Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Jan 1;106(1):111–125. doi: 10.1083/jcb.106.1.111

Calcium regulation of pigment transport in vitro

PMCID: PMC2114952  PMID: 2828377

Abstract

Calcium has been implicated in the regulation of many cellular motility events. In this study we have examined the role of different Ca2+ concentrations on the in vitro transport of pigment within cultured chromatophores. Cells treated with Brij detergent for 1-2 min were stripped of their plasma membranes, leaving their cytoskeleton and associated pigment granules exposed to the external milieu. We found that retrograde pigment transport (aggregation) is induced upon addition of 1 mM MgATP2- with 10(-7) M free Ca2+, while an orthograde transport (redispersal) of pigment results from lowering the concentration of free Ca2+ to 10(-8) M while maintaining 1 mM MgATP2-. These Ca2+-regulated movements are ATP dependent but are apparently independent of cAMP and insensitive to calmodulin inhibitors. The observations reported here provide novel evidence that the concentration of free Ca2+ acts to regulate the direction of intracellular organelle transport.

Full Text

The Full Text of this article is available as a PDF (6.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramowitz J., Chavin W. In vitro response of goldfish (Carassius auratus L.) dermal melanophores to cyclic 3',5'-nucleotides, nucleoside 5'-phosphates and methylxanthines. J Cell Physiol. 1974 Oct;84(2):301–309. doi: 10.1002/jcp.1040840216. [DOI] [PubMed] [Google Scholar]
  2. Adelstein R. S. Calmodulin and the regulation of the actin-myosin interaction in smooth muscle and nonmuscle cells. Cell. 1982 Sep;30(2):349–350. doi: 10.1016/0092-8674(82)90232-x. [DOI] [PubMed] [Google Scholar]
  3. Allen R. D., Weiss D. G., Hayden J. H., Brown D. T., Fujiwake H., Simpson M. Gliding movement of and bidirectional transport along single native microtubules from squid axoplasm: evidence for an active role of microtubules in cytoplasmic transport. J Cell Biol. 1985 May;100(5):1736–1752. doi: 10.1083/jcb.100.5.1736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beckerle M. C., Porter K. R. Analysis of the role of microtubules and actin in erythrophore intracellular motility. J Cell Biol. 1983 Feb;96(2):354–362. doi: 10.1083/jcb.96.2.354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bessen M., Fay R. B., Witman G. B. Calcium control of waveform in isolated flagellar axonemes of Chlamydomonas. J Cell Biol. 1980 Aug;86(2):446–455. doi: 10.1083/jcb.86.2.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brokaw C. J. Sperm motility. Methods Cell Biol. 1986;27:41–56. [PubMed] [Google Scholar]
  7. Byers H. R., Porter K. R. Transformations in the structure of the cytoplasmic ground substance in erythrophores during pigment aggregation and dispersion. I. A study using whole-cell preparations in stereo high voltage electron microscopy. J Cell Biol. 1977 Nov;75(2 Pt 1):541–558. doi: 10.1083/jcb.75.2.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clark T. G., Rosenbaum J. L. Energy requirements for pigment aggregation in fundulus melanophores. Cell Motil. 1984;4(6):431–441. doi: 10.1002/cm.970040604. [DOI] [PubMed] [Google Scholar]
  9. Ebashi S., Endo M., Otsuki I. Control of muscle contraction. Q Rev Biophys. 1969 Nov;2(4):351–384. doi: 10.1017/s0033583500001190. [DOI] [PubMed] [Google Scholar]
  10. Eichelman B., Orenberg E., Seagraves E., Barchas J. Influence of social setting on the induction of brain cyclic AMP in response to electric shock in the rat. Nature. 1976 Sep 30;263(5576):433–434. doi: 10.1038/263433a0. [DOI] [PubMed] [Google Scholar]
  11. Gibbons B. H., Gibbons I. R. Calcium-induced quiescence in reactivated sea urchin sperm. J Cell Biol. 1980 Jan;84(1):13–27. doi: 10.1083/jcb.84.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gibbons B. H., Gibbons I. R. Flagellar movement and adenosine triphosphatase activity in sea urchin sperm extracted with triton X-100. J Cell Biol. 1972 Jul;54(1):75–97. doi: 10.1083/jcb.54.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gietzen K., Wüthrich A., Bader H. R 24571: a new powerful inhibitor of red blood cell Ca++-transport ATPase and of calmodulin-regulated functions. Biochem Biophys Res Commun. 1981 Jul 30;101(2):418–425. doi: 10.1016/0006-291x(81)91276-6. [DOI] [PubMed] [Google Scholar]
  14. Gilbert S. P., Allen R. D., Sloboda R. D. Translocation of vesicles from squid axoplasm on flagellar microtubules. Nature. 1985 May 16;315(6016):245–248. doi: 10.1038/315245a0. [DOI] [PubMed] [Google Scholar]
  15. Grundström N., Karlsson J. O., Andersson R. G. The control of granule movement in fish melanophores. Acta Physiol Scand. 1985 Nov;125(3):415–421. doi: 10.1111/j.1748-1716.1985.tb07737.x. [DOI] [PubMed] [Google Scholar]
  16. Hepler P. K. Calcium restriction prolongs metaphase in dividing Tradescantia stamen hair cells. J Cell Biol. 1985 May;100(5):1363–1368. doi: 10.1083/jcb.100.5.1363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Heslop J. P. Axonal flow and fast transport in nerves. Adv Comp Physiol Biochem. 1975;6:75–163. doi: 10.1016/b978-0-12-011506-8.50008-1. [DOI] [PubMed] [Google Scholar]
  18. Hidaka H., Inagaki M., Kawamoto S., Sasaki Y. Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry. 1984 Oct 9;23(21):5036–5041. doi: 10.1021/bi00316a032. [DOI] [PubMed] [Google Scholar]
  19. Hofmann F., Bechtel P. J., Krebs E. G. Concentrations of cyclic AMP-dependent protein kinase subunits in various tissues. J Biol Chem. 1977 Feb 25;252(4):1441–1447. [PubMed] [Google Scholar]
  20. Izant J. G. The role of calcium ions during mitosis. Calcium participates in the anaphase trigger. Chromosoma. 1983;88(1):1–10. doi: 10.1007/BF00329497. [DOI] [PubMed] [Google Scholar]
  21. Junqueira L. C., Raker E., Porter K. R. Studies on pigment migration in the melanophores of the teleost. Fundulus heteroclitus (L). Arch Histol Jpn. 1974 May;36(5):339–366. doi: 10.1679/aohc1950.36.339. [DOI] [PubMed] [Google Scholar]
  22. Koonce M. P., Tong J., Euteneuer U., Schliwa M. Active sliding between cytoplasmic microtubules. Nature. 1987 Aug 20;328(6132):737–739. doi: 10.1038/328737a0. [DOI] [PubMed] [Google Scholar]
  23. Kuba K., Nishi S. Rhythmic hyperpolarizations and depolarization of sympathetic ganglion cells induced by caffeine. J Neurophysiol. 1976 May;39(3):547–563. doi: 10.1152/jn.1976.39.3.547. [DOI] [PubMed] [Google Scholar]
  24. Levin R. M., Weiss B. Mechanism by which psychotropic drugs inhibit adenosine cyclic 3',5'-monophosphate phosphodiesterase of brain. Mol Pharmacol. 1976 Jul;12(4):581–589. [PubMed] [Google Scholar]
  25. Luby-Phelps K., Porter K. R. The control of pigment migration in isolated erythrophores of Holocentrus ascensionis (Osbeck). II. The role of calcium. Cell. 1982 Jun;29(2):441–450. doi: 10.1016/0092-8674(82)90160-x. [DOI] [PubMed] [Google Scholar]
  26. Luby K. J., Porter K. R. The control of pigment migration in isolated erythrophores of Holocentrus ascensionis (Osbeck). I. Energy requirements. Cell. 1980 Aug;21(1):13–23. doi: 10.1016/0092-8674(80)90110-5. [DOI] [PubMed] [Google Scholar]
  27. Lynch T. J., Wu B. Y., Taylor J. D., Tchen T. T. Regulation of pigment organelle translocation. II. Participation of a cAMP-dependent protein kinase. J Biol Chem. 1986 Mar 25;261(9):4212–4216. [PubMed] [Google Scholar]
  28. Malaisse W. J. Role of calcium in the regulation of hormonal secretion. Horm Res. 1984;20(1):28–37. doi: 10.1159/000179972. [DOI] [PubMed] [Google Scholar]
  29. McNiven M. A., Porter K. R. Chromatophores--models for studying cytomatrix translocations. J Cell Biol. 1984 Jul;99(1 Pt 2):152s–158s. doi: 10.1083/jcb.99.1.152s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. McNiven M. A., Porter K. R. Microtubule polarity confers direction to pigment transport in chromatophores. J Cell Biol. 1986 Oct;103(4):1547–1555. doi: 10.1083/jcb.103.4.1547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. McNiven M. A., Wang M., Porter K. R. Microtubule polarity and the direction of pigment transport reverse simultaneously in surgically severed melanophore arms. Cell. 1984 Jul;37(3):753–765. doi: 10.1016/0092-8674(84)90411-2. [DOI] [PubMed] [Google Scholar]
  32. Means A. R., Tash J. S., Chafouleas J. G., Lagace L., Guerriero V. Regulation of the cytoskeleton by Ca2+-calmodulin and cAMP. Ann N Y Acad Sci. 1982;383:69–84. doi: 10.1111/j.1749-6632.1982.tb23162.x. [DOI] [PubMed] [Google Scholar]
  33. Novales R. R., Fujii R. A melanin-dispersing effect of cyclic adenosine monophosphate on Fundulus melanophores. J Cell Physiol. 1970 Feb;75(1):133–135. doi: 10.1002/jcp.1040750116. [DOI] [PubMed] [Google Scholar]
  34. Ochs S., Worth R. M., Chan S. Y. Calcium requirement for axoplasmic transport in mammalian nerve. Nature. 1977 Dec 22;270(5639):748–750. doi: 10.1038/270748a0. [DOI] [PubMed] [Google Scholar]
  35. Petzelt C., Hafner M. Visualization of the Ca-transport system of the mitotic apparatus of sea urchin eggs with a monoclonal antibody. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1719–1722. doi: 10.1073/pnas.83.6.1719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Pratt M. M. The identification of a dynein ATPase in unfertilized sea urchin eggs. Dev Biol. 1980 Feb;74(2):364–378. doi: 10.1016/0012-1606(80)90438-8. [DOI] [PubMed] [Google Scholar]
  37. Rozdzial M. M., Haimo L. T. Bidirectional pigment granule movements of melanophores are regulated by protein phosphorylation and dephosphorylation. Cell. 1986 Dec 26;47(6):1061–1070. doi: 10.1016/0092-8674(86)90821-4. [DOI] [PubMed] [Google Scholar]
  38. Rozdzial M. M., Haimo L. T. Reactivated melanophore motility: differential regulation and nucleotide requirements of bidirectional pigment granule transport. J Cell Biol. 1986 Dec;103(6 Pt 2):2755–2764. doi: 10.1083/jcb.103.6.2755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Schliwa M., Bereiter-Hahn J. Pigment movements in fish melanophores: morphological and physiological studies. 3. The effects of colchicine and vinblastine. Z Zellforsch Mikrosk Anat. 1973 Dec 31;147(1):127–148. doi: 10.1007/BF00306604. [DOI] [PubMed] [Google Scholar]
  40. Schliwa M., van Blerkom J. Structural interaction of cytoskeletal components. J Cell Biol. 1981 Jul;90(1):222–235. doi: 10.1083/jcb.90.1.222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Schmidt M. J., Hopkins J. T., Schmidt D. E., Robison G. A. Cyclic AMP in brain areas: effects of amphetamine and norepinephrine assessed through the use of microwave radiation as a means of tissue fixation. Brain Res. 1972 Jul 20;42(2):465–477. doi: 10.1016/0006-8993(72)90544-6. [DOI] [PubMed] [Google Scholar]
  42. Schnapp B. J., Vale R. D., Sheetz M. P., Reese T. S. Single microtubules from squid axoplasm support bidirectional movement of organelles. Cell. 1985 Feb;40(2):455–462. doi: 10.1016/0092-8674(85)90160-6. [DOI] [PubMed] [Google Scholar]
  43. Sheterline P. Trifluoperazine can distinguish between myosin light chain kinase-linked and troponin C-linked control of actomyosin interaction by Ca++. Biochem Biophys Res Commun. 1980 Mar 13;93(1):194–200. doi: 10.1016/s0006-291x(80)80265-8. [DOI] [PubMed] [Google Scholar]
  44. Silver R. B., Cole R. D., Cande W. Z. Isolation of mitotic apparatus containing vesicles with calcium sequestration activity. Cell. 1980 Feb;19(2):505–516. doi: 10.1016/0092-8674(80)90525-5. [DOI] [PubMed] [Google Scholar]
  45. Stearns M. E., Ochs R. L. A functional in vitro model for studies of intracellular motility in digitonin-permeabilized erythrophores. J Cell Biol. 1982 Sep;94(3):727–739. doi: 10.1083/jcb.94.3.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Stephenson E. W. Ca2+ dependence of stimulated 45Ca efflux in skinned muscle fibers. J Gen Physiol. 1981 Apr;77(4):419–443. doi: 10.1085/jgp.77.4.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Summers K. E., Gibbons I. R. Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3092–3096. doi: 10.1073/pnas.68.12.3092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Vale R. D., Schnapp B. J., Reese T. S., Sheetz M. P. Organelle, bead, and microtubule translocations promoted by soluble factors from the squid giant axon. Cell. 1985 Mar;40(3):559–569. doi: 10.1016/0092-8674(85)90204-1. [DOI] [PubMed] [Google Scholar]
  49. Vallee R. B., DiBartolomeis M. J., Theurkauf W. E. A protein kinase bound to the projection portion of MAP 2 (microtubule-associated protein 2). J Cell Biol. 1981 Sep;90(3):568–576. doi: 10.1083/jcb.90.3.568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Walsh D. A., Ashby C. D., Gonzalez C., Calkins D., Fischer E. H. Krebs EG: Purification and characterization of a protein inhibitor of adenosine 3',5'-monophosphate-dependent protein kinases. J Biol Chem. 1971 Apr 10;246(7):1977–1985. [PubMed] [Google Scholar]
  51. Weber A. The mechanism of the action of caffeine on sarcoplasmic reticulum. J Gen Physiol. 1968 Nov;52(5):760–772. doi: 10.1085/jgp.52.5.760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Wolniak S. M., Bart K. M. The buffering of calcium with quin2 reversibly forestalls anaphase onset in stamen hair cells of Tradescantia. Eur J Cell Biol. 1985 Nov;39(1):33–40. [PubMed] [Google Scholar]
  53. Zanetti N. C., Mitchell D. R., Warner F. D. Effects of divalent cations on dynein cross bridging and ciliary microtubule sliding. J Cell Biol. 1979 Mar;80(3):573–588. doi: 10.1083/jcb.80.3.573. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES