat hepatocytes in primary monolayer culture. Ann N Y Acad Sci. 1980;349:85–98. doi: 10.1111/j.1749-6632.1980.tb29518.x. [DOI] [PubMed] [Google Scholar]
  6. Bissell D. M., Stamatoglou S. C., Nermut M. V., Hughes R. C. Interactions of rat hepatocytes with type IV collagen, fibronectin and laminin matrices. Distinct matrix-controlled modes of attachment and spreading. Eur J Cell Biol. 1986 Mar;40(1):72–78. [PubMed] [Google Scholar]
  7. Björk I., Lindahl U. Mechanism of the anticoagulant action of heparin. Mol Cell Biochem. 1982 Oct 29;48(3):161–182. doi: 10.1007/BF00421226. [DOI] [PubMed] [Google Scholar]
  8. Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
  9. Clegg J. C. Glycoprotein detection in nitrocellulose transfers of electrophoretically separated protein mixtures using concanavalin A and peroxidase: application to arenavirus and flavivirus proteins. Anal Biochem. 1982 Dec;127(2):389–394. doi: 10.1016/0003-2697(82)90192-0. [DOI] [PubMed] [Google Scholar]
  10. Colman R. W., Robboy S. J., Minna J. D. Disseminated intravascular coagulation: a reappraisal. Annu Rev Med. 1979;30:359–374. doi: 10.1146/annurev.me.30.020179.002043. [DOI] [PubMed] [Google Scholar]
  11. Doolittle R. F. Fibrinogen and fibrin. Annu Rev Biochem. 1984;53:195–229. doi: 10.1146/annurev.bi.53.070184.001211. [DOI] [PubMed] [Google Scholar]
  12. Elder J. H., Pickett R. A., 2nd, Hampton J., Lerner R. A. Radioiodination of proteins in single polyacrylamide gel slices. Tryptic peptide analysis of all the major members of complex multicomponent systems using microgram quantities of total protein. J Biol Chem. 1977 Sep 25;252(18):6510–6515. [PubMed] [Google Scholar]
  13. Engvall E., Ruoslahti E. Binding of soluble form of fibroblast surface protein, fibronectin, to collagen. Int J Cancer. 1977 Jul 15;20(1):1–5. doi: 10.1002/ijc.2910200102. [DOI] [PubMed] [Google Scholar]
  14. Fasco M. J., Principe L. M. R- and S-Warfarin inhibition of vitamin K and vitamin K 2,3-epoxide reductase activities in the rat. J Biol Chem. 1982 May 10;257(9):4894–4901. [PubMed] [Google Scholar]
  15. Grinnell F., Feld M., Minter D. Fibroblast adhesion to fibrinogen and fibrin substrata: requirement for cold-insoluble globulin (plasma fibronectin). Cell. 1980 Feb;19(2):517–525. doi: 10.1016/0092-8674(80)90526-7. [DOI] [PubMed] [Google Scholar]
  16. Hahn E., Wick G., Pencev D., Timpl R. Distribution of basement membrane proteins in normal and fibrotic human liver: collagen type IV, laminin, and fibronectin. Gut. 1980 Jan;21(1):63–71. doi: 10.1136/gut.21.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kjellén L., Oldberg A., Hök M. Cell-surface heparan sulfate. Mechanisms of proteoglycan-cell association. J Biol Chem. 1980 Nov 10;255(21):10407–10413. [PubMed] [Google Scholar]
  18. Kleinman H. K., McGarvey M. L., Liotta L. A., Robey P. G., Tryggvason K., Martin G. R. Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry. 1982 Nov 23;21(24):6188–6193. doi: 10.1021/bi00267a025. [DOI] [PubMed] [Google Scholar]
