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Abstract. El0 chick sympathetic ganglion cells display 
a cell contact-dependent rise in choline acetyltransfer- 
ase (CHAT) specific activity over the first several days 
in culture. This effect can be mimicked by addition of 
crude membrane fractions prepared from El0 retina 
and adult chicken brain, but not by those from El0 
brain. The effects of both cell-cell and membrane-cell 
contact are inhibited by the addition of anti-NeAM 
Fab fragments. The membranes capable of increasing 
ChAT and those which are ineffective all contain 
NCAM, however their relative levels of NCAM poly- 
sialic acid differ. Whereas membranes with high poly- 
sialic acid NCAM are ineffective, selective enzymatic 
removal of polysialic acid renders them capable of 

producing an increase in CHAT. The inhibition of 
NCAM-mediated adhesion produced by Fab fragments 
can be compensated for by addition of wheat germ ag- 
glutinin, but only with membranes whose NCAM has 
low levels of polysialic acid. Taken together, these data 
suggest that NCAM can regulate cell contact-mediated 
increases in ChAT activity. We propose that NCAM- 
mediated adhesion promotes contact between cell 
membranes to allow the transmission of an otherwise 
NCAM-independent signal. In addition, NCAM's poly- 
sialic acid moiety appears to influence the ability of 
cells to transmit this signal, even in the presence of an 
alternative adhesion mechanism. 

C 
ELL-CELL recognition via adhesion between plasma 
membranes contributes to both the formation of spe- 
cific patterns within a neural tissue and the establish- 

ment of neuronal pathways and connections (see reference 13 
for general review). In some cases the adhesion appears to 
be largely a mechanical phenomenon; that is, ceil surface 
adhesion molecules physically hold two membranes to- 
gether. However, there is evidence that cell-cell adhesion 
can also generate biochemical signals which lead to altera- 
tions in gene expression and/or functional properties of neu- 
ral cells. For example, direct contact between glial cells and 
neurons in vitro promotes biochemical changes in several 
different types of glial cells. Such changes include the ability 
to express mature biochemical properties (cortisol-mediated 
glutamine synthetase induction in chick retinal and tectal 
glial cells; 27, 28), stimulation of celt division (rat Schwann 
cells early in development; 18, 45-47), and morphological 
differentiation accompanied by cessation of proliferation 
(mouse cerebellar astrocytes; 19). Neuron-neuron contact 

1. Abbreviations used in this paper: CHAT, choline acetyltransferase; endo 
N, endoneuraminidase N; NCAM, neural cell adhesion molecule; NGE 
nerve growth factor; WGA, wheat germ agglutinin. 

has also been shown to produce changes in cellular bio- 
chemistry in vitro. Levels of neurotransmitter biosynthetic 
enzymes (tyrosine hydroxylase and/or choline acetyltrans- 
ferase [CHAT]) ~ and of neuropeptides (substance P) are reg- 
ulated by cell-cell contact in rat and chick sympathetic neu- 
rons, as well as in two other related neural crest derivatives, 
rat pheochromocytoma (PC12) cells and bovine adrenal 
chromaffin cells (1-3, 25, 29, 57). 

In most of these systems, the effects of cell-cell contact 
have been studied in three ways: (a) increased cell density 
or co-culture of glial cells with neurons has been used to pro- 
duce increased amounts of cell contact (1, 2, 29, 36, 46); (b) 
addition of crude plasma membrane fractions to cultured 
cells has been shown to mimic cell contact (3, 18, 25, 36, 44, 
47); whereas (c) addition of conditioned medium fails to 
mimic cell contact (1, 3, 19, 46). As has been suggested in 
studies of neuron-Schwann cell contact (35), there are two 
general biochemical mechanisms by which cell contact could 
cause alterations in cell biochemistry: (a) cell adhesion mol- 
ecules could serve to hold the appropriate cells together, 
whereas different molecules actually generate signals be- 
tween cells; or (b) a single molecule or ligand-receptor com- 
plex could function simultaneously in both capacities. 
Whereas studies with crude membranes indicate the require- 
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ment for cell contact, they are not able to distinguish between 
these two mechanisms. 

To investigate the role of cell adhesion in cell contact-de- 
pendent changes in neuronal neurotransmitter enzymes, we 
have focussed on a particular molecule, the neural cell adhe- 
sion molecule (NCAM). NCAM is a well-characterized cell 
adhesion ligand (for recent reviews see references 9, 38, 39) 
which is expressed on many types of neural cells, including 
sympathetic ganglion cells (51). Our experimental approach 
has been to use NCAM-containing cell membranes, namely 
those derived from chick brain or retina, to stimulate 
contact-dependent regulation of ChAT in chick sympathetic 
neurons. The role of NCAM has been analyzed by specific 
perturbation of the molecule's function in two ways: inhibi- 
tion of NCAM-mediated adhesion by anti-NCAM Fab frag- 
ments, and enhancement of adhesion by desialylation of the 
molecule using a bacteriophage endoneuraminidase N (endo 
N; 43). In addition, we have used a lectin to agglutinate 
membranes to cells, thereby bypassing NCAM's adhesive 
function and allowing us to evaluate NCAM's importance in 
signal generation. 

Materials and Methods 

Embryonic Chick Sympathetic Ganglion Cell Culture 
Paravertebral sympathetic ganglia from the lumbar and sacral levels of 10-d- 
old chick embryos (stage 36) were used for primary cultures, which were 
prepared using previously described methods (4). Briefly, upon dissection, 
ganglia were collected in PBS at room temperature. The ganglia were then 
incubated with 0.01% trypsin in Ca2+/Mg2+-free PBS for 20 min at 37~ 
After trypsinization, ganglia were treated for ",,2 min with 0.02 mg/ml 
DNase and then washed with an excess first of PBS and then of F14 medium 
(54) containing 10% heat-inactivated horse serum (F14/HS). The ganglia 
were then dissociated into single cells by passing them through the tip of 
a Pasteur pipette 10-20 times with moderate force. The resulting cell sus- 
pension contained both neurons and nonneuronal cells. In some experi- 
ments, these two populations were separated from one another by a pre- 
plating step (3 h at 37~ on uncoated tissue culture plastic), because 
nonneuronal cells adhere preferentially to tissue culture plastic in the pres- 
ence of horse serum (55). The number of cells per milliliter was approxi- 
mated using a hemocytometer, and cells were plated at a given density onto 
polyornithine and laminin-coated 35-mm tissue culture plastic dishes (11) in 
a total volume of 1.5 ml F14/HS containing 20 ng/ml nerve growth factor 
(NGF). Under these conditions, ,~90% of the neurons initially plated sur- 
vived for up to 5 d in culture (11). In addition, as previously described, when 
the total cell suspension was plated, the presence of horse serum in the 
medium prevented the nonneuronal cells from overgrowing the dish over a 
2-4-d culture period (55). 

