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Abstract. A number of human cytokeratins are ex- 
pressed during the development of stratified epithelia 
from one-layered polar epithelia and continue to be 
expressed in several adult epithelial tissues. For 
studies of the regulation of the synthesis of stratifi- 
cation-related cytokeratins in internal tissues, we have 
prepared cDNA and genomic clones encoding cytoker- 
atin 4, as a representative of the basic (type II) 
cytokeratin subfamily and cytokeratin 15, as representa- 
tive of the acidic (type I) subfamily, and determined 
their nucleotide sequences. The specific expression of 
mRNAs encoding these two polypeptides in certain 
stratified tissues and cultured cell lines is demon- 
strated by Northern blot hybridization. Hybridization 
in situ with antisense riboprobes and/or synthetic oli- 

gonucleotides shows the presence of cytokeratin 15 
mRNA in all layers of esophagus, whereas cytokeratin 
4 mRNA tends to be suprabasally enriched, although 
to degrees varying in different regions. We conclude 
that the expression of the genes encoding these stratifi- 
cation-related cytokeratins starts already in the basal 
cell layer and does not depend on vertical differentia- 
tion and detachment from the basal lamina. Our re- 
sults also show that simple epithelial and stratification- 
related cytokeratins can be coexpressed in basal cell 
layers of certain stratified epithelia such as esophagus. 
Implications of these findings for epithelial differentia- 
tion and the formation of squamous cell carcinomas 
are discussed. 

PITHELIAL differentiation is usually characterized by 
the formation of intermediate-sized filaments (IFs) ~ 
of the cytokeratin type (20, 28, 85, 86). The early em- 

bryonal epithelia, i.e., ecto- and endoderm, are simple polar 
epithelia and possess IFs of the most simple polypeptide 
composition, i.e., one representative of the acidic (type I) 
subfamily, i.e., cytokeratin 18, and one representative of the 
more basic (type II) cytokeratin subfamily, i.e., cytokeratin 
8 (17, 42, 43, 48, 55, 70). When during the development of 
certain organs the organization of one-layered polar epithelia 
changes and transforms to stratified epithelia, the synthesis 
of other cytokeratins, i.e., cytokeratins 1-6 and 9-17, is in- 
duced; these appear to be related to the stratification process 
(for early embryonal epithelia see references 3, 13, 55, 68, 
92). Among the earliest stratification-related cytokeratin 
polypeptides are cytokeratin 4, a type II polypeptide, and the 
type I cytokeratin 15, which are expressed during the em- 
bryonic development of all the diverse stratified epithelia 
studied so far, including epidermis (68). Cytokeratin 4 
seems to disappear in later stages of epidermal maturation, 
whereas cytokeratin 15 expression is continued in adult 
epidermis where it persists as a minor component (11, 30, 65, 

1. Abbreviations used in this paper: IF, intermediate-sized filament: pfu, 
plaque-forming unit. 

68, 73). While cytokeratin 4 is one of the most abundant 
cytokeratins in several adult nonepidermat stratified epithelia 
such as oral and lingual mucosa, laryngeal and pharyngeal 
epithelia, epiglottis, esophagus, exocervix, and vagina and 
in squamous cell carcinomas derived from these tissues (4, 
5, 31, 35, 65-69, 72, 73, 94), cytokeratin 15 is usually de- 
tected in these epithelia only as a minor component. 

Recent immunocytochemical studies using monoclonal 
antibodies specific for the stratification-related cytokeratins 
4 and 13 have localized these proteins to the suprabasal layers 
of various stratified epithelia (91), suggestive of a correlation 
of these two cytokeratins with the vertical differentiation pro- 
cess. In this respect, information about cytokeratin 15 is to- 
tally lacking as so far no antibody specific for this protein 
has been described. In order to learn more about the regula- 
tion of the selective appearance of stratification-related 
cytokeratins in different tissues as well as in different layers 
of the same epithelial tissue it was obviously necessary to 
have the adequate nucleic acid probes. So far human DNA 
clones are available only for some cytokeratins expressed in 
epidermis (e.g., 36, 37, 61, 82, 88) and certain simple epithe- 
lia (34, 56, 71, 80). In the present study, we describe the 
cloning of genes encoding cytokeratins 4 and 15 and their 
amino acid sequences, and show their specific expression in 
various squamous epithelial tissues and cultured cell lines. 
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Materials and Methods 

Tissue Preparation 
Tissue samples were obtained during surgery for various indications (Sur- 
gery Clinics, Women's Hospital, and Dermatology Department, Mann- 
helm, and University of Heidelberg-Mannheim Medical School). Small 
pieces of epithelium were frozen in liquid nitrogen or in isopentane pre- 
cooled in liquid nitrogen to -130~ within 15 min after surgical removal, 
For RNA extraction epithelial cell layers were either quickly peeled off with 
forceps or scraped off with a scalpel. The collected epithelial material was 
either frozen in liquid nitrogen or immediately homogenized in 4 M 
guanidinium isothiocyanate buffer (in 0.1 M Tris-HC1, pH 7.5, 10 mM di- 
thiothreitol, (DTT), and 5 mM EDTA). 

Library Screening and DNA Sequencing 
A cDNA library in Lgtl0 constructed from poly(A)+-RNA of the vulvar 
carcinoma cell line A-431 was kindly provided by Dr. A. Ullrich (Genen- 
tech, South San Francisco, CA; cf. 90). A genomic library in European Mo- 
lecular Biology Laboratory (EMBL)-3 phage constructed from partially 
digested human blood was kindly obtained from Dr. R. Cortese (EMBL, 
Heidelberg, Federal Republic of Germany (FRG); cf. 7). Screening and 
DNA extraction procedures were performed essentially as described (56). 
As nick-translated screening probe we used a mixture of combined cDNA 
inserts excised from various bovine type I and II cytokeratin cDNA clones, 
including pKBla, pKBlb/c, pKBIII, pKBIV, pKBVI, pKBVll, pKB8 I, and 
pKBI9 ~ (2, 45-47, 60). 120,000 phages were plated from the amplified 
cDNA library. The EcoRl inserts of the purified phage DNAs were sub- 
cloned into the pTZI8 R vector (Pharmacia, Uppsala, Sweden). Both 
strands of the clones pKH4 ~ (encoding cytokeratin 4) and pKHI5 t (encod- 
ing cytokeratin 15) were sequenced according to the standard protocol of 
Maxam and Gilbert (62). The nick-translated Y-specific Xhol fragment of 
clone pKHI5 ~ was subsequently used to screen 1.2 • 106 phages of the 
genomic library. Fragments of one of the three selected genomic clones 
(~.KH152) were purified, subcloned into the transcription vectors Blue- 
scribe and Bluescript (Stratagene, San Diego, CA), and sequenced. 

Construction of a Y-specific Subclone and 
In Vitro Expression of a Reconstructed Complete 
cDNA Clone for Cytokeratin 15 
Two polynucleotides of 75 residues, taken from both strands of the 3'-non- 
coding region (residues 1606-1680; see Results), were synthesized and 
purified as described (57), attached to EcoRI linkers and cloned into the 
transcription vector Bluescript (clone pKH152). For the construction of a 
complete hybrid cDNA clone encoding cytokeratin 15, the KpnI/Kpnl frag- 
ment of 479 nucleotides of the genomic phage clone ~,KHI52 which con- 
tains a large part of the first exon was ligated to the unique Kpnl site of the 
cDNA clone pKHI5 ~. The BamHI/EcoRI insert of this clone was further 
subcloned into Bluescript (clone pKH15~). The transcript of pKHI53 ob- 
tained with T7 RNA-polymerase was translated in vitro (cf. 59) and the 
translational product was analyzed by coelectrophoresis with cytoskeletal 
proteins from A-431 cells or tissues (cf. 53, 60, 65). 

RNA Preparation and Northern Blot Analysis 
Total RNA and poly(A)+-RNA were extracted from cultured human cells 
of the vulvar epidermoid carcinoma-derived cell line A-431, including 
clonal sublines expressing cytokeratin 4 as well as clones with high relative 
contents of either cytokeratin 13 (clone E3) or cytokeratin 15 (clone E6; for 
different sublines, see also reference 65), the breast carcinoma cell line 
MCF-7, the pharyngeal carcinoma-derived cell line Detroit-562, and the 
bladder carcinoma-derived cell line RT-112 (65, 66, 73). For comparison, 
RNA from SV40-transformed human fibroblasts (27) was used. Culture 
dishes were rinsed three times with PBS. After carefully decanting the buf- 
fer, the cells were directly suspended in the 4 M guanidinium isothiocyanate 
buffer (see above), scraped off, and homogenized with an Ultra Turrax blen- 
der (Janke and Kunkel KG, Staufen, FRG). RNA was extracted from homog- 
enates of cultured cells and from tissue samples essentially as described 
(56). Poly(A)+-RNA was bound to an oligo-dT cellulose matrix and eluted 
as described by Kreis et al. (53). Purified RNA was electrophoretically 
separated on 1.2 % agarose gels containing formaldehyde, blotted onto Gene 
Screen Plus and hybridized with RNA polymerase in vitro transcripts (56). 

Hybrid Selection and Translation In Vitro 
Poly(A)+-RNA from A-431 cells (clones E3 and E6) or total RNA from 
Detroit-562 cells were hybridized to filter-bound subclones and selected 
mRNAs were translated in vitro using [35S]methionine as label (cf. 46, 
60). In experiments with the short subclone pKHI52, the hybridization 
temperature was lowered to 32~ and the bound RNA was successively re- 
moved by washes at increasing temperature. Two-dimensional gel elec- 
trophoresis was performed as coelectrophoresis of the in vitro translation 
products with an excess of unlabeled reference proteins and cytoskeletal pro- 
teins from A-431 cells or from esophageal tissue to allow the identification 
of the translational products (cf. 46, 58, 60, 65). 

Hybridization In Situ 
Upon linearization of pKH4 ~ with HindIII and pKHl51 with BglI ribo- 
probes were obtained that could be radioactively labeled by in vitro tran- 
scription with T7 RNA polymerase (56). The 75-mer polynucleotide com- 
plementary to residues 1606-1680 (see above) was 5' end-labeled with 
[~,-32P]ATP using polynucleotide kinase and purified (cf. 57). The protocol 
for hybridization in situ was as described (9, 56). Posthybridization treat- 
ment with RNase A was omitted when synthetic oligonucleotide probes 
were used. 

Immunofluorescence Microscopy 
4-5 Ixm cryostat sections of various tissues, including esophagus, epi- 
dermis, endo- and exocervix, vagina, tongue, lung, liver, and colon were 
processed as described (cf. 1). Monoclonal antibody 6BI0, specific for 
cytokeratin 4 (91) was kindly provided by Dr. G. van Muijen (University 
of Leiden, Netherlands). 

Results 

Immunocytochemical Localization 
of Stratification-related C ytokeratins 
in Internal Epithelia 
Most internal squamous stratified epithelia are characterized 
by abundant amounts of cytokeratins 4 and 13, together with 
usually lesser amounts of cytokeratins 5, 6, 14, and 15 (cf. 
73). In immunofluorescence microscopy, monoclonal anti- 
bodies specific for cytokeratins 4 and 13 stain, in the epithelia 
studied so far, all suprabasal cell layers rather uniformly but 
leave the basal cell layer unstained. For example, Fig. 1, a 
and b shows the reactivity of the cytokeratin 4-specific mono- 
clonal antibody 6B10 on esophagus, and similar pictures 
were also obtained with other stratified tissues (not shown) 
such as exocervix (cf. 22), vagina, oral, and lingual mucosa 
(e.g., 72). Remarkably, cytokeratin 4-specific immunostain- 
ing is not restricted to the stratified epithelium but positive 
reaction can also be seen in certain cells or cell clusters in 
the ducts of mucous and serous glands of the esophageal sub- 
mucosa (Fig. 1, c and d; cf. 40). As antibodies specific for 
cytokeratins 5, 6, 14, or 15 are not available the tissue distri- 
bution of these cytokeratins in internal epithelia is not 
known. 

Isolation of cDNA Clones Encoding 
Human Cytokeratins 
A ~,gtl0 cDNA library of the cell line A-431 was initially cho- 
sen because these cells coexpress a total of up to eleven 
different cytokeratins (65, 73), including cytokeratins 5, 6, 
13-15, and at least in some sublines, small amounts of cyto- 
keratin 4 as well (unpublished data; 91). 1.2 • 105 plaque- 
forming units (pfu) of the amplified library were screened 
with a mixed probe containing the nick-translated inserts of 
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Figure L Immunofluorescence microscopy of frozen sections of human esophagus and its submucosal glands after reaction with monoclonal 
antibody 6Bt0 specific for cytokeratin 4. The same field is shown in epifluorescence (a, c) and phase-contrast (b, d) optics. L, lumen; 
E, epithelium; LP, lamina propria. (a, b) Intense immunofluorescence of suprabasal cell layers, whereas the two to three basalmost cell 
layers, forming the basal compartment C1 (brackets; the broken line in b denotes the basal lamina), are unstained. (c, d) Heterogeneous 
reaction of certain groups of cells in the duct epithelium of an esophageal gland. Most of the positively stained cells are adluminat. Bars, 
50 ~tm. 

diverse bovine cDNA clones (see Materials and Methods) 
under low stringency conditions. 19 phages were plaque- 
purified and 11 of them were confirmed as containing cyto- 
keratin-positive clones by Southern blot hybridization. Hy- 

bridization with clones pKH8 ~ and pKH182 under stringent 
conditions, in addition to restriction enzyme mapping, iden- 
tified three phage clones as positive for cytokeratin 8 and four 
clones positive for cytokeratin 18 (cf. 56 and 71). The inserts of 
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three of the remaining clones (~,KH4 ~, ~KH42, and ~,KH15 I) 
were integrated into the transcription plasmid pTZ 18R. 

Identification of  a cDNA Clone Encoding 
Human Cytokeratin 4 

After hybridization with RNA from A-431 cells, the sub- 
clone pKH4 ~ selected a mRNA which yielded, on release 
and in vitro translation, a barely detectable product which 
did not comigrate with any of the major cytokeratins present 
in A-431 cells (data not shown). However, a hybrid selec- 
tion-translation experiment with RNA from Detroit-562 
cells revealed a distinct translational product which comi- 
grated with authentic cytokeratin 4 (Fig. 2, a and b). 

When RNA extracted from diverse tissues and cultured 
cell lines was probed for mRNA encoding cytokeratin 4 in 
Northern blot hybridization experiments, using specific 
riboprobes derived from clone pKH4 r (for details, see Fig. 
3), all those tissues and cells in which this cytokeratin had 
been found by immunocytochemistry and/or gel electropho- 
resis were also positive in this test (Fig. 2, c-e). In contrast, 
epithelial cell cultures as well as simple (colon) and squa- 
mous stratified (epidermis) epithelial tissues, in which this 
cytokeratin has not been detected at the protein level, were 

negative in Northern blot hybridization with this probe (Fig. 
2, c-e). These results also show that, under our stringency 
conditions of hybridization, cross-hybridization with mRNAs 
for other cytokeratin members of the same subfamily did not 
occur, thus allowing the specific detection of cytokeratin 4 
mRNA (cf. 46; see, however, 32, 49). 

The by far highest concentration of mRNA for cytokeratin 
4 was found in esophageal RNA (Fig. 2 c, lanes 4 and 4'; 
Fig. 2 d, lane 10). When cultured cells were probed for 
cytokeratin, two of the carcinoma cell lines derived from 
stratified tissues, i.e., pharyngeal carcinoma line Detroit- 
562 and the bladder carcinoma-derived line RT-112, showed 
mRNA signals of moderate intensity (Fig. 3 c, lanes 2' and 
3', and 3 d, lane 7), whereas only a weak signal was obtained 
with RNA from A-431 cells from which the cDNA clone was 
isolated (Fig. 2 d, lanes 8 and 9). This seems to be in agree- 
ment with biochemical findings of only miniscule amounts 
of cytokeratin 4 in this cell line (cf. 65, 91). 

Sequence Characteristics of  Human Cytokeratin 4 

Sequencing shows that the 1760-bp insert of clone pKH4 ~ 
offers an open reading frame encoding 408 amino acids (Fig. 
3) and a 3'-noncoding portion of 536 bp which contains a ca- 

Figure 2. Identification and characterization of clone pKH4 ~ as coding for human cytokeratin 4 by hybrid selection and translation (a, b) 
or Northern blot hybridization analysis (c-e). (a, b) Hybrid-selection experiment in which total RNA from cultured human Detroit-562 
cells have been exposed to clone pKH4 ~, showing the in vitro translated product of the specifically bound mRNA to comigrate with 
authentic cytokeratin 4 of a cytoskeletal preparation of esophagus. (a) Coomassie Blue-stained polypeptides separated by two-dimensional 
gel electrophoresis (in a, the direction of nonequilibrium pH-gradient electrophoresis in first dimension is from right to left and the second 
dimension SDS-PAGE is from top to bottom, as indicated by arrows in the upper right corner) include the major esophageal cytokeratins 
4, 5, 6, and 13, reference proteins (bovine serum albumin, B, and a-actin, 0t) and an endogenous component of the rabbit reticulocyte 
lysate system used for in vitro translation (arrow). (b) Autoradiograph of the gel shown in a, revealing the [3~S]methionine-labeled 
cytokeratin 4, and a slightly more acidic degradation product, as the only labeled polypeptides. (c-e) Autoradiographs of different Northern 
blots hybridized with antisense riboprobes for the 3'-noncoding sequence of clone pKH4 ~ (see Materials and Methods). 20 p_g of total 
RNA was loaded on the gel in c, whereas 10 ~g of total RNA was applied in d and e, with the exception of lanes 8 (5 ~tg of POly(A)*- 
RNA) and 9 (50 pg of poly(A)+-RNA). RNA was from SV-40-transformed fibroblasts (lanes 1, 1', and 5), the pharynx carcinoma-derived 
cell line Detroit-562 (lanes 2, 2', and 7), the bladder carcinoma-derived cell line RT-112 (lanes 3 and 3'), human esophagus (lanes 4, 
4', and 10; in the overexposed lanes, reactivity with degraded RNA is more prominent), the breast carcinoma cell line MCF-7 (lane 6), 
the vulvar epidermoid carcinoma-derived cell line A-431 (lanes 8 and 9), human colon mucosa (lane 11), and adult epidermis (lanes 
12). Prolonged autoradiographic exposure of lanes 1-4 is shown in lanes 1'-4'. Bars on the left margin indicate the positions of (from 
top to bottom) the 28 S, 23 S, 18 S, and 16 S rRNAs coelectrophoresed as markers. The size of the mRNA encoding cytokeratin 4 was 
estimated to be ~2.2 kb. We cannot satisfactorily explain the different signal intensities in lanes 2, 2', and 7; perhaps they are due to 
different RNA transfer efliciencies, 
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1 S L N Q S L L T P L H V E I D P E I Q K V R T E E R E Q I k  

~ I  ~ T ~ T ~ C ~ A A G T T T ~ T ~ T T ~ A T ~ G G T ~ G T T ~ T T A ~ G C ~ A G A A T A A G G T C ~ T G G A G A C C A A A T G G A A C C T ' 3 C ~ r C  
3 1 L L N N K F A S F I D K V Q F L E Q Q N K V L E T K W N L L  
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5 1 Q ~ Q T T T T S S K N L E P L F E T Y L S V L R K Q L D T L  

2 7 1 G G C ~ T ~ C A A A G G G C G C C T G C A G T C T ~ T G A A ~ C C A T ~ A G ~ C A G C G T G G A G G A C T T C ~ C T ~ G T A T ~ A G A G G A G A T C ~ C  
~ I G N D K G R L Q S E L K T M Q D S V E D F K T K Y E E E I N  

3~1 ~ C G C A ~ G C A ~ C ~ G A A T ~ C T T T G T ~ T C C T A A A G A A G G A C G T G ~ T G C T ~ C T A C C T ~ A C ~ G G T G ~ G T T G G A G G C C A A G G T G  
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4 5 1  ~ C A G T ~ T T ~ T ~ G A G A T C ~ T T C ~ T G A A ~ T C C T C T A T ~ T ~ G G A G C T G T C C ~ A ~ T G C A ~ A T G T ~ A G ~ G A ~ A ~ G T C C G T G  
1 5 1 D S L N O E I N F L K V L Y D A E L S Q M Q T H V S D T S V  

5 4 1  G T c C T T T C ~ T G G A c A A C A A C C ~ T G G A C C T G G A C A ~ A T T A T T G C C ~ G G T C C G T G ~ C C A G T A C ~ G ~ G A T T G C C C A G A G G A ~  
1 3 1 V L S M D N N R N L D L D S I I A E V R A Q Y E E I A Q R S  

8 3 1  ~GGCT~GGCTGAA~CCTGTAC~CC~TCCA~A~TCCA~TCTC~TT~CC~CATGGT~C~CCTGAAGAACACCAAG 
2 1 1 K A E A E A L Y ~ T K V Q Q L Q I S V D Q H G D N L K N T K  

7 2 1 A G T G A A A T T G c A ~ T c ~ c A G G A T ~ T c c A ~ G C ~ C T ~ G G G C A ~ T C ~ G A A C A T C ~ G A A G C A G T G C C A G A ~ T C T T C A ~ T A T C C  
2 4 1 5 E I A E L N R M I Q R L R A E I E N I K K Q C Q T L Q V S  

311 G T G G C T ~ T ~ A ~ G C A ~ T ~ G A A T ~ C C T T A A A ~ T ~ C C A C A G C ~ G C G T A G A G C T G G A G G C T G C C C T G C A G C A G G C C ~ G  
2 ? I V A D A E Q R G E N A L K D A H S K R V E L E A A L Q Q A K  

~ 0 1 G A G G A ~ T G G c A ~ C ~ ` A T ~ T ~ G T ~ G T A C ~ G G A ~ T C A T ~ G T G T G A A ~ G G ~ C T T G G A C A T C ~ G A T ~ G C C A C C T A C C G C A A A C T G  

3 0 1  E E L A R M L R E Y Q E L M S V K L A L D I E I A T Y R K L ~ g u r e  3. Nucleotide sequence of 
g 9 1  C T G G A G G G C ~ G G A G T A c A G A A T G T C T G G A G A A T ~ G T ~ C G T G A ~ A T C T ~ T G T G G T C A G C ~ T A ~ A ~ C A G ~ A C T G ~ G G ~ A T C  c l o n e  pKH4' and the deduced 
331 L E G Er E V , U S a E C ~ S A V S , S V V S G S T S r G a ~ n a ~ i a l  a m i n o  a c i d  

o f  sequence 
1 0 8 1 A ~ G G A G G A T ~ A G G A A ~ G G c ~ G G G ~ G G C ~ G ~ A G T G ~ G G C ~ C T G G A A G ~ G G ~ T T G ~ T T T G G ~ C A G ~ G ~  human cytokeratin 4 (one letter 

3 8 1 5 G G L G S G S G F G L S S G F G S G S G S G F G F G G S V  code). The end of the e-helical 
1171 ~c~GG~A~TTC~AGCA~~TcTA~CACCA~GAAc~GAGA~GATAGAG~GAc~GGT~cTG~AG~TCACTGT~T~A coil~-coil domains is demarcated 

3 9 1  $ G S S S S K I I G T T T L N K R R i h v  
Asterisk shows the an arrow. 

, 2 e l  ~TGGGcccA~A~G~c~c~cc~TcAc~cAcc~ccA~cc~c~G~c~c~c~cA~c~A~AG~ccccTccAC~A stop codon. The polyadenylation 
1351  T C ~ C A ~ G G G C T C ~ T ~ c C ~ G G A ~ T ~ G ~ G G G A ~ A G G G A C T ~ C ~ C ~ G ~ T G G ~ A G C T A ~ T ~ G A T ~ G G G  signal 15 bp upstream from the 
1441 cC~cc~Acc~GGAA~GGGAAGGATGTcA~C~cACcTCcCA~GcA~Gà AGAAAATGACCAG~GTGTcATCTcCAG poly(A)-tail is underlined. The 

~ n d l l I  site used ~r  truncation 
1531 ~ T A T T G G G G ~ A ~ A ~ A T G T ~ T ~ A G T C ~ A ~ C ~ C A ~ A ~ T G T A ~ A T ~ A T C ~ A C A T ~ A G ~ A A A C T A ~ T ~  prior to in vitro transcription 
1521 ~ T c ~ G G C A ~ A c T T G G C ~ T G ~ A A ~ T ~ A G ~ G ~ A ~ A G ~ G T C ~ A T T ~ A C ~ T C ~ A ~ C ~ A ~ A ~  ~ r  preparing the riboprobe is 
1 7 1 1 T ~ A ~ T G A A T C T T C ~ T ~ T ~ T T T T G T C A T T C A A A A A A A A A A A ~ A  overlined. 

nonic polyadenylation site and, 15 bp further downstream, 
an uninterrupted stretch of 14 adenosine residues, apparently 
the residue of the poly(A)-region. Sequence comparison 
with other IF proteins identified theeneoded protein as a typ- 
ical member of the basic (type II) subfamily of cytokeratins 
(cf. 37). Conformation prediction analyses (for programs ap- 
plied see 2, 79) revealed the typical organization into central 

a-helical regions flanked by non-a-helical head and tail do- 
mains (cf. Fig. 4). The three highly conserved helical re- 
gions (la, lb, and 2) are characterized by a typical heptad 
pattern, which is interrupted by short spacer sequences, indi- 
cating that these regions form stable coiled-coil complexes 
with complementary cytokeratins (for reviews see 36, 37, 84, 
93). The sequence demarcating the abrupt transition from 