  19. Knox P., Crooks S., Rimmer C. S. Role of fibronectin in the migration of fibroblasts into plasma clots. J Cell Biol. 1986 Jun;102(6):2318–2323. doi: 10.1083/jcb.102.6.2318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Koj A., Regoeczi E., Toews C. J., Leveille R., Gauldie J. Synthesis of antithrombin III and alpha-1-antitrypsin by the perfused rat liver. Biochim Biophys Acta. 1978 Apr 3;539(4):496–504. doi: 10.1016/0304-4165(78)90083-1. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Lane D. A., Denton J., Flynn A. M., Thunberg L., Lindahl U. Anticoagulant activities of heparin oligosaccharides and their neutralization by platelet factor 4. Biochem J. 1984 Mar 15;218(3):725–732. doi: 10.1042/bj2180725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Marceau N., Goyette R., Valet J. P., Deschenes J. The effect of dexamethasone on formation of a fibronectin extracellular matrix by rat hepatocytes in vitro. Exp Cell Res. 1980 Feb;125(2):497–502. doi: 10.1016/0014-4827(80)90146-9. [DOI] [PubMed] [Google Scholar]
  24. Markwardt F. Pharmacology of hirudin: one hundred years after the first report of the anticoagulant agent in medicinal leeches. Biomed Biochim Acta. 1985;44(7-8):1007–1013. [PubMed] [Google Scholar]
  25. Martinez-Hernandez A. The hepatic extracellular matrix. I. Electron immunohistochemical studies in normal rat liver. Lab Invest. 1984 Jul;51(1):57–74. [PubMed] [Google Scholar]
  26. McKee P. A., Mattock P., Hill R. L. Subunit structure of human fibrinogen, soluble fibrin, and cross-linked insoluble fibrin. Proc Natl Acad Sci U S A. 1970 Jul;66(3):738–744. doi: 10.1073/pnas.66.3.738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nermut M. V., Williams L. D., Stamatoglou S. C., Bissell D. M. Ultrastructure of ventral membranes of rat hepatocytes spread on type IV collagen. Eur J Cell Biol. 1986 Oct;42(1):35–44. [PubMed] [Google Scholar]
  28. Ochs D. Protein contaminants of sodium dodecyl sulfate-polyacrylamide gels. Anal Biochem. 1983 Dec;135(2):470–474. doi: 10.1016/0003-2697(83)90714-5. [DOI] [PubMed] [Google Scholar]
  29. Ofosu F. A., Fernandez F., Gauthier D., Buchanan M. R. Heparin cofactor II and other endogenous factors in the mediation of the antithrombotic and anticoagulant effects of heparin and dermatan sulfate. Semin Thromb Hemost. 1985 Apr;11(2):133–137. doi: 10.1055/s-2007-1004370. [DOI] [PubMed] [Google Scholar]
  30. Ofosu F. A., Modi G. J., Smith L. M., Cerskus A. L., Hirsh J., Blajchman M. A. Heparan sulfate and dermatan sulfate inhibit the generation of thrombin activity in plasma by complementary pathways. Blood. 1984 Sep;64(3):742–747. [PubMed] [Google Scholar]
  31. Owens M. R., Cimino C. D. Synthesis of fibronectin by the isolated perfused rat liver. Blood. 1982 Jun;59(6):1305–1309. [PubMed] [Google Scholar]
  32. Parker K. A., Tollefsen D. M. The protease specificity of heparin cofactor II. Inhibition of thrombin generated during coagulation. J Biol Chem. 1985 Mar 25;260(6):3501–3505. [PubMed] [Google Scholar]
  33. Riesenfeld J., Hözok M., Lindahl U. Biosynthesis of heparan sulfate in rat liver. Characterization of polysaccharides obtained with intact cells and with a cell-free system. J Biol Chem. 1982 Jun 25;257(12):7050–7055. [PubMed] [Google Scholar]
  34. Ritchie D. G., Fuller G. M. An in vitro bioassay for leukocytic endogenous mediator(s) using cultured rat hepatocytes. Inflammation. 1981 Dec;5(4):275–287. doi: 10.1007/BF00911093. [DOI] [PubMed] [Google Scholar]
  35. Rojkind M., Martinez-Palomo A. Increase in type I and type III collagens in human alcoholic liver cirrhosis. Proc Natl Acad Sci U S A. 1976 Feb;73(2):539–543. doi: 10.1073/pnas.73.2.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rosenberg R. D. Role of heparin and heparinlike molecules in thrombosis and atherosclerosis. Fed Proc. 1985 Feb;44(2):404–409. [PubMed] [Google Scholar]
  37. Sudhakaran P. R., Stamatoglou S. C., Hughes R. C. Modulation of protein synthesis and secretion by substratum in primary cultures of rat hepatocytes. Exp Cell Res. 1986 Dec;167(2):505–516. doi: 10.1016/0014-4827(86)90190-4. [DOI] [PubMed] [Google Scholar]
  38. Suttie J. W. Mechanism of action of vitamin K: synthesis of gamma-carboxyglutamic acid. CRC Crit Rev Biochem. 1980;8(2):191–223. doi: 10.3109/10409238009105469. [DOI] [PubMed] [Google Scholar]
  39. Tamkun J. W., Hynes R. O. Plasma fibronectin is synthesized and secreted by hepatocytes. J Biol Chem. 1983 Apr 10;258(7):4641–4647. [PubMed] [Google Scholar]
  40. Tasheva B., Dessev G. Artifacts in sodium dodecyl sulfate-polyacrylamide gel electrophoresis due to 2-mercaptoethanol. Anal Biochem. 1983 Feb 15;129(1):98–102. doi: 10.1016/0003-2697(83)90057-x. [DOI] [PubMed] [Google Scholar]
  41. Teien A. N., Abildgaard U., Hök M. The anticoagulant effect of heparan sulfate and dermatan sulfate. Thromb Res. 1976 Jun;8(6):859–867. doi: 10.1016/0049-3848(76)90014-1. [DOI] [PubMed] [Google Scholar]
  42. Thunberg L., Bäckström G., Lindahl U. Further characterization of the antithrombin-binding sequence in heparin. Carbohydr Res. 1982 Mar 1;100:393–410. doi: 10.1016/s0008-6215(00)81050-2. [DOI] [PubMed] [Google Scholar]
  43. Tollefsen D. M., Pestka C. A., Monafo W. J. Activation of heparin cofactor II by dermatan sulfate. J Biol Chem. 1983 Jun 10;258(11):6713–6716. [PubMed] [Google Scholar]
  44. Voss B., Allam S., Rauterberg J., Ullrich K., Gieselmann V., von Figura K. Primary cultures of rat hepatocytes synthesize fibronectin. Biochem Biophys Res Commun. 1979 Oct 29;90(4):1348–1354. doi: 10.1016/0006-291x(79)91184-7. [DOI] [PubMed] [Google Scholar]
  45. Wallin R. Vitamin K antagonism of coumarin anticoagulation. A dehydrogenase pathway in rat liver is responsible for the antagonistic effect. Biochem J. 1986 Jun 15;236(3):685–693. doi: 10.1042/bj2360685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Williams G. M., Bermudez E., San R. H., Goldblatt P. J., Laspia M. F. Rat hepatocyte primary cultures. IV. Maintenance in defined medium and the role of production of plasminogen activator and other proteases. In Vitro. 1978 Oct;14(10):824–837. doi: 10.1007/BF02616152. [DOI] [PubMed] [Google Scholar]
  47. Wion K. L., Kelly D., Summerfield J. A., Tuddenham E. G., Lawn R. M. Distribution of factor VIII mRNA and antigen in human liver and other tissues. Nature. 1985 Oct 24;317(6039):726–729. doi: 10.1038/317726a0. [DOI] [PubMed] [Google Scholar]
  48. Zelechowska M. G., van Mourik J. A., Brodniewicz-Proba T. Ultrastructural localization of factor VIII procoagulant antigen in human liver hepatocytes. Nature. 1985 Oct 24;317(6039):729–730. doi: 10.1038/317729a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES