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Abstract. We investigated whether the L2/HNK-1 car- 
bohydrate epitope, expressed by two unusual glycolip- 
ids and several neural adhesion molecules, including 
L1, neural cell adhesion molecule, J1, and the 
myelin-associated glycoprotein, is involved in adhe- 
sion. Monoclonal L2 antibodies, the L2/HNK-I-reac- 
tive, sulfate-3-glucuronyl residue carrying glycolipids 
(L2 glycolipid) and a tetrasaccharide derived from the 
L2 glycolipid (L2 tetrasaccharide) were added to mi- 
croexplant cultures of early postnatal mouse cerebel- 
lum, and cell migration and process extension were 
monitored. On the substrate poly-D-lysine, Fab frag- 
ments of L2 antibodies, L2 glycolipid, and L2 tetra- 
saccharide inhibited outgrowth of astrocytic processes 
and migration of cell bodies, but only L2 glycolipid 
and L2 tetrasaccharide reduced neurite outgrowth. On 
laminin, L2 antibodies, L2 glycolipid, and L2 tetra- 
saccharide inhibited outgrowth of astrocytic processes. 

Additionally, L2 glycolipid and L2 tetrasaccharide in- 
hibited cell migration and neurite outgrowth. Several 
negatively charged glycolipids, lipids, and saccharides 
were tested for control and found to have no effect on 
outgrowth patterns, except for sulfatide and heparin, 
which modified outgrowth patterns in a similar fashion 
as L2 glycolipid and L2 tetrasaccharide. On astrocytes 
none of the tested compounds interfered with explant 
outgrowth. In short-term adhesion assays L2 glyco- 
lipid, sulfatide, and heparin inhibited adhesion of 
neural cells to laminin. L2 glycolipid and sulfatide in- 
terfered with neuron to astrocyte and astrocyte to as- 
trocyte adhesion, but not with neuron-neuron adhe- 
sion. The most straightforward interpretation of these 
observations is that the L2/HNK-1 carbohydrate and 
the sulfated carbohydrates, sulfatide and heparin, act 
as ligands in cell adhesion. 

W 
E have recently shown that the monoclonal anti- 
body L2 reacts with a common epitope in the 
carbohydrate moiety of the neural cell adhesion 

molecules L1 (Schachner et al., 1983, 1985) and N-CAM I 
(Edelman, 1985; Rutishauser and Goridis, 1986), the myelin- 
associated glycoprotein (MAG) (McGarry et al., 1985; Pol- 
torak et al., 1987), the J1 glycoprotein (Kruse et al., 1985), 
and other yet unidentified glycoproteins from mouse nervous 
tissue (Kruse et al., 1984). This group of molecules is also 
recognized by the monoclonaI antibody HNK-1 (Kruse et al., 
1984), which reacts with a cell surface antigen of yet un- 
known functional properties on natural killer cells (Abo and 
Balch, 1981). We could also show that the population of 
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N-CAM, L1, and MAG molecules is heterogeneous with re- 
spect to the expression of the L2/HNK-1 epitope (Kruse et 
al., 1984; Poltorak et al., 1987; Faissner, A., manuscript 
submitted for publication). Sera from patients with gam- 
mopathy and peripheral polyneuritis also react with this car- 
bohydrate structure (Braun et al., 1982; Ilyas et al., 1984b; 
Poltorak et al., 1986; Steck et al., 1983). Furthermore, un- 
usual glycolipids from human peripheral nerves and em- 
bryonic fetal brain are recognized by the L2/HNK-1 antibod- 
ies (Ilyas et al., 1984a; Chou et al., 1985, 1986; Noronha et 
al., 1986; Schwarting et al., 1987). These glycolipids were 
characterized as sulfate-3-glucuronyl paragloboside and 
sulfate-3-glucuronyl neolactohexaosyl ceramide (Ariga et 
al., 1987; Chou et al,, 1986). The presence of the sulfate-3- 
glucuronyl moiety in the lipid was essential for antibody 
binding (Chou et al., 1986; Ilyas et al., 1986). Indications 
that the L2/HNK-1 domain was involved in cell interactions 
came from a study that investigated the effect of Fab fragments 
of L2 antibodies on neuron-astrocyte and astrocyte-astro- 
cyte adhesion (Keilhauer et al., 1985) or HNK-I antibodies 
on neurite outgrowth (Riopelle et al., 1986). However, be- 
cause antibodies do not only cover the epitope that they are 
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directed against, but can also sterically block neighboring 
domains from function, direct demonstration of the impor- 
tance of the L2/HNK-I moiety for cell interactions seemed 
warranted. We have therefore taken advantage of the possibil- 
ity to use the L2 glycolipid or the isolated L2 tetrasaccharide 
of this glycolipid in sensitive culture systems to monitor 
cell-cell and cell-substrate interactions. Here we show that 
the L2/HNK-l-reactive carbohydrate moiety, without the at- 
tached protein backbone, is able to interfere not only with 
cell-cell, but also cell-substrate interactions. These obser- 
vations indicate that the L2/HNK-1 carbohydrate moiety is 
itself involved as a ligand in cell interactions. 

Materials and Methods 

Animals 
Mice NMRI strain were bred at the animal facilities of the Department of 
Neurobiology. 

Antibodies 
Monoclonal L2 antibodies were obtained as described previously (Kruse et 
al., 1984). L2(336) or L2(412) antibodies were used (Noronha et al., 1986). 
These antibodies (both IgGs from rat) are designated L2 antibodies by vir- 
tue of their reactivity with the L2 glycolipid but may have different affinities 
and avidities. Fab fragments were prepared by proteolytic digest with papain 
(Porter, 1959; Rathjen and Schachner, 1984). Rabbit antibodies to glial 
fibrillary acidic protein from multiple sclerosis plaques (a gift of L. Eng 
[Stanford University, Stanford, CA]) were used to identify mature astrocytes 
(Eng et al., 1971; Bignami et at., 1972; Schachner et al., 1977). Guinea pig 
antibodies to vimentin (a gift of W. W. Franke, German Cancer Research 
Center, Heidelberg) were used to identify immature and mature astrocytes 
(Schnitzer et al., 1981). Polyclonal antibodies to the cell adhesion molecule 
L1 were used to identify neuronal processes (Rathjen and Schachner, 1984). 
Polyclonal rabbit anti-mouse Thy-l.1 antibodies (a gift of A. Williams 
[University of Oxford, United Kingdom]) were purified by chromatography 
on Protein A-Sepharose (a gift of L Trotter [University of Heidelberg, 
FRG]). Fluorescein-conjugated, species-specific antibodies were obtained 
from Cappel Laboratories, Cochranville, PA (via Dynatech, Denkendorf, 
FRG). 

Glycolipids, lipids, saccharides, and liposomes 
L2 glycolipid (for structure, see Abbreviations used in this paper) was iso- 
lated and purified from human sciatic nerve as described previously (Chou 
et al., 1985, 1986). Desulfated L2 glycotipid was prepared by mild acid hy- 
drolysis (Chou et al., 1985). L2 tetrasaccharide was prepared by reaction 
of endo-13-galactosidase (E. freundii) with L2 glycolipid as described (Chou 
et al., 1986), Core tetrasaccharide (lacto-neotetraose) was purchased from 
Biocarb Chemicals (Goteborg, Sweden). LMI ganglioside was isolated 
and purified from human sciatic nerve (Chou et al., 1982). Sulfatide (code 
no. 35692), galactocerebroside (code no. 16474), ganglioside mixture from 
bovine brain (code no. 22140), ceramide (code no. 16471), phosphatidic acid 
(code no. 32510), heparin, hyaluronic acid and chondroitin sulfate were 
purchased from Serva (Heidelberg). Cholesterol was from Fluka (Neu- 
Ulm, FRG). Phosphatidylcholine (code no. P2772), glucuronic acid, and 
glucuronic acid-3-phosphate were from Sigma Chemical Co. (Munich). 
Mannose-2-sulfate, mannose-3-sulfate, and mannose-6-sulfate were gifts of 
M. Sumper (University of Regensburg, FRG) 

For assaying the effects of these reagents in the microexptant culture sys- 
tem, the saccharides were dissolved directly in culture medium (see below). 
Glycolipids and lipids were suspended by sonication in Earle's basal 
medium (BME) by first dissolving them in chloroform/methanol (1:1; 
vol/vol) at a concentration of 1 mg/ml. Aliquots (40 gg) of this stock solu- 
tion were dried under a nitrogen stream in sterile glass tubes together with 
the carrier lipids cholesterol and phosphatidylcholine (200 ~tg) at a ratio of 
1 to 5 (wt/wt). BME (1 ml) was then added. The mixture was then sonified 
for 5 min at 4~C in a cup horn device (Branson Sonifier B15, Heinemann, 
Schw:zibisch Gmiind, FRG). In some experiments, glycolipids and tipids 
were also tested without carrier lipids by suspending and sonifying them in 
BME as described for the preparation of liposomes with carrier lipids. 

Carboxyfluorescein-labeled liposomes were prepared by sonication of 

glycolipids in the presence of carrier lipids as described above, but in the 
presence of 20 mM carboxyfluorescein (Sigma Chemical Co.), 

Microexplant Cultures 
Cerebella were taken from 6-d-old mice and freed from meninges, choroid 
plexus, and deep cerebellar nuclei. The remaining tissue was then forced 
through a Nitrex nylon mesh, pore size 300 gm, and washed three times 
in serum-free hormone-supplemented medium (Fischer, 1982) as described 
previously (Fischer et al., 1986). Explants were plated on glass coverslips 
(6 or 16 mm diam) coated with poly-D-lysine (10 ~g/ml in water) or laminin 
from Englebreth-Holm swarm sarcoma (20 ~gg'ml in BME; Bethesda Re- 
search Laboratories, Karlsruhe, FRG). Coverslips were then placed in 24- 
or 96-well plates (Nunc, Wiesbaden, FRG) or bacteriologic Petri dishes (3.5 
cm diam, three coverslips per Petri dish in 1 ml of culture medium). Cover- 
slips placed in microtiter plates were maintained in 0.5 ml (for 24-well 
plates) and 100 I~1 (for 96-well plates) of culture medium. When explants 
were maintained on poly-o-lysine-coated coverslips, reagents (antibodies, 
glycolipids, lipids, or saccharides) were added 16 h after plating. When 
laminin-coated coverslips or monolayers of astrocytes were used, reagents 
were added 4 h after plating, because outgrowth of processes and cell bodies 
was much more rapid than on poly-o-lysine. Explants were maintained in 
a CO2 incubator at 35.5~ for 3 d (on poly-D-lysine) and 1-2 d (on laminin 
and astrocytes) without change of culture medium. 