H ~ .  C l a  C l b  
. . . . . .  "1- �9 F �9 �9 

H �9 sLNQ~LLTPLHVE~DPE~Q4~TEE~EQ~KLLNNKFA~F~DKVQFLEQQNKVLETK~NLLCK~QTTTTSSKNLEPLFETYLSVL~KQLDTL 

MKS7 T~NQSLLT~LQvE~DPE~QK~RTAE~EQ~KTLNNKFASF~DK~RFLEQQNK~LETKw~LL~CK~TTTr~K5LD~FFET~HALRKNLDTL 

c ~ b  . . . . . .  ":1 
H 4 GNDKGRLQSELKTMQOSVEOFKTKYEEEINKRTAAENDFVVLKKDVDAAYLNKVELEAKVDSLHDEtNFLK VLYDAELS~dQTHVSDTSV 

k/dKS7 sNDKGRLQSELKMM~DSvE~FKTKYEEE~NK~TAAENDF~VLKKDvDAAYM~K~ELEAKME~LKDE~NFTRvLYEAELAQM~THv~DTSv 

F 
�9 I Y R KA A LY TKV INV H 4 VLSMONNRNLDLDS IAEVR Q EEIAQ S E EA O " QQLQ . DQHGDNLKNTKSEIAELNRMIORLRAEIENIKKQCQTLQVS 

MKS7 VL~MDNNRNLDLDG~AE~AQYED~ARKSKAEVES~YQ~KvQ~LQ~dSADQHGDSLKTTKNE~SELNRM~QRLRAE~ENiKKQSQTPQAS 

- -  C 2  . . . .  G"IE T 
H 4 VA~AEQRGENALKDAHSK~VELEAALQQAKEELARMLREYQELMSVKLALDIEIATY~KLLE EYRMSGECQ~AVSIS~VSG~TSTGGI" 

IdIKSl vADAEQRGELALKDAYSKRAELETALQKAKEDLARLLRDYQALM~VKLALDVE~ATYRKLLEGEECRM~GECKSA~S~S~vGGSQH--~w 

T 
H 4 SGGLGSGSGFGLSSGFGSGSGSGFGFGGSVSGSSSSKIIS--TTTLNKRR 

MK57 RSGLGLGSGFCS . . . .  GSGSGSGFGFGGGIYGGSGSKITSSATITKRSPR 

Figure 4. Comparison of the 
amino acid sequence of human 
cytokeratin 4 (H 4) with that of 
the murine Mr 57,000 cytokera- 
tin (MK57; 51). Asterisks show 
identical residues, numbers de- 
note conservative exchanges: 1 
(for S and T), 2 for acidic amino 
acids (D and E), 3 for basic resi- 
dues (H, R, K), and 5 for hydro- 
phobic residues (M, I, L, V, A). 
The coiled-coil rod domain is di- 
vided into a-helical coils Cla, 
Clb, and C2 which are flanked 
by an incomplete head domain 
(H) and the tail region (T). Note 
the high degree of homology 
(~85 %) of amino acid sequences 
of the polypeptides which is not 
restricted to the rod domain but 
also extends to the head and the 
tail regions. 

Leube et al. Molecular Characterization of Cvtokeratins 4 and 15 1253 



coil 2 into the tail domain is the typical "consensus sequence" 
TYR(X)LLEG present in all IF proteins (32, 36, 37, 73, 84, 
93). Comparisons with other protein sequences identified 
the murine Mr 57,000 (mol wt 56,429) cytokeratin, ex- 
pressed predominantly in tongue and forestomach (51), as 
the protein most closely related to pKH4 ~ (Fig. 4). The 
amino acid identity of ~ 8 0 %  between human cytokeratin 4 
and this murine cytokeratin was considerably higher than 
that with human cytokeratin 6 (65 %; 37, 88), indicating that 
the mouse Mr 57,000 cytokeratin may be the equivalent to 
human cytokeratin 4. None of the various bovine type II 
cytokeratin sequences determined in our laboratory (cf. 45, 
47, 58) showed a similarly close relationship to human 
cytokeratin 4. 

The tail region of human cytokeratin 4 is exceptionally rich 
in hydroxyamino acids (40%) but contains less glycine resi- 
dues and glycine-rich oligopeptide repeats than several 
epidermal type II cytokeratins (37, 45, 82). The conserved 
sequence motif  of the basic heptapeptide DGKvLVS~ present 
in many IF proteins (19, 29, 44, 45, 56, 58, 73, 80; see also 
below) is absent in both human cytokeratin 4 and its murine 
equivalent. The carboxyterminus is very basic, as in several 
other type II cytokeratins (e.g., 45). 

Figure 5. Identification of cDNA clones coding for human cytokera- 
tin 15. (a, b) Hybrid selection-translation of poly(A)+-RNA from 
cells of the A-431 subline E3 as obtained after hybridization to the 
cDNA clone pKH15 ~. (a) Coomassie Blue-stained cytoskeletal 