An accurate value for the number of cells per dish at the start of culture 
was determined by counting the total number of phase-bright cells attached 
to the dish 1-3 h after plating. Cell counts were carried out by scanning 
along a strip with an area of 1.7% of the total surface area of the dish using 
a phase-contrast microscope with 125 x magnification. The number of sur- 
viving neurons was counted at various times after plating as well. Neurons 
were defined as those cells having well-defined phase-bright cell bodies with 
neurites at least 5 cell diameters long after 48 h in culture. Nonneuronal 
cells were flat and phase dark after several hours in culture, and could be 
counted when cell density was low. 

ChAT Activity 
ChAT activity was determined according to the method of Fonnum (12) in 
extracts of cultured cells prepared by adding the homogenization buffer 
directly to culture dishes. All activity measured in both mixed cultures and 
pure neuronal cultures could be blocked by the specific ChAT inhibitor 
naphthylvinyl pyridine (50 BM; 56). 

Specific enzymatic activity is expressed as activity per cell, with number 
of total cells or neurons determined by counting, as described above. 
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Figure 1. ChAT specific activity as a function of  t ime in culture at 
low, intermediate, and high density. Sympathetic ganglion cells 
(both neurons and nonneuronal  cells) were plated at densities o f  
~600 ,  2,000, or  8,000 cells/cm 2, and ChAT specific activity was 
determined 6, 20, 30, or  45 h later. The zero time point represents  
the value obtained from dissociated cells which were not plated. 
Values are means + SEM of  nine values from four independent  
experiments.  

Preparation of Crude Membrane Vesicles 
Membrane vesicles were prepared from various tissues using a modification 
of previously described methods (22). Briefly, tissues were dissected, rinsed 
with Hepes-buffered saline (HBS; 10 mM Hepes, 150 mM NaC1, pH 7.4, 
containing 100 KIU aprotonin, 50 ltg/ml DNAase, and 2 mM CaCI2), then 
homogenized in the same buffer. Homogenates were first centrifuged at low 
speed (120 g) for 5 min at 4~ to remove unhomogenized tissue and nuclei. 
The resulting supernatant was then centrifuged at 17(]00 g for 20 rain at 4~ 
The pellet was resuspended in HBS containing 0.6 M sucrose, transferred 
to an ultracentrifuge tube, and a cushion of 1.2 M sucrose in HBS was 
layered underneath. Tubes were centrifuged in a Ti60 rotor at 35,000 rpm 
for 45 min at 4~ The crude membrane vesicle fraction was collected from 
the interface of the two sucrose concentrations. Vesicles were washed twice 
with HBS. The final pellet was diluted 1:20 in F14/HS. This dilution resulted 
in an average protein concentration of 0.46 5:0.02 mg/ml (average of values 
determined for El0 retina, El0 brain, and adult brain membranes, n = 8), 
as determined using the Peterson protein assay (32) with BSA as a standard. 

Addition of Vesicles to Cells in Culture. 100 BI of diluted membrane 
vesicles was added to each 35-mm culture dish, which already contained 
cells that had been allowed to attach to the dish for 5 h. The dishes were 
then centrifuged at 1,600 g in the flat bottom of swinging bucket rotors for 
15 min at 4~ which resulted in a rapid and homogeneous adhesion of the 
membrane fractions to the entire surface of the dish. Careful examination 
at high magnification revealed that the cell bodies themselves were also 
densely coated with vesicles. The amount of membrane added (46 Bg/dish 
or 30.7 Bg/ml) was comparable with that used in previous studies of related 
cell culture systems (rat sympathetic neurons, 36-72 Bg/35-mm dish (3) or 
three doses of 100 Bg/ml (25); bovine adrenal chromaffin cells, 30 Bg/ml 
[47]). Neuronal counts were made immediately before membranes were 
added and at the end of the culture period. Values for ChAT activity ob- 
tained from membrane-coated dishes without cells were subtracted from 
those obtained with cells. 

Treatment of Vesicles with Endoneuraminidase IV. The final vesicle 
pellet was resuspended in HBS at a dilution of 1:20. To 25 ~tl of this vesicle 
suspension, 32 U of purified endo N (43) was added in a total volume of 
600 BI HBS. After incubation at 4oC for 30 min, vesicles were washed once 
with a large excess of HBS and the final pellet was resuspended at a dilution 
of 1:100 in ice-cold F14/HS. 500 BI of this suspension was added to cells 
in culture. To monitor removal of NCAM polysialic acid, samples of un- 
treated and treated vesicles were analyzed by immunoblot (see following). 
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Immunological Reagents 

NCAM. Anti-NCAM IgG was purified from polyclonal antisera raised in 
rabbits against chicken NCAM. Purity of IgG fractions was monitored by 
SDS-PAGE using 15% separating gels and silver stain. Fab fragments were 
prepared from the IgGs by digestion with pepsin (43). No heavy chain was 
delectable on gels of the Fab preparations. 

(74. G4 antigen was affinity immunopurified from adult Chicken brain 
using (34 mAb (34), and was generously provided to us by Dr. Fritz Rathjen, 
Max-Planck Institute for Developmental Biology, Tuebingen, FRG. Poly- 
clonal anti-G4 antiserum was raised in rabbits, and IgG fractions and Fabs 
were prepared as described for NCAM. Chicken (34 antigen is biochemi- 
cally and functionally related to the mouse L1 cell adhesion molecule. (34 
and L1 have 50% identical NH2-terminal amino acid sequences, behave 
similarly in two-dimensional IEF/SDS-PAGE gels, and are both associated 
with fiber tracts and involved in neurite fasciculation in vitro (34). 

Gel Electrophoresis and lmmunoblot Techniques 

Gel electrophoresis was carried out using 7.5 % polyacrylamide separating 
gels containing SDS (26). Separated proteins were then electrophoretically 
transferred to nitrocellulose for immunoblotting (53). Nonspecific binding 
was blocked by incubating the nitrocellulose sheets with Blotto (23) for 1 h 
at 37~ Primary antibody was diluted in Blotto and incubated with the 
nitrocellulose for 2 h at room temperature. Unreacted antibody was washed 
away using a series of 4 5-min washes in phosphate buffer (55). Bound anti- 
body was then reacted with a peix)xidase-conjugated second antibody (anti- 
IgG of the appropriate species, also diluted in Blotto), and visualized by 
color development of the enzyme reaction using 0.05 % 4-chloro-l-naphthol 
and 0.01% HzO2 as substrates (20). 