Astrocyte monolayers were prepared as described previously (Fischer et 
al., 1982). In short, single-cell suspensions of 2-d-old mouse cerebellum 
were cultured in a chemically defined medium to select for epidermal 
growth factor-sensitive astrocyte precursors. After 2 wk the cells were sub- 
cultured to obtain homogeneous cultures of these astrocyte precursors. 2 d 
later the chemically defined medium was replaced by medium containing 
10% horse serum to induce differentiation of the cells with respect to expres- 
sion of glial-fibrillary acidic protein. 7 d later the medium with 10% horse 
serum was replaced by the chemically defined medium used for culture of 
neurons (Fischer, 1982). 1 d later the microexplants were added. The cul- 
tures were stained for L1 antigen 1 d later to visualize outgrowth of neuronal 
processes. 

Immunocytologic Procedures 
Immunofluoresceuce staining of microexplant cultures for glial fibrillary 
acidic protein, vimentin, L2/HNK-1 carbohydrate epitope, or Lt antigen 
was carried out by indirect labeling procedures as described previously 
(Fischer et al., 1986; Kruse et al., 1985; Rathjen and Schachner, 1984; 
Schnitzer and Schachner, 1981; Schnitzer et al., 1981). 

Cell Adhesion Assay 
Adhesion of single-cell suspensions of enriched populations of neurons and 
astrocytes from 6-d-old mouse cerebellum to monolayer cultures of these 
enriched populations was carried out as described previously (Keilhauer et 
at., 1985). In adhesion assays with laminin as substrate, single-cell suspen- 
sions without previous enrichment for different cell types were used. Single- 
cell suspensions were labeled by uptake of fluoresceindiacetate (Keilhauer 
et al., 1985) and used as probe ceils. Their adhesion to the monolayer target 
cells in 30 min at room temperature was quantified by fluorescence micro- 
scope examination. Glycolipids were added to the probe and target cells for 
20 rain on ice before the adhesion assay. Laminin-coated glass coverslips 
(prepared as described for microexplant cultures) were preincubated with 
lipids (40 gg/ml) or beparin (100 I.tg/ml) for 2 h at 35~ in the CO2 incu- 
bator before addition of the cell suspension. Final concentrations of lipids 
and heparin were 20 and 50 txg/ml, respectively. Adhesion of cells was 
quantified after 1 h at room temperature using the same washing protocols 
as for monolayer target cells. 

Results 

Influence of L2 Monoclonal Antibodies, L2 Glycolipid, 
and L2 Tetrasaccharide on Outgrowth Patterns in 
Microexplant Cultures on Poly-o-Lysine 
When microexplants of early postnatal mouse cerebellum 
were plated onto poly-D-lysine-coated glass coverslips, a 
characteristic outgrowth pattern could be observed during 3 
d in culture (Fischer et al., 1986). Microexplants attached to 
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Figure 1. Cerebellar microexplants were cultured on poly-D-lysine for 3 d (.4, B) without or (C, D) with Fab fragments of monoclonal 
L2 (412) antibodies (0.5 mg/ml) or with L2 glycolipid at (E, F)  2 ~tg/ml or (G, H) 5 ~tg/ml. Antibodies or lipids were added to the medium 
16 h after plating. (B, D, F, H) Indirect immunofluorescence staining for glial-fibrillary acidic protein and (,4, C, E, G) corresponding 
phase-contrast micrographs. (E, F)  In the left upper corner the outgrowth zone of an adjacent explant is visible. Note the increasing inhibi- 
tion of outgrowth of cellular processes with increasing concentrations of L2 glycolipid. Bar, 50 ~tm. 



Figure 2. Phase-contrast micrographs of cerebellar microexplants cultured on (A) poly-D-lysine or (B) laminin in the presence of L2 tetrasac- 
charide (50 gg/ml). The tetrasaccharide was added (A) 16 or (B) 4 h after plating. Explants were fixed (A) 3 or (B) 2 d after plating. 
Note the strong inhibition of migration of cell bodies which is more pronounced on poly-D-lysine and outgrowth of cell processes which 
appears more pronounced on laminin. Control for B is shown in Fig. 3. Bar, 50 Ixm. 

the substrate within a few hours. Tetanus toxin and L1 
antigen-positive neurites were the first to leave the explant. 
They could be readily discerned already after 1 d of culture 
and reached a length of several explant core diameters after 
3-4 d. In this time period astrocytic processes extended from 
the explant core in a somewhat radial fashion to a maximal 
distance of approximately one core diameter (Fig. 1). Cell 
bodies of astrocytes were sometimes also observed to leave 
the explant, but did not reach the outer limits of neurite out- 
growth. Fasciculation of neurites was detectable in the 
astrocyte-free periphery. Movement of small, tetanus toxin 
receptor-positive neuronal cell bodies from the explant also 
occurred. Neuronal cell bodies started their movement at the 
time of astrocyte outgrowth, but could be shown to migrate 
on an astrocyte-free substrate in ',,50% of all explants 
(Fischer et al., 1986). The maximal distance reached by neu- 
ronal cell bodies was attained within 3-4 d after plating, by 
which time the extent of the outgrowth zone of neuronal cell 
bodies corresponded roughly to the area covered by astro- 
cytic processes. Neurites and astrocytes were stained with L2 
antibodies by indirect immunofluorescence (not shown). 

When Fab fragments of monoclonal L2 antibody (336 or 
412) were added to the explants 16 h after plating, cultures 
were modified in their outgrowth patterns at concentrations 
of 500 and 700 Ixg/ml. 3 d after explant plating (,02.3 d after 
addition of antibody) the following pattern was observed by 
phase-contrast microscopy and immunofluorescence stain- 
ing with antibodies to L1 (not shown) and glial fibrillary 
acidic protein (Fig. 1): only few explants (•10-20%) re- 
mained attached to the substrate. Explants that remained at- 
tached extended neurites which were strongly fasciculated in 
the vicinity of the explant core. Astrocytic processes or neu- 
ronal cell bodies rarely left the explant core. Cells appeared 
healthy in the presence of antibodies throughout culture 
times. When detached explants were removed from the cul- 
tures 2 d after antibody addition, washed, and replated, the 
outgrowth pattern was essentially normal, indicating that an- 
tibodies did not reduce cell viability. 

When Fab fragments of monoclonal L2 antibodies were 
added at concentrations of 300 Ixg/ml, more explants re- 

mained attached to the substrate (,o60-70%) and fascicula- 
tion of neurites and movement of astrocytic processes and 
neuronal cell bodies from the explant core was retarded with 
respect to the control (Fig. 1, A and B), but not as much as 
at concentrations of 500 ~tg/ml (Fig. 1, C and D) and higher 
(not shown). For control, the effect of Fab fragments of 
different antibodies on the outgrowth patterns was moni- 
tored: L1 and N-CAM antibodies reduced the extent of neu- 
rite fasciculation (Fischer et al., 1986), whereas polyclonal 
rabbit antibodies to mouse Thy-1 antigen did not interfere 
with the outgrowth pattern (not shown). 

The effects of the L2 glycolipid and the L2 tetrasaccharide 
on the outgrowth pattern of explants were generally com- 
parable to each other and different from the effect observed 
with monoclonal L2 antibodies. When either L2 glycolipid 
or L2 tetrasaccharide were added to the cultures 16 h after 
plating at concentrations of 2-5 l~g/ml (1.3-6.5 nmol/ml; 
Fig. 1, E and F and G and H) and 50-200 lag/ml (62-248 
nmol/ml; Fig. 2 A), respectively, ,040-50% of the explants 
detached. Neurites generally extended only as short, stubby 
fascicles away from the explant core especially at higher con- 
centrations of the additives (Fig. 1, E-H, and 2 A). Migration 
of neuronal cell bodies and outgrowth of astrocytic processes 
from the explant core was also strongly inhibited (Figs. 1 and 
2). The same results were obtained, when the L2 glycolipid 
was used without the carder lipids cholesterol and phos- 
phatidylcholine (not shown). 

To test the specificity of the effect of L2 glycolipid and L2 
tetrasaccharide other glycotipids and saccharides were tested 
(Table I). No effect on outgrowth pattern was observed, when 
desulfated or desulfated and carboxymethylated L2 glyco- 
lipid, LM1 ganglioside (differing from the L2 glycolipid by 
the replacement of sulfated glucuronic acid by N-acetyl neur- 
aminic acid), GM1 or GDla ganglioside, a ganglioside mix- 
ture, globoside, paragloboside, ceramide, ceramide trihexo- 
side, phosphatidic acid, or the mixture of the carrier lipids 
cholesterol and phosphatidylcholine were added to the cul- 
tures. Interestingly, sulfatide, but not its desulfated analogue 
galactocerebroside, reduced attachment of explants and 
modified the outgrowth pattern in a similar manner as the L2 
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Table I. Concentrations of  Monoclonal L2 Antibody, Glycolipids, Lipids, Saccharides, and Glycosaminoglycans That 
Modify or Do Not Modify the Outgrowth Pattern of  Cerebeilar Explant Cultures on Poly-o-lysine-coated Glass Coverslips 

Reagent Modification No Modification 

/t g /ml # m /l g /ml Iz m 

L2 antibody (Fab fragments) >-500 

L2 glycolipid >-2 1.3 
Desulfated L2 glycolipid 
Desulfated and carboxymethylated 

L2 glycolipid 
LM1 ganglioside 
GM1 ganglioside 
GDla ganglioside 
Ganglioside mixture 
Paragloboside 
Globoside 
Sulfatide >-5 
Galactocerebroside 

Ceramide 
Ceramide trihexoside 
Phosphatidic acid 
Cholesterol/phosphatidylcholine mixture 

L2 tetrasaccharide >-50 
Core tetrasaccharide 
Glucuronic acid 
Glucuronic acid-3-phosphate 
Mannose-2-sulfate 
Mannose-3-sulfate 
Mannose-6-sulfate 

Heparin >-0.1 
Hyaluronic acid 
Chondroitin sulfate 

5.8 

62 

<20 13 

<10 6.7 
<20 12 
<20 10 
<10 5 
<20 10 
<10 7 
<10 7 

<20 25 

<20 33 
<10 9 
<20 26 

<100 65/100 

<200 260 
<500 2,580 
<500 1,840 
<500 1,900 
<500 1,900 
<500 1,900 

<50 
<50 

Reagents were added to the culture medium 16 h after plating the explants. 1-3 d later patterns of neurite outgrowth and migration of neuronal and astrocytic 
cell bodies were monitored using morphologic criteria (Fischer et al., 1986). The observed morphologic modifications are described in Results. The category "no 
modification" was used when outgrowth patterns were not significantly different from control cultures without added reagents. See Abbreviations used in this paper 
for structure of L2 glycolipid, LM1 gangliosides, L2 tetrasaccharide, and core tetrasaccharide. 2 p,g of L2 glycolipid and 50 p.g of I.,2 tetrasaccharide correspond 
to 1.3 and 62 nmol, respectively. Molarities for glycosaminoglycans are not indicated, because exact molecular weights and degree of sulfation are not known. 

carbohydrate-containing compounds. Also, heparin, but not 
hyaluronic acid or chondroitin sulfate, detached microex- 
plants when added at concentrations of 1 txg/ml 16 h after ex- 
plant plating. At a concentration of 0.1 IJg/ml heparin re- 
duced outgrowth of cellular processes and migration of cell 
bodies and promoted fasciculation of neurites (not shown). 
The saccharides glucuronic acid, glucuronic acid-3-phos- 
phate, mannose-2-sulfate, mannose-3-sulfate, mannose-6- 
sulfate, or core tetrasaccharide (the L2 carbohydrate chain 
without sulfated glucuronic acid) did not modify the out- 
growth pattern even at high concentrations (Table I). 

To investigate whether sulfated glycolipids bind specifical- 
ly to the cells whose behavior was modified in their presence, 
carboxyfluorescein-labeled liposomes containing sulfatide 
were incubated with cultures for 2 h at room temperature. 
No specific binding to neurons or astrocytes was seen when 
compared with the negatively charged gangliosides LM1 or 
GM1 or galactocerebroside. 

Influence of Monoclonal L2 Antibodies, L2 Glycolipid 
and L2 Tetrasaccharide on Outgrowth Patterns in 
Microexplant Cultures on Laminin 
When laminin was used as a substrate for cerebellar micro- 
explants, an outgrowth pattern different from the one on 

poly-o-lysine was observed. Outgrowth of neurites was de- 
tectable already 2-3 h after plating. Outgrowth of astrocytic 
processes and migration of neuronal and astrocytic cell bod- 
ies was also enhanced in time and space, i.e., neurons and 
astrocytes were often observed even at the periphery of the 
outgrowth zone of neurites. Neurite fasciculation was re- 
duced, when compared with poly-D-lysine as substrate. Be- 
cause of the speedier explant outgrowth on laminin, cultures 
were monitored after 2 d in vitro (Fig. 3). 

When Fab fragments of monoclonal L2 antibody (336 or 
412) were added to the cultures 4 h after plating, neuronal 
migration and extension of neurites were only slightly 
affected, whereas outgrowth of astrocytic processes and cell 
bodies was inhibited at concentrations of 500 Ixg/ml (Fig. 3, 
A and B and C and D). Fasciculation of neurites was slightly 
enhanced over control cultures. 

Addition of L2 glycolipid (5-10 ~tg/ml; 6.5-13 nmol/ml) 4 
h after plating the explants reduced migration of neuronal 
and astrocytic cell bodies and outgrowth of neurites and, to 
a smaller extent, astrocytic processes (Fig. 3, E and F). As 
on poly-o-lysine only short, stubby fascicles of neurites were 
observed. In contrast to the effects of L2 glycolipid on poly- 
o-lysine explants hardly detached from laminin. 

Addition of L2 tetrasaccharide (200 ~tg/ml; 248 nmol/ml) 
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Figure 3. Cerebellar microexplants were cultured on laminin for 2 d (A, B) without or (C, D) with Fab fragments of monoclonal L2 (412) 
antibodies (0.5 mg/ml) or (E, F) with L2 glycolipid (10 Ixg/ml). Antibodies or lipids were added to the medium 4 h after plating. (B, D, 
F) Indirect immunofluorescence labeling for glial-fibrillary acidic protein and (A, C, E) corresponding phase-contrast micrographs. Note 
the inhibition of outgrowth of astrocytic processes by L2 antibodies and inhibition of outgrowth of cellular processes and migration of 
neurons by L2 glycolipid. Bar, 50 I.tm. 

4 h after plating reduced outgrowth of neurites, astrocytic 
processes and migration of neural cell bodies from the ex- 
plants (Fig. 2 B). Most explants remained on the substrate. 
At 50 ~tg/ml inhibition of outgrowth was less than that at 200 
gg/ml, but migration of neural cell bodies and outgrowth of 
astrocytic processes and neurites was still considerably re- 
duced over control cultures. 

Sulfatide (10 [tg/ml) inhibited neurite outgrowth and cell 

migration drastically (Fig. 4 A). The ganglioside mixture (20 
Ixg/ml) and galactocerebroside (20 I.tg/ml) did not influence 
the outgrowth pattern. When heparin (1 lag/ml) was added to 
the cultures 4 h after plating, explants remained attached to 
the substrate, but showed slightly decreased outgrowth of 
neurites and astrocytic processes and reduced migration of 
neuronal cell bodies. These effects became more prominent 
with increasing concentrations of heparin (see Fig. 4 B with 
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Figure 4. Cerebellar microexplants were cultured on laminin for 2 d in the presence of (A) sulfatide (10 ~tg/ml) or (B) heparin (30 ~tg/ml) 
added 4 h after plating. Inhibition of neurite outgrowth is similar to the one observed with L2 glycolipid (see Fig. 3, E and F). Bar, 50 ~tm. 

30 ~tg/ml). Hyaluronic acid or chondroitin sulfate (50 Ixg/ml) 
did not modify the outgrowth pattern (not shown). 

Influence of  L2 Glycolipid on Outgrowth Patterns in 
Microexplant Cultures on Astrocyte Monolayers 

When cerebellar microexplants were cultured on astrocyte 
monolayers neurites extended for several hundred microme- 
ters within 1 d. As on laminin, neurites fasciculated only 
slightly (Fig. 5, A and B). In the presence of L2 glycolipid 
(10 ~tg/ml; Fig. 5, C and D), sulfatide (10 lag/ml; Fig. 5, E 
and F)  or heparin (30 lag/ml; Fig. 5, Gand H) the outgrowth 
pattern was not significantly altered. It is unlikely that astro- 
cytes metabolize the added compounds below their active 
concentrations. 

Influence of  L2 Glycolipid and Sulfatide on 
Neural Cell Adhesion 

To investigate more directly whether the L2/HNK-1 carbohy- 
drate epitope is involved in cell-cell interactions, enriched 

populations of neurons and astrocytes from early postnatal 
mouse cerebellum were monitored in a short-term adhesion 
assay (Table II). Adhesion between enriched populations of 
small neurons and astrocytes from early postnatal mouse 
cerebellum was assayed in the presence and absence of L2 
glycolipid and sulfatide using the ganglioside mixture and 
galactocerebroside as controls. The proportion of L2-posi- 
tive cells was ,060% in single-cell suspensions and mono- 
layer cultures of both neurons and astrocytes when stained 
with L2 (336) antibodies (Keilhauer et al., 1985), but >90% 
when stained with L2 (412) antibodies. Immunofluorescence 
staining with L2 (412) antibodies was also more intense. No 
inhibition of neuron-neuron adhesion was detectable in 
the presence of L2 glycolipid or sulfatide. However, L2 
glycolipid and sulfatide decreased adhesion of neurons to as- 
trocytes, astrocytes to neurons, and astrocytes to astrocytes. 
Inhibition of only 10% was observed when concentrations of 
glycolipids were 10 gg/ml. At 100 ltg/ml sulfatide inhibited 
adhesion of neurons to astrocytes and also, reciprocally, as- 
trocytes to neurons by •30%. Adhesion of astrocytes to as- 

Table I1. Inhibition of Adhesion between Neurons and Astrocytes in the Presence of L2 Glycolipid and Sulfatide 

Inhibition of adhesion 

Neuron* Neuron* Astrocyte* Astrocyte* 
Lipid Concentration to neuron* to astrocyte~; to neuronr to astrocyter 

~ug/ml % % % % 

None 0 + 4  0 +_ 3 0 •  0 •  
L2 glycolipid 10 - 2  _ 4 10 • 1 8 • 1 9 +__ 1 

100w 0 + 2 16 • 3 17 • 3 17 + 3 

Sulfatide 10 2 _ 3 12 + 3 14 • 1 10 -I- 3 
100 5 + 3 27 + 5 27 + 3 18 + 7 

Galactocerebroside 10 0 + 3 - 5  + 4 0 + 2 - 2  + 2 
100 0 + 2 - 4  + 3 - 1  5 : 2  - 3  ___ 4 

Ganglioside mixture 10 1 + 3 0 + 1 1 + 2 - 1  + 3 
100 1 _+2 1 + 4  2 + 3  0 - + 5  

Fluorescein diacetate-labeled single-cell suspensions of enriched populations of small neurons or astrocytes from early postnatal mouse cerebellum were used as 
probe cells (*) to adhere to monolayer cultures (*) of these cell populations. Percent inhibition in the presence of glycolipids was calculated by: % inhibition = 
([adhesion (control)] - adhesion (+glycolipid)/adhesion [control]) • 100. Numbers are mean values of three (or twow experiments + standard deviation. Each 
experimental value was run in quadruplicate. The inhibition by L2 glycolipid and sulfur• in neuron-astrocyte, astrocyte-astrocyte, and astrocyte-neuron adhesion, 
is significantly different from the other values (P < 0.001, Student's t test). 
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Figure 5. Cerebellar microexplants were cultured on astrocyte monolayers for 1 d (A, B) without or with addition of(C, D) L2 glycolipid 
(10 I~g/ml), (E, F )  sufatide (10 ttg/ml), or (G, H) heparin (30 I~g/ml). (B, D, F, H) Indirect immunofluorescence labeling for LI antigen 
and (A, C, E, G) corresponding phase-contrast micrographs are shown. The additives did not inhibit outgrowth of neurites. Bar, 50 Itm. 
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trocytes was reduced by "o20%. Inhibition of adhesion by L2 
glycolipid at 100 ~tg/ml was almost 20% for neuron-astro- 
cyte, astrocyte-neuron, and astrocyte-astrocyte adhesion. 
These inhibition values are remarkably similar to those ob- 
served with L2 antibodies (Keilhauer et al., 1985). L2 tetra- 
saccharide or higher concentrations of L2 glycolipid could 
not be used in this assay because of the limited amounts of 
material available. 

Influence of  L2 Glycolipid, Sulfatide, and Heparin 
on Neural CeU Adhesion on Laminin 

Single-cell suspensions from 6-d-old mouse cerebellum 
were used as probe cells to investigate neural cell adhesion 
on laminin (Table III). >90% of the cells were stained by in- 
direct immunofluorescence with L2 (412) antibodies. Lami- 
nin-coated glass coverslips were preincubated with L2 
glycolipid (40 Ixg/ml), sulfatide (40 gg/ml), or heparin (100 
gg/ml) before the addition of suspended cells which reduced 
the final concentration of additives by a factor of two. A 
significant decrease in cell adhesion could be observed in the 
presence of these additives ranging from 40% to 70%, 
whereas galactocerebroside influenced cell adhesion only 
slightly. In the cell suspensions used, vimentin-positive im- 
mature and mature astrocytes amounted to ,o10% within the 
total cell population. To investigate whether the additives 
blocked adhesion of astrocytes cells attached to coverslips 
were stained for vimentin. The percentage of vimentin- 
positive cells was similar in control and glycolipid- or 
heparin-treated cultures. 

Discussion 

In this study we could show that the L2/HNK-1 epitope is in- 
volved in cell-cell and cell-substrate interactions. The evi- 
dence comes from observations in two culture systems de- 
signed to probe sensitively for cell contacts, monitoring 
outgrowth of neurons and astrocytes from tissue explants on 
different substrates and adhesion either between neural cells 
or between cells and laminin. The fact that not only antibod- 
ies reactive with this epitope, but also the isolated L2/HNK-1 
epitope carrying glycolipid and tetrasaccharide interfere 
with cell-cell and cell-substrate interactions in these culture 
systems, indicates that the carbohydrate itself without adja- 
cent protein backbone domains subserves a functional role. 
The most straightforward way to interpret the present data is 
to envisage a competitive binding of the membrane- or 
substrate-associated L2/HNK-1 carbohydrate and the ex- 
ogenously added carbohydrates to the L2/HNK-1 binding 
site or "receptor" The present findings thus support and focus 
a previous postulate that all L2/HNK-I reactive epitope car- 
rying glycoproteins are indeed involved in adhesion (Kruse 
et al., 1984, 1985). 

Several carbohydrate structures were tested to gain infor- 
mation about the structural requirements underlying the 
L2/HNK-1 dependent adhesion. Of all compounds tested, 
only sulfatide and heparin interfere with cell interactions in 
a similar manner as the L2 carbohydrate-containing com- 
pounds. Both compounds are structurally related to the 
L2/HNK-1 carbohydrate in that they contain sulfate groups 
at the 2' or 3' hydroxyl groups of hexose sugars. The sulfate 
group appears to be the decisive factor in ligand activity, in 
that removal of sulfate from the L2 glycolipid or sulfatide 

Table IlL Inhibition of Adhesion of Cerebellar Cells 
to Laminin in the Presence of L2 Glycolipid, Sulfatide, 
Galactocerebroside, and Heparin 

Inhibition of Adhesion 
Molar 

Reagent Concentration ratio a b 

lt g /ml Iz M % % 

None - - 0 5:_ 21 0 + 13 
L2 glycolipid 20 13 52 5 :10  64 + 6 
Sulfatide 20 23 40 5 :13  61 + 11 
Galactocerebroside 20 25 3 5 : 1 6  29 5 : 1 9  
Heparin 10 64 5 :12  68 + 8 

Fluorescein diacetatedabeled single-cell suspensions were incubated with lam- 
inin-coated glass coverslips. Percent inhibition was calculated as described in 
legend to Table II. Columns a and b contain mean values from two independent 
experiments + standard deviation. For each experiment eight microscopic 
fields (selected randomly) on each of two duplicate coverslips were scored. A 
minimum of 500 cells was counted per experiment. 

leads to complete abolishment of the inhibitory activity. It 
should be emphasized that negative charges per se are not 
effective ligands, and not all sulfated compounds tested show 
inhibitory activity. It remains to be seen whether the 
L2/HNK-1 carbohydrate-containing compounds, sulfatide 
and heparin, exert their effects via different or similar molec- 
ular mechanisms. 

It is noteworthy that in the explant culture system the iso- 
lated L2 glycolipid and tetrasaccharide were more potent in 
modifying the pattern of neurite outgrowth on poly-o-lysine 
or laminin than the monoclonal L2 antibodies. The fact that 
the L2 tetrasaccharide is at least 50 times less efficient on a 
molar basis than the L2 glycolipid in interfering with cell in- 
teractions is not unexpected, because monomers have been 
found to show a lower affinity to their binding sites than mul- 
timers (see, e.g., Yamada et al., 1981) which, in our case, 
would be represented by the lipid micelles containing the L2 
glycolipid. Furthermore, the extent of inhibition of migra- 
tion of neurons and astroctyes and outgrowth of cellular 
processes depended on the substrate: Inhibition tended to be 
less pronounced on laminin than on polylysine, but was not 
detected on astrocytes. This implies, that added L2 glyco- 
lipid and tetrasaccharide (as well as sulfatide and heparin) 
do not prevent neurons to extend neurites by interfering with 
cellular metabolism, but rather interfere with adhesion it- 
self. The fact that adhesion of neural cells to laminin is in- 
hibited to a greater extent by L2 glycolipid at a given concen- 
tration than adhesion between neurons and astrocytes or 
among astrocytes themselves suggests that the L2/HNK-1 
carbohydrate epitope is more prominent in cell to substrate 
than in cell--cell interactions that may be governed by multi- 
ple adhesion mechanisms. 