proteins of A-431 cells (line E3) separated by two-dimensional gel 
electrophoresis (arrows as in Fig. 2 a), together with proteins of the 
translational assay, coelectrophoresed with reference protcins (as in 
Fig. 2 a). The major cytokeratins 5, 8, 13, and 18 are denoted; the 
arrow indicates the major endogenous component of the reticulo- 
cyte lysate system. (b) Autoradiograph corresponding to a. The ma- 
jor [35S]methionine-labeled product of the in vitro translation of 
mRNA selected by pKH15 ~ comigrates with authentic cytokeratin 
13. (c-f) Two-dimensional gel electrophoresis (horizontal arrow, 
direction of isoelectric focusing used in first dimension; downward 
arrow, direction of second dimension SDS-PAGE) of the polypep- 
tides synthesized in vitro by transcription of the reconstructed com- 
plete cDNA clone pKHI53 and subsequent translation of the RNA 
obtained with cytoskeletal proteins from A-431 cells of line E3 (c. 
d) or E6 (e, f ) .  (c) Coomassie Blue staining showing the major 
cytokeratins 8, 13, 14, and 18 and residual D- and ),-actin (A) of 
A-431 cells. The arrow denotes the position of cytokeratin 15 which 
is only a miniscule cytokeratin in this cell line. (d) Autoradiograph 
of the gel shown in c, showing that the polypeptide synthesized from 
clone pKH153 in vitro comigrates with cytokeratin 15 and not with 
cytokeratin 13. (e) Coomassie Blue staining of cytoskeletal proteins 
of A-431 subline E6 rich in cytokeratin 15 and poor in cytokeratin 
13. (f)  Autoradiograph of the gel shown in e, showing the comigra- 
tion of the polypeptide synthesized from clone pKHI53 in vitro 
with cytokeratin 15 and not with cytokeratin 13. (g, h) Hybrid se- 
lection-translation of poly(A)+-RNA from cloned A-431 cells (line 
E6) hybridized to the 3'-end-specific cDNA clone pKH152 (see 
Results). (g) Coomassie Blue-stained polypeptides (as in e). (h) Au- 
toradiography corresponding to g, showing the product of the 
mRNA from A-431 cells (clone 6) specifically selected by the 
3'-specific subclone pKHI52, the cytoskeletal proteins of clone 6 of 
A-431 (same denotations as in e) together with endogenous compo- 
nents of the reticulocyte lysate system as detected by Coomassie 
Blue staining. (h) Corresponding autoradiograph to g. The [35S]me- 
thionine-labeled product of the in vitro translation comigrates with 
authentic cytokeratin 15 and not with cytokeratin 13. 
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Identification of a cDNA and a Genomic Clone 
Encoding Human Cytokeratin 15 

When the cDNA clone pKH15 ~ and the reconstructed 
cDNA clone pKH153 were used in hybrid selection-transla- 
tion experiments with RNA from A-431 cells of clone E3 it 
specifically selected a mRNA that was translated in vitro into 
a polypeptide comigrating with authentic cytokeratin 13 
(e.g., Fig. 5, a and b). However, results obtained in Northern 
blot hybridizations, notably with epidermal mRNA, and in 
mRNA hybrid-release experiments with certain clonal A-431 
sublines containing lower amounts of cytokeratin 13 but large 
amounts of cytokeratin 15 such as clone E6 were incompati- 
ble with the interpretation of a cytokeratin 13-encoding 
cDNA (data not shown; see also below). For an unequivocal 
identification of these cDNA clones we therefore used clone 
pKH153 for in vitro synthesis of the corresponding mRNA 
and polypeptide which was then found to comigrate, in gel 
electrophoresis, with cytokeratin 15 and not with cytokeratin 
13 (Fig. 5, c-f, presents results from two different A-431 sub- 
lines, E3 and E6). This indicated that the protein encoded by 
this clone is in fact cytokeratin 15 and that cytokeratins 13 and 
15 are very closely related. To examine this interpretation we 
synthesized a polynucleotide of 75 residues located in the 
3'-noncoding region, i.e., the region showing the highest se- 
quence divergence within the type I cytokeratin multigene 
family (46, 47, 74, 79). This probe (pKH152) allowed the 
distinction between cytokeratins 13 and 15 as demonstrated 
in the hybrid selection experiment shown in Fig. 5, g and h. 

Northern blot experiments identified a cytokeratin 15 
mRNA of,~l.9 kb in A-431 cells (Fig. 6, lanes 1 and 7) and 
in certain stratified epithelial tissues, including epidermis 
(Fig. 6, lane 3) and esophagus (Fig. 6, lane 8). Only a very 
weak signal was obtained in cultured cells of the line Detroit 
562 (Fig. 6, lane 6) whereas simple epithelia and various cell 
lines derived therefrom were negative (e.g., Fig. 6, lanes 2, 
5, and 9). 

Sequence Characteristics of  Human Cytokeratin 15 

The '~l.3-kb insert of the cDNA clone pKH15 ~ extends 
from within coil la to the 3'-end, including a short poly-A 
stretch. A 3'-specific, nick-translated fragment of ~450 
nucleotides of this clone was used to screen a human 
genomic library. The isolated phage clone ~,KH152 con- 
tained the complete gene encoding human cytokeratin 15. 
Nucleic acid sequencing proved the identity of the cDNA and 
the genomic clone. The nucleic acid sequence of human 
cytokeratin 15 as deduced from cDNA clone pKH15 ~ and 
the 479-bp Kpnl fragment of the genomic clone ~KH152 en- 
compasses '~1.7 kb (Fig. 7). S1 nuclease mapping (data not 
shown) indicated that the transcription started at the KpnI 
site at the start of the sequence presented in Fig. 7, most 
probably at position 4, thus defining a short 58-nucleotide- 
long, 5'-nontranslated region. The cDNA terminates 23 bp 
downstream of a typical polyadenylation signal with a short 
poly-(A) stretch. 