Results 

Characterization of the Effect of Cell-CeU Contact 
on Neurotransmitter Biosynthetic Enzyme Activity 
in Chick Sympathetic Neurons 

To study the role of NCAM in cell contact-mediated changes 
in neurotransmitter enzyme levels in vitro, a model  system 
was required in which NCAM function could be reliably per-  
turbed. The chick embryo was used because Fab fragments 
prepared from polyclonal antisera against chicken NCAM 
have been shown to be effective and specific in blocking 
NCAM function in a variety of  different developmental 
events (17, 24, 31, 40, 42, 48, 50). We chose to examine the 
effect of cell contact on ChAT specific activity in sympathetic 
neurons, because previous studies using rat sympathetic neu- 
rons indicated that this enzyme is regulated by ce l l -ce l l  con- 
tact (2, 3, 25). 

To produce different degrees of cel l -cel l  contact, sym- 
pathetic ganglion cells from embryonic day 10 (including 
both neurons and nonenuronal cells) were cultured at differ- 
ent densities, ranging from 6,000-80,000 cells/dish (600-  
8,000 cells/cm2). This procedure resulted in an initial ho- 
mogeneous distribution of  >85 % single cells at each of  the 
different densities. ChAT specific activity remained low at 
all densities for the first 4 h in culture (Fig. 1). However, by 

Figure 2. Appearance of sympathetic ganglion cell cultures after membrane treatment. Sympathetic ganglion ceils were cultured at a density 
of •1,500 cells/cm 2. 5 h after the initial plating, El0 retinal membranes were added to the dishes as described (see Methods). Photographs 
were taken after 1 d in culture (a and c, untreated controls; b, El0 retinal membranes added) and after 3 d in culture (d, untreated controls; 
e; El0 retinal membranes added). (e) The cultures develop normally in the presence of membranes. Note the increased neuronal size and 
the extensive neuritic network that has developed (compare to a). (c) Even at low density, some dusters of neurons are present after 1 d 
in culture. (d) Nonneuronal cells present in the cultures tend to align themselves along the neurites. Arrows point to the flattened, phase-dark 
nonneuronal cells, easily seen after several days in culture. Bar, 50 ttm. 
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8 h after plating, ChAT activity began to increase, even at 
the lowest density (Fig. 1). As plating density was increased, 
the plateau of increased activity was reached at later times, 
i.e., at low density the plateau was reached after only 1 d in 
culture, whereas at intermediate and high densities, the pla- 
teau was reached after 2 d or longer (Fig. 1). 

Although the extent of cell contact was difficult to quantify, 
it was qualitatively clear that even after only 24 h at low cell 
density, some of the single cells had migrated together to 
form small clusters (Fig. 2 C). At intermediate and high den- 
sities, larger clusters were formed. Previous studies using rat 
sympathetic neurons suggested that this normally occurring 
migration of the neurons in culture is responsible for the 
effect on ChAT activity (3). In the present cultures, the non- 
neuronal cells tended to align themselves along the neurites 
(Fig. 2 D). Thus, there were at least three different types of 
contact occurring in these cultures: cell body-cell body, neu- 
rite-neurite, and neurite-glial cell. However, an effect on 
ChAT activity similar to that seen in mixed cultures was also 
present in >95% pure neuronal cultures (see Methods). 
Neurons maintained at intermediate density (1,500 neurons/ 
cm 2) for 30 h had higher ChAT specific activity (13.8 + 1.10 
pmol/h per 1,000 cells) than those maintained at low density 
(650 neurons/cm2; 6.0 + 0.53 pmol/h per 1,000 cells), sug- 
gesting that the presence of neurons alone was sufficient to 
produce the effect. A significant and variable degree of neu- 
ron-neuron aggregation occurred during the preplating step 
used to prepare pure neuronal cultures which, in turn, 
affected the baseline of ChAT activity at any given density. 
Thus, pure neuronal cultures were not used for studies of 
membrane-cell contact described below. 

To further assess the importance of cell-cell contact, con- 
ditioned medium from high-density cultures was added to 
cells plated at low density. After 17 h in culture, there was 
no effect of conditioned medium on ChAT activity (Table I). 

We next examined the ability of crude membrane fractions 
to mimic the effect of increased cell density. Membranes 
from embryonic day 10 chick brain or retina were added to 
intermediate density cultures 5 h after the initial plating. Nei- 
ther brain nor retinal membranes altered the long-term sur- 
vival of the neurons (data not shown), or the development of 
characteristic long neurites (Fig. 2 E). However, addition of 
either type of membrane substantially inhibited the forma- 
tion of clusters of neuronal cell bodies (Fig. 2 E). Thus, 

Table I. Effect of High Density Conditioned Medium 
on ChAT Activity in Low Density Cultures 

ChAT specific activity 

Low density$ 
Low density + 50% CMw 
High densityll 
High density + 50% CM 

pmol/h per 1,000 cells* 

253 + 0.09 
2.78 + 0.08 
6.56 + 0.34 
6.87 + 0.27 

* ChAT specific activity was determined after 20 h in culture. Values are 
means + SEM of six values obtained in two independent experiments. 
$ Low density was 530 cells/em ~. 
w Conditioned medium (CM) was obtained from high density cultures as fol- 
lows. Sympathetic ganglion cells were plated at a density of 9,200 cells/cm 2 
and were cultured for 4 d without medium change. The conditioned medium 
was then removed and stored frozen at -20~ Cultures treated with CM 
received 50% CM and 50% fresh FI4/HS, together with 30 ng/ml NGF. 
II High density was 7,250 cells/cmL 
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Figure 3. Effect of retinal and brain membranes on ChAT activity. 
Sympathetic ganglion cells were plated at a density of ,~2,000 
cells/cm 2. 5 h after the initial plating, membranes prepared from 
El0 retina (RT) or El0 brain (BR) were added to the dishes as de- 
scribed (see Methods). 8, 18, or 30 h later, ChAT specific activity 
was determined. Addition of both types of membrane decreased 
cell-cell contact, probably reflecting a reduction in cell migration. 
Thus, although values for cells alone are shown for reference (con- 
trol), the enhancement of ChAT activity by retinal membranes is 
best represented by comparison with the levels obtained with El0 
brain membranes. The zero time point represents the values ob- 
tained from dishes immediately after the addition of membranes. 
Values are means + SEM of 11 values obtained in four independent 
experiments. 

when El0 brain membranes were added to the cells, ChAT 
specific activity increased only slightly from the low level 
seen in freshly dissociated cells (Fig. 3). This inhibitory 
effect relative to untreated control cultures probably reflects 
the reduction in cell migration caused by the presence of 
membrane vesicles on the substrate. Despite the decrease in 
cell-cell contact, the addition of retinal membranes brought 
about an increase in ChAT activity to levels about three times 
those obtained in cultures treated with El0 brain membranes 
(Fig. 3). 

Role of  NCAM: Effect of  Anti-NCAM Fab Fragments 

CeU-CeU Contact. As a first step in determining whether 
NCAM was involved in cell contact-mediated biochemical 
events, the effect of anti-NCAM Fab fragments on ChAT ac- 
tivity was assessed in cultures of sympathetic neurons. Sym- 
pathetic ganglion cells were kept in suspension culture in un- 
coated tissue culture plastic dishes for 8 h to allow cell 
surface proteins, including NCAM, to recover after trypsin- 
ization (41). During the initial 3 h, the nonneuronal cells 
were allowed to attach to the plastic surface. The neuron- 
enriched suspension was then carefully removed and placed 
in a second uncoated dish in NGF-containing medium for the 
remainder of the 8 h period. Cells were then preincubated 
for 30 min with either anti-NCAM Fab or preimmune Fab 
plated at high density (6,000 cells/cm2), and ChAT activity 
was determined 1 d later. In two independent experiments, 
ChAT specific activity was decreased nearly threefold by 
anti-NCAM Fab fragments (preimmune Fab, ChAT sp act 
12.5 + 1.2; anti-NCAM Fab, ChAT sp act 4.54 + 0.33; 
means + SEM of six dishes). 

Cell-Membrane Contact. We next examined the ability of 
anti-NCAM Fab fragments to inhibit the effect of retinal 
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Figure 4. NCAM and G4 present in retinal and brain membranes 
and sympathetic neurons. The NCAM and G4 forms present on 
membranes obtained from El0 retina and brain, adult chicken 
brain, and sympathetic neuronal cultures were monitored by immu- 
noblots after transfer of proteins separated on SDS-PAGE to nitro- 
cellulose. (A) NCAM was detected using a polyclonal anti-chicken 
NCAM antiserum. (Lane 1 ) Adult chicken brain membranes; (lane 
2) El0 brain membranes; (lane 3) El0 brain membranes treated 
with endo N as described (see Methods); (lane 4) El0 retinal mem- 
branes; (lane 5) El0 retinal membranes treated with endo N; (lane 
6) total protein from sympathetic ganglion cell cultures after 1 d 
in vitro. The diffuse staining in the high molecular mass range 
reflects NCAM molecules with high polysialic acid content (lanes 
2 and 4). Treatment with endo N removes most of this diffuse stain- 
ing, yielding two more discrete bands at ,,o mol vet 180 and 140 kD 
(lanes 3 and 5). Because NCAM forms present in adult chicken 
brain membranes (lane 1) and sympathetic neurons (lane 6) contain 
little polysialic acid, more discrete bands are seen. (B) G4 was de- 
tected using a polyclonal anti-chicken G4 antiserum, and appears 
as two discrete bands of • mol wt 180 and 130 kD. (lane 1) Adult 
chicken brain membranes; (lane 2) El0 brain membranes; (lane 3) 
El0 retinal membranes; (lane 4) total protein from sympathetic gan- 
glion cell cultures after 1 d in vitro. Molecular mass standards, 
indicated by dots, are: myosin (200,000), phosphorylase b (92,500), 
BSA (69,000), and ovalbumin (46,000). 

membranes on ChAT activity. The Fab fragments were 
added to the cells together with the membranes ~ 5  h after 
the initial plating. 17 h later, ChAT specific activity was de- 
termined. As a control for the specificity of the effects of anti- 
NCAM Fab fragments, membranes were also added together 
with Fab fragments of a polyclonal antiserum directed 
against the G4 antigen, another cell adhesion molecule 
(related to L1, NILE, and NgCAM; 6, 16, 33, 34, 49) which 
is present on both retinal and brain membranes, as well as 
on sympathetic neurons (Fig. 4). Both immunoblot analysis 
(Fig. 4; compare panel A, lane 6 with panel B, lane 4) and 
immunostaining (7) indicate that the relative amounts of 
NCAM and G4 present on sympathetic neurons are com- 
parable. G4 is present on both El0 and adult chicken brain 
membranes in relatively high amounts (Fig. 4 B, lanes 1 and 
2), but on El0 retinal membranes to a lesser extent (Fig. 4 
B, lane 3). 

In these experiments, anti-NCAM Fab fragments inhibited 
the effect of retinal membranes on ChAT activity, whereas 
anti-G4 Fab fragments and those prepared from nonimmune 
serum had no effect (Table II). Neither the decrease in ChAT 
activity seen after the addition of brain membranes (Table II) 
nor cell viability (data not shown) was altered by any of the 
Fab fragments. 

Importance of  N C A M  Polysialic Acid Content 

NCAM is present on retinal membranes, which were effec- 
tive in stimulating ChAT activity, as well as on El0 brain 
membranes, which were ineffective. However, El0 retinal 
NCAM has a relatively low polysialic acid content compared 
with El0 brain NCAM (Fig. 4 A; see also references 8, 22). 
The possible role of NCAM polysialic acid in the membrane- 
mediated increase in ChAT activity was thus examined in two 
ways: (a) selective removal of polysialic acid from NCAM 
using the bacteriophage enzyme endo N, and (b) addition of 
membranes from adult chicken brain, in which the naturally 
occurring NCAM is similar to El0 retina in its content of 
polysialic acid (Fig. 4 A). 

In the first protocol, retinal and brain membranes were 
each incubated with endo N, and aliquots of treated and un- 
treated vesicles were analyzed by SDS-PAGE to determine 
the effectiveness of the treatment (Fig. 4 A). Retinal mem- 
branes that had been treated with endo N were not altered 
in their ability to mediate an increase in ChAT. In contrast, 
El0 brain membranes, which when untreated did not pro- 
duce an increase in CHAT, became effective in increasing en- 
zyme activity after endo N treatment (Table HI). In the sec- 
ond protocol, exposure of cells to adult chicken brain 
membranes resulted in an increase in ChAT activity (Table 
III). In all cases, the enhancement of ChAT activity pro- 
duced by the membranes was blocked by anti-NCAM Fab 
fragments (Table III), and anti-G4 Fab fragments were 
ineffective (Table II). 

Table II. Effect of Fab Fragments on Membrane-mediated 
Alterations in ChA T Activity 

Membranes added* Fab~ ChAT specific activityw 

None  

El0 Retina 

E l 0  Brain 

E l 0  Brain + endo N 

Adult brain 

pmol/h per 1,000 cells 

- 5.00 + 0.08 
Nonimmune 4.83 + 0.25 
Anti-NCAM 4.91 + 0.21 
Anti-G4 5.22 + 0.19 

- 12.2 5:0.52 
Nonimmune 13.3 5:0.47 
Anti-NCAM 3.51 + 0.09 
Anti-G4 12.7 + 0.33 

- 3.33 5:0.11 
Nonimmune 2.95 5:0.12 
Anti-NCAM 2.74 + 0.14 
Anti-G4 3.57 5:0.10 

- 6.56 • 0.01 
Anti-G4 6.66 + 0.02 

- 1 3 . 7  + 0.2 
Nonimmune 14.1 5:0.3 
Anti-G4 13.2 + 0.3 

* Sympathetic ganglion cells were cultured at a density of ,~2,000 cells/era 2. 
5 h later, membranes prepared from the tissues indicated were added to the 
dishes as described (see Methods). In some experiments, EIO brain membranes 
were treated with endo N as described (see Methods). 
~: Membranes were preincubated with 50 ttg of the appropriate Fab frag- 
mentltxl original pellet volume for 30 rain on ice, before membranes plus Fab 
fragments were added to the cells. 
w 18 h after the addition of  membranes to cells, ChAT specific activity was de- 
termined in extracts from each dish. Data are means + SEM of five to nine 
values obtained in five independent experiments. 
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Table IlL Role of NCAM's Polysialic Acid Content 
in the Effectiveness of Membranes to Mediate an Increase 
in ChAT Activity 

Membranes added* Anti-NCAMr ChAT activityw 

None  - 5.1 -t- 0 .2  

+ 4 .8  + 0 .3  

E l 0  Bra in  - 3 .3  + 0.1 

+ 2.7 + 0 . 1  

E l 0  Brain  + endo N - 6 .7  + 0 .2  

+ 2.6 + 0.1 

El0 Retina - 14.4 -t- 0.6 
+ 3.9 + 0.3 

E l 0  Ret ina  + endo N - 15.2 + 0 .8  

+ 3.2 + 0 .3  

Adul t  bra in  - 13.6 + 0 .4  

+ 3.3 + 0 .2  

* Sympathetic ganglion cells were cultured at a density of ,x,2,000 cells/cm 2. 
5 h later, membranes were added to the dishes as described (see Methods). The 
relative content of NCAM polysialic acid (PSA) for each of the membrane 
preparations can be estimated from the mobility of NCAM in SDS-PAGE as 
visualized on immunoblots (see Fig. 4). 
$ Membrane vesicles were preincubated with 50 lag anti-NCAM Fab frag- 
ment/lal original pellet volume for 30 min on ice, before membranes plus Fab 
fragments were added to the cells. 
w 18 h after the addition of membranes to cells, ChAT specific activity was de- 
termined (pmoles/h per 1,000 cells). Data are means + SEM of seven to nine 
values obtained from three independent experiments. 

Is the Role of NCAM Direct or Indirect? 

Whereas the data presented above suggested a role for 
NCAM in the cell contact-mediated change in ChAT activ- 
ity, they are not able to distinguish between a direct effect of 
NCAM as a signal generator and the indirect effect of  aggluti- 
nation of membranes to cells, i.e., a purely adhesive func- 
tion. To address this issue, we have examined the ability of  
an alternative adhesion mechanism, agglutination by a plant 
lectin (wheat germ agglutinin; WGA), to substitute for 
NCAM-mediated adhesion. 

This series of experiments was carried out using El0 reti- 
nal and brain membranes whose NCAM-mediated adhesion 
was blocked by incubation with anti-NCAM Fab fragments. 
The membranes were then added to cells that had been 
pretreated with WGA. Whereas retinal membranes added 
together with anti-NCAM Fab fragments had no effect on 
ChAT activity, their ability to increase ChAT activity was re- 
stored when the membranes were agglutinated to the cells 
with WGA (Fig. 5). However, when El0 brain membranes 
were added to the cells in the presence of anti-NCAM, ChAT 
activity remained low, even in the presence of WGA (Fig. 5). 
Only after treatment of  El0 brain membranes with endo N 
to remove NCAM polysialic acid did WGA-mediated aggluti- 
nation result in an increase in ChAT activity (Fig. 5). This 
effect does not reflect a difference in the number of ]25I- 
WGA binding sites present on endo N-treated brain mem- 
branes (1.25 Ixg/ml t25I-WGA plus 400 I.tg/ml cold WGA in- 
cubated with control or endo N-treated brain vesicles for 10 
min at 4~ - e n d o  N = 49,479 + 3,589 cpm bound, +endo 
N = 52,944 + 4,641 cpm bound; heat-denatured ligand 
]25I-WGA = 1,805 _ 125 cpm bound). 

I O ' [ ]  MEMBRANES ALONE 
[ ]  MEMBRANES + 
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�9 WGA § MEMBRANES 
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.1 

EIO EIO 
BRAIN BRAIN 

+ando N 

EIO 
RETINA 

Figure 5. Lectin-mediated agglutination of membranes to cells: role 
of NCAM polysialic acid in the effectiveness of membranes to in- 
crease ChAT activity. Sympathetic ganglion cells were plated at a 
density of •2,000 cells/cm 2. 5 h later, some of the cells were in- 
cubated with 10 Ixg/ml WGA at 37~ for 30 min. Membrane vesi- 
cles were prepared from El0 brain or retina and treated with endo 
N as described (see Methods). Aliquots of El0 brain membranes, 
El0 brain membranes treated with endo N, and El0 retinal mem- 
branes were then preincubated with anti-NCAM Fab fragments (50 
~tg anti-NCAM Fab/ttl original pellet vol for 15 min at 4~ Mem- 
branes alone (open bars) or membranes + anti-NCAM Fab 
(hatched bars) were then added to control cells, and membranes + 
anti-NCAM Fab were also added to the cells which had been 
precoated with WGA (solid bars). ChAT specific activity was deter- 
mined 16 h later. Values are the means + SEM of seven values ob- 
tained in three independent experiments. Control values were as 
follows (expressed as pmol/h per 1,000 cells): untreated ceils, 5.03 
+ 0.11; cells + WGA, 5.61 + 0.22; cells + WGA + anti-NCAM 
Fab, 5.50 + 0.08; cells + brain membranes + WGA, 2.73 + 0.07; 
cells + retinal membranes + WGA, 10.1 + 0.10. 

Discussion 

In El0 chick sympathetic neurons, there is a cell contact-de- 
pendent increase in the specific activity of ChAT over the 
first several days in culture. This effect is similar to that 
which has been previously described using rat sympathetic 
neurons, where contact between neurons results in an in- 
crease in both ChAT specific activity and substance P con- 
centration (2). Our data suggest that NCAM is important for 
this effect in two ways. First, NCAM-mediated binding ap- 
pears to be necessary to hold cell membranes together to 
allow the transmission of an independent signal. This re- 
quirement can be replaced by an artificial lectin-mediated 
adhesion system. Second, NCAM's polysialic acid moiety 
appears to influence the ability of cells to transmit this signal, 
even in the presence of  the alternative adhesion mechanism. 

The molecular mechanism of the signal that directly in- 
creases ChAT activity is not known, although both soluble 
and membrane-bound cholinergic neuronal differentiation 
factors have been described (5, 14, 15, 21, 25, 30). Moreover, 
the nature of the increase itself is not well defined. Previous 
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studies using chick sympathetic neurons have suggested the 
existence of two discrete neuronal subpopulations which can 
be selected by culture conditions, one of which exhibits pri- 
marily cholinergic characteristics and the other adrenergic 
characteristics after several days in culture (10, 37). However, 
those experiments could not distinguish between selection of 
a subpopulation versus culture-induced loss of the ability to 
respond to a cholinergic inducing factor. Nonetheless, under 
culture conditions where essentially all of the neurons sur- 
vived (similar to the high density cultures in the present 
study), both ChAT and tyrosine hydroxylase were expressed 
in a ratio of •3:1, i.e., the cholinergic enzyme predomi- 
nated, even though two-thirds of the cells exhibited another 
adrenergic marker (37). 

Zurn and Mudry (57) have studied chick superior cervical 
ganglion neurons from E8-12 in long-term culture under con- 
ditions where only a subpopulation of ceils survive (50 % of 
those originally plated). Their data indicate that these neu- 
rons are capable of synthesizing both acetylcholine and 
catecholamines. As culture density was increased from 
~10,000 to 50,000 cells/cm 2, cholinergic properties dimin- 
ished and adrenergic properties dominated. Nonetheless, at 
the lowest density (10,000 cells/cm2), corresponding to high 
density in the present study, synthesis of acetylcholine was 
greater than that of catecholamines (57). These studies are 
consistent with the interpretation that tyrosine hydroxylase 
and ChAT can be coexpressed, with their ratio regulated by 
cell-cell contact. Because our cultures contain the total cell 
population, the data in the present study cannot distinguish 
between an induction of ChAT in adrenergic cells versus an 
increase of ChAT in an already cholinergic subpopulation. 

Our results demonstrate the ability of NCAM to indirectly 
influence the transmission of a signal which leads to changes 
in ChAT levels. This influence includes two components, 
one that correlates with the presence or absence of NCAM- 
mediated adhesion, and a second that reflects the molecule's 
polysialic acid content. Regulatory effects of NCAM-medi- 
ated adhesion have been observed in other cell-cell interac- 
tions, namely junctional communication among neural plate 
cells and the innervation of muscles (17, 40, 52). 2 Neither 
gap junctions nor neuromuscular junctions are believed to 
contain NCAM as an integral component, yet the perturba- 
tion of NCAM-mediated adhesion by antibody in culture has 
been shown to block or delay their formation (17, 40). 2 

NCAM's polysialic acid content also appears to regulate 
the efficiency of NCAM-NCAM binding (22, 43). However, 
recent studies suggest that this is only one of the conse- 
quences of a more global influence of the polysialic acid moi- 
ety, which is very large and abundant, on the overall degree 
of membrane-membrane apposition) In the present stud- 
ies, the ability of NCAM polysialic acid to block the increase 
in ChAT activity, even when NCAM binding function is 
replaced by lectin-mediated agglutination, is consistent with 
the idea that polysialic acid may serve as a selective screen 
around the cells which can prevent some ligands from inter- 
acting with their receptors. 3 

2. Keanel R. W., P. P. Mehta, B. Rose, L. S. Honig, W. R. Loewenstein, 
and U. Rutishauser. 1987. ,1". Cell Biol. In press. 

3. Rutishauser, U., A. Acheson, A. K. Hall, D. M. Mann, and J. Sunshine. 
1987. Submitted for publication. 

Do the observations made in this study have implications 
for the development of sympathetic neurons in vivo? As indi- 
cated above, temporal changes in NCAM expression have 
been proposed to regulate the initial formation of gap junc- 
tions in the neural plate and neuromuscular junctions in the 
chick hindlimb (52). 2 Chick neural crest cells also display 
temporal regulation of NCAM expression. In particular, they 
lose NCAM during the process of migration, and then reex- 
press NCAM in the developing ganglia (51). Taken together, 
data from these three systems are consistent with the hypoth- 
esis that the expression of the NCAM polypeptide in devel- 
oping tissues, together with variations in its polysialic acid 
content, may serve as permissive "gates" which control con- 
tact~ependent cell-cell interactions) Future studies will be 
directed towards a closer examination of both the expression 
of the NCAM polypeptide and its polysialic acid content in 
the course of development of the sympathetic ganglion. 
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and EY-06107. A. Acheson is supported by U.S. Public Health Service train- 
ing grant NS0711809. 

Received for publication 17 August 1987, and in revised form 23 October 
1987. 

References 

1. Acheson, A. L., and H. Thoenen. 1983. Cell contact-mediated regulation 
of tyrosine hydroxylase synthesis in cultured bovine adrenal chromaflin 
cells. J. Cell Biol. 97:925-928. 

2. Adler, J. E., and I. B. Black. 1985. Sympathetic neuron density differen- 
tially regulates transmitter phenotypic expression. Proc. Natl. Acad. Sci. 
USA. 82:4296-4300. 