Some of our observations indicate that the L2/HNK-1 car- 
bohydrate epitope may be involved in binding to laminin. 
Laminin is a natural constituent of extracellular matrix and 
superior to polylysine in promoting neurite outgrowth and 
migration of cell bodies (Baron van Evercooren et al., 1982; 
Manthorpe et al., 1983; Rogers et al., 1983). Laminin can 
bind specifically to sulfated glycolipids (Roberts et al., 1985, 
1986), and this binding can be inhibited by heparin but not 
chondroitin sulfate or hyaluronic acid (Roberts et al., 1986). 
Besides the sulfatide-binding site laminin has an additional, 
high-affinity heparin-binding site (Roberts et al., 1985). This 
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heparin-binding domain is involved in promoting neurite 
outgrowth (Edgar et al., 1984). It is possible that the 
L2/HNK-1 carbohydrate epitope is responsible for a putative 
binding of adhesion molecules to laminin. If this were so, the 
pronounced inhibitory effect of the soluble L2/HNK-1 carbo- 
hydrate on laminin in comparison to the inhibition by L2 an- 
tibodies could be explained by the following possibility: in 
the presence of L2 antibodies other, similar, but immunolog- 
ically not cross-reactive cell surface structures, such as hepa- 
ran sulfate could still interact with laminin, whereas by addi- 
tion of L2 epitope-bearing molecules more binding sites on 
laminin could be blocked. With polylysine as substrate one 
should keep in mind that neurite outgrowth starts with a lag 
period of ~1 d and is slower than on laminin. It is therefore 
conceivable that not polylysine itself, but a cell-conditioned 
substrate, possibly an astrocyte-derived laminin (Liesi et al., 
1983) or an L2/HNK-1 epitope bearing molecule, possibly 
the extracellular matrix constituent J1 (Kruse et al., 1985; 
Sanes et al., 1986), may interact with outgrowing neurites. 

Our present experiments have shown that besides its in- 
volvement in cell to substrate adhesion the L2/HNK-1 carbo- 
hydrate epitope also mediates cell-cell interactions, as it was 
suggested by previous experiments (Keilhauer et al., 1985). 
Interestingly, neuron-neuron interaction does not appear to 
be dominated by the L2/HNK-1 carbohydrate in the short- 
term adhesion assay or in fasciculation of neurites. These 
findings are noteworthy, since neurites and neurons express 
this carbohydrate epitope in our assay systems as do astro- 
cytes (see Keilhauer et al., 1985). However, in conjunction 
with N-CAM the L2/HNK-1 carbohydrate epitope could be 
shown to be functional in adhesion among neurons (Keil- 
hauer et al., 1985), suggesting that it is also involved in adhe- 
sion, but not as the only and possibly minor ligand. These 
observations beg the question as to the molecular nature of 
the cellular receptor(s) for the L2/HNK-1 carbohydrate. 
Whether the receptors for this carbohydrate are the adhesion 
molecules themselves or yet unknown cell surface constitu- 
ents remains to be resolved. An interesting hypothesis put 
forward by Cole, Glaser, and colleagues (1986a, b; Cole and 
Glaser, 1986) is worth mentioning in this context. They could 
show that N-CAM has binding sites for heparin and the cell 
surface. They suggested that the heparin- and cell-binding 
domains may be identical and speculated that the L2/HNK-1 
carbohydrate may well bind to the heparin-binding site. It is, 
therefore, interesting that the L2/HNK-l-carrying epitope 
maps to the cell-binding domain of N-CAM (Cole and 
Schachner, 1987). It is noteworthy that only subpopulations 
of the adhesion molecules LI, myelin-associated glycopro- 
tein, and N-CAM (both in its embryonic and adult forms), 
express the L2/HNK-1 carbohydrate moiety (Kruse et al., 
1985; Poltorak et al., 1986a; Faissner, A., manuscript sub- 
mitted for publication). Therefore, additional binding mech- 
anisms besides the one suggested by Cole and Glaser and our 
experiments may exist between adhesion molecules. 

It is tempting to speculate that the L2/HNK-l-carrying 
carbohydrate moiety subserves a particular function in con- 
junction with others on a multifunctional glycoprotein as it 
has been suggested for the hormone chorionic gonadotropin 
(Calvo and Ryan, 1985). This hormone binds with its protein 
backbone to a receptor that is distinct from the binding site 
for the hormone's carbohydrate moiety which is necessary 
for activation of adenylyl cyclase. Enzyme activation, how- 

ever, occurs only when protein backbone and carbohydrate 
are simultaneously bound to the cell surface, possibly induc- 
ing a crosslinking of the two receptors. Whether a similar 
cooperativity exists between protein backbone and carbohy- 
drate moiety of adhesion molecules and whether the 
L2/HNK-1 carbohydrate plays a role in activation of second 
messenger systems will have to be investigated. 
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