3. Adler, J. E., and I. B. Black. 1986. Membrane contact regulates transmitter 
phenotypic expression. Dev. Brain Res. 30:237-241. 

4. Barde, Y.-A., D. Edgar, and H. Thoenen. 1982. Culture of embryonic 
chick dorsal root and sympathetic ganglia. In Neuroscience Approached 
Through Cell Culture. Vol. I. S, E. Pfeiffer, editor. CRC Press, Inc., 
Boca Raton, FL. 83-86. 

5. Black, I. B., J. E. Adler, and L. S. Sehleifer. 1986. Characterization of 
a membrane component regulating transmitter phenotypic expression. 
Neurosci. Abstr. 12:587. 

6. Book, E., C. Richter-Landsberg, A. Faissner, and M. Schachner. 1985. 
Demonstration of immunochemical identity between nerve growth fac- 
tor-inducible large external (NILE) glycoprotein and the cell adhesion 
molecule LI. EMBO (Eur. Mol. Biol. Organ.) J. 4:2765-2768. 

7. Chang, S., F. G. Rathjeu, and J. A. Raper. 1987. Extension of neurites 
on axons is impaired by antibodies against specific neural cell surface gly- 
coproteins. J. Cell Biol. 104:355-362. 

8. Chuong, C,-M., and G. M. Edelman. 1984. Alterations in neural cell adhe- 
sion molecules during development of different regions of the nervous 
system. Z Neurosci. 4:2354-2368. 

9. Edelman, G. M. 1984. Modulation of cell adhesion during induction, histo- 
genesis, and perinatal development of  the nervous system. Annu. Rev. 
Neurosci. 7:339-377. 

t0. Edgar, D., Y.-A. Barde, and H. Thoenen. 1981. Subpopulations of cul- 
tured chick sympathetic neurones differ in their requirements for survival 
factors. Nature (Lond.). 289:294-295. 

11. Edgar, D., R. Timpl, and H. Thoeneu. 1984. The heparin-binding domain 
of laminin is responsible for its effects on neurite outgrowth and neuronal 
survival. EMBO (Eur. Mol. Biol. Organ.) J. 3:1463-1468. 

12. Fonnum, F. 1975. A rapid radiochemical method for the determination of 
choline acetyltransferase~ J. Neurochem. 24:407-409. 

13. Frazier, W., and L. Glaser. 1979. Surface components and cell recognition. 
Annu. Rev. Biochem. 48:491-523. 

14. Fukada, K. 1985. Purification and partial characterization of a cholinergic 
neuronal differentiation factor. Proc. Natl. Acad. Sci. USA. 82:8795- 
8799. 

15. Gray, D. B., and L B. Turtle. 1987. [3H]Acetylcholine synthesis in cul- 
tured ciliary ganglion neurons: effects of myotube membranes. Dev. Biol. 
119:290-298. 

16. Grumet, M., and G. M. Edelman. 1984. Heterotypic binding between neu- 
ronal membrane vesicles and glial cells is mediated by a specific cell adhe- 
sion molecule. J. Cell Biol. 98:1746-1756. 

17. Grumet, M., U. Rutishauser, and G. M. Edelman. 1982. Neural cell adhe- 
sion molecule is on embryonic muscle cells and mediates adhesion to 
nerve cells in vitro. Nature (Lond.). 295:693-695. 

18. Hanson, G. R., and L. M. Partlow. 1980. A comparison of two factors 

Acheson and Rutishauser NCAM Regulates Choline Acetyltransferase Increase 485 



affecting the proliferation of non-neuronal (glial) cells in vitro. Brain Res. 
192:371-381. 

19. Hatten, M. E. 1987. Neuronal inhibition of astroglial cell proliferation is 
membrane mediated. J. Cell Biol. 104:1353-1360. 

20. Hawkes, R., E. Niday, and J, Gordon. 1982. A dot-immunobinding assay 
for monoclonal and other antibodies. Anal. Biochem. 119:142-147. 

21. Hawrot, E. 1980. Cultured sympathetic neurons: effects of cell-derived and 
synthetic substrata on survival and development. Dev. Biol. 74:136-151. 

22. Hoffman, S., B. C. Sorkin, P. C. White, R. Brackenbury, R. Maiihanmaer, 
U. Rutishauser, B. A. Cunningham, and G. M. Edelman. 1982. Chemi- 
cal characterization of a neural cell adhesion molecule purified from em- 
bryonic brain membranes. J. Biol. Chem. 257:7720-7729. 

23. Johnson, D. A., J. W. Gantsch, J. R. Sportsman, andJ.  H. Elder. 1984. 
Improved technique utilizing nonfat dry milk for analysis of proteins and 
nucleic acids transferred to nitrocellulose. Gene Anal. Tech. 1:3-8. 

24. Keilhaner, G. A. Faissner, and M, Schachner. 1985. Differential inhibition 
of neurone-neurone, neurone-astrocyte and astrocyte-astrocyte adhesion 
by LI, L2 and N-CAM antibodies. Nature (Loud.). 316:728-730. 

25. Kessler, J. A., G. Corm, and V. B. Hatcher. 1986. Isolated plasma mem- 
branes regulate neurotransmitter expression and facilitate effects of a 
soluble brain cholinergic factor. Proc. Natl. Acad. Sci. USA. 83:3528- 
3532. 

26. Laemmli, U. K. 1970. Cleavage of structural protein during assembly of 
the head of bacteriophage T4. Nature (Loud.). 227:680-685. 

27. Linser, P. J., and A. A. Moscona. 1983. Hormonal induction of glutamine 
synthetase in cultures of embryonic retina cells: requirement for neuron- 
gila contact interactions. Dev. Biol. 96:529-534. 

28. Linser, P. J., and M. Perkins. 1987. Gtiogenesis in the embryonic avian 
optic tectum: neuronal-glial interactions influence astroglial phenotype 
maturation. Dev. Brain Res. 31:277-290. 

29. Lucas, C. A., D. Edgar, and H. Thoenen. 1979. Regulation of tyrosine 
hydroxylase and choline acetyltransferase activities by cell density in the 
PC12 rat pheochromocytoma cloual cell line. Exp. Cell Res. 121:79-86. 

30. Nishi, R., and D. Berg. 1981. Two components from eye tissue that 
differentially stimulate the growth and development of ciliary ganglion 
neurons in cell culture. J. Neurosci. 1:505-513. 

31. Noble, M., M. Albrechtsen, C. Moiler, J. Lyles, E. Bock, C. Goridis, 
M. Watanabe, and U. Rutishanser. t985. Gila/cells express N-CAM/ 
D2-CAM-like polypeptides in vitro. Nature (Lond.). 316:725-728. 

32. Peterson, G. L. 1977. A simplification of the protein assay method of 
Lowry etal .  which is more generally applicable. Anal. Biochem. 83: 
346-356. 

33. Rathjen, F. G., and U. Rutishanser. 1984. Comparison of two cell surface 
molecules involved in neural cell adhesion. EMBO (Eur. Mol. Biol. Or- 
gan.) J. 3:461-465. 

34. Rathjen, F. G., J. M. Wolff, R. Frank, F. Bonhoeffer, and U. Rutishauser. 
1987. Membrane glyeoproteins involved in neurite fasciculation. J. Cell 
Biol. 104:343-353. 

35. Rather, N., R. P. Bunge, and L. Glaser. 1985. A neuronal cell surface 
heparan sulfate proteeglycan is required for dorsal root ganglion neuron 
stimulation of Schwann cell proliferation. J. Cell Biol. 101:744-754. 

36. Rather, N., L. Glaser, and R. P. Bunge, 1984. PC12 cells as a source of 
neurite-derived cell surface mitogen, which stimulates Schwann cell divi- 
sion. J. Cell Biol. 98:1150-1155. 

37. Rohrer, H., H. Thoenen, and D. Edgar. 1983. Presence of nerve growth 
factor receptors and catecholamine uptake in subpopulations of chick 
sympathetic neurons: correlation with survival factor requirements in cul- 
ture. Dev. Biol. 99:34--40. 

38. Rutishauser, U. 1984. Developmental biology of a neural cell adhesion 
molecule. Nature (Loud.). 310:549-554. 

39. Rutishauser, U., and C. Goridis. 1986. NCAM: the molecule and its 
genetics. Trends Genet. 2:72-76. 

40. Rutishauser, U., M. Grumet, and G. M. Edelman. 1983. Neural cell adhe- 
sion molecule mediates initial interactions between spinal cord neurons 
and muscle cells in culture. J. Cell Biol. 97:145-152. 

41. Rutishanser, U., S. Hoffman, and G. M. Edelman. 1982. Binding proper- 
ties of a cell adhesion molecule from neural tissue. Proc. Natl. Acad. Sei. 
USA. 79:685-689. 

42. Rutishauser, U., J.-P. Thiery, R. Braekenbury, and G. M. Edelman. 1978. 
Adhesion among neural cells of the chick embryo. HI. Relationship of 
the surface molecule CAM to cell adhesion and the development of histo- 
typic patterns. J. Cell Biol. 79:371-381. 

43. Rutishanser, U., M. Watanabe, J. Silver, F. A. Troy, and E. R. Vimr. 
1985. Specific alteration of NCAM-mediated cell adhesion by an endo- 
neuramlnidase. J. Cell Biol. 101:1842-1849. 

44. Saadat, S., and H. Thoenen. 1986. Selective induction oftyrosine hydroxy- 
lase by cell-cell contact in bovine adrenal chrornafiin cells is mimicked 
by plasma membranes. J. Cell Biol. 103:1991-1997. 

45. Salzer, J. L., and R. P. Bunge. 1980. Studies of Schwann cell proliferation. 
I. An analysis in tissue culture of proliferation during development, 
Wallerian degeneration and direct injury. J. Cell Biol. 84:739-752. 

46. Salzer, J. L., R. P. Bunge, and L. Glaser. 1980. Studies of  Schwann cell 
proliferation. HI. Evidence for the surface localization of the neurite 
mitogen. J. Cell Biol. 84:767-778. 

47. Salzer, J. L., A. K. Williams, L. Glaser, and R. P. Bunge. 1980. Studies 
of Schwann cell proliferation, lI. Characterization of the stimulation and 
specificity of the response to a neurite membrane fraction. J. Cell Biol. 
84:753-766. 

48. Silver, J., and U. Rutishanscr. 1984. Guidance of optic axons in vivo by 
a preformed adhesive pathway on neurocpithelial endfeet. Dev. Biol. 106: 
485--499. 

49. Stallcup, W. B., and L. Beasley. I985. Involvement of the nerve growth 
factor-inducible large external glycoprotein (NILE) in neurite fascicnia- 
tion in primary cultures of rat brain. Proc. Natl. Acad. Sci. USA. 82: 
1276-1280. 

50. Thanos, S., F. Bonhoeffer, and U. Rutishanser. 1984. Fiber-fiber interac- 
tion and tectal cues influence the development of the chicken retinotectal 
projection. Proc. Natl. Acad. Sci. USA. 81:1906-1910. 

51. Thiery, J.-P., J.-L. Duband, U. Rutishanser, and G. M. Edelman. 1982. 
Cell adhesion molecules in early chicken embryogenesis. Proc. Natl. 
Acad. Sci. USA. 79:6737-6741. 

52. Tosney, K. W., M. Watanabe, L. Landmesser, and U. Rutishauser. 1986. 
The distribution of NCAM in the chick hindlimb during axon outgrowth 
and synaptogenesis. Dev. Biol. 114:437--452. 

53. Towhin, H., T. Staehelin, and J. Gordon. 1979. Electrophoretic transfer 
of proteins from polyacrylamide gels to nitrocellulose sheets: procedure 
and some applications. Proc. Natl. Acad. Sci. USA. 76:4350--4354. 

54. Vogel, Z., A. L Sytkowski, and M. W. Nirenberg. 1972. Acetylcholine 
receptors of muscle grown in vitro. Proc, Natl. Acad. Sci. USA. 
69:3180-3184. 

55. Wakade, A. R., D. Edgar, and H. Thocnen. 1982. Substrate requirement 
and media supplements necessary for the long-term survival of chick sym- 
pathetic and sensory neurons cultivated without serum. Exp. Cell Res. 
140:71-78. 

56. White, H. L., and C. J. Cavallito. 1970. Inhibition of bacterial and mam- 
malian choline acetyltransferase by styrylpyridine analogues. J. Neu- 
rochem. 17:t579-1589. 

57. Zurn, A. D., and F. Mudry. 1986. Conditions increasing the adrenergic 
properties of dissociated chick superior cervical ganglion neurons grown 
in long-term culture. Dev. Biol. 117:365-379. 

The Journal of Cell Biology, Volume 106, 1988 486 


	Untitled