The coding region of cytokeratin 15 defines a polypeptide 
of 456 amino acids, amounting to a total mol wt of 49,170 
including the initial methonine which is probably lost after 
translation. This value is in agreement with that estimated 
from SDS-PAGE analyses (Mr 50,000; cf. ll, 24, 65, 96). 
The 96-amino acid-long head domain displays features com- 

Figure 6. Autoradiographs of Northern blot hybridization experi- 
ments using riboprobes derived from the BglI-truncated clone 
pKH15 ~. 10 lag of total RNA was applied, except for lanes 2 and 
3 (50 lag of total RNA) and lanes 1 and 7 which contain 2 and 5 
lag of poly(A)+-RNA, respectively. RNA was extracted from hu- 
man A-431 cells (lanes 1 and 7), liver (lane 2), epidermis (lane 3), 
SV-40-transformed fibroblasts (lane 4), MCF-7 cells (lane 5), 
Detroit-562 cells (lane 6), esophagus (lane 8), and colon (lane 9). 
Note intense reaction with a "~l.9-kb RNA in A-431 cells, epi- 
dermis, and esophagus. A weak but clearly detectable hybridization 
signal was also seen in Detroit-562 cells after prolonged exposure 
(not shown). Bars indicate rRNAs as in Fig. 2. 

mon to various cytokeratins (cf. 2) such as an amino-terminal 
SvSSsRFsS as cluster of hydroxyamino acids, the motif A A V 

well as several glycine-rich oligopeptide repeats (Figs. 7 and 
8). The very high glycine content (44.3%) in this region is 
particularly noteworthy. 

The structure predicted for the a-helical rod domain is in 
agreement with the basic IF conformation (for reviews, see 
31, 82, 93). The three coiled-coil domains defined by the 
heptad repeats are interrupted by two spacer sequences, and 
the "consensus sequence" TYR(X)LLEG is recognized at the 
end of this domain. 

The tail region contains only a short stretch rich in glycine 
and serine. In contrast to cytokeratin 4 a heptapeptide motif 
DGQVVSS similar to the hallmark sequence DGKvLVS~ 
mentioned above, which shows a striking resemblance to the 
core motif of calcium-binding proteins of the "EF-finger" 
type (19), is located close to the carboxy terminus. 

Comparison of the amino acid sequence of cytokeratin 15 
with those of other proteins identified this polypeptide as a 
member of the acidic (type I) subfamily of cytokeratins (e.g., 
36, 83). It shows a particularly close relationship (Fig. 8) to 
the human cytokeratin 14 (76% identity in the rod region; 
62% overall identity; 36, 61), and murine Mr 47,000 cyto- 
keratin (85 % identical positions in the rod domain; 51) and 
the amphibian cytokeratin A~ of the XK81 gene subfamily 
(44, 63). Surprisingly, it also shows a high similarity (74% 
identical positions in the rod) with the simple epithelial type 
I cytokeratin 19 from cow (2). 
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1 GGT ACC T CC T G C C A G C A C C T  C T T GGG T T TGC T GAGAACTCACGGGC T C C A G C  T ACC T GGCCAT G A C C A C C A C A T  T T C T G C A A A C  T T C "f T C 
1 M T T T F L Q T S S 

91 C T CCACC T T T GGGGGT GGC TCAACCCGAGGGGGT TCCC TCC T GGC TGGGGGAGGT GGCT T T GGTGGGGGGAGTC TC T C TGGGGGAGG r GG 
11 S T F G G G S T R G G S L L A G G G G F G G G S L S G G G G 

181 AAGC~G~GTAT~T~AGCTTCTTCTGCTAGGTTTGT~T~TTCAGGGTCAGGAGG~GGATATGGGGGTGGCATGAGGGTCTGTGG~TTTGG 
41 S R S I S A S S A R F V S S G ~ G G G Y G G G M R V C G F G 

2;"I TGGAGGGGCTGGTAGTGT T T TCGGTGGAGGCT TTGGAGGGGGCGT TGGTG~GGT T T TGGTGGqr GGC T T TGGTGGTGGCP-.~-TGGu GGT C T 

71 G G A G $ V F G G G F G G G V G G G F G G G F G G G O G G L 

361  C C T C T C T G G ~ A A T G A G A A A A T T A C c A T G c A G A A C C T C A A T G A c C G C c T G G c C T C c T A c ~ T G G A ~ A A G G T A ~ G T G c C C T G G A G G A G G C C A A  
101  L 5 G N E K I T M Q N L N D R L A S Y L D K V R A L E IE A N 

4 5 1  T GC T G A C C  T GGAGG T G A A G A T  C C A T  GAC T GG T A C C A G A A G C A G A C C C  C A G C C A G C C C A G A A  T GCGAC T A C A G C C A A T  A C T  T C A A G A C C A  T 
131  A D L E V K I H D W Y Q K Q T P A S P E C D Y S Q Y F K T I 

541  T G A A G A G C T C C G G G A C A A G A T C A T G G C C A C ~ A ~ C A T C G A ~ A A C T C C C G G G T C A T C ~ T G G A G A T C G A ~ A A T G C C A G G C T G G C T G C G G A C G A  
161  E E L R D K I M A T T I O N S R V I L E I D N A R L A A D D 

6 3 1  C T T CAGGCT C A A G T A T G A G A A T G A G C T G G C C C T G C G C C A G G G C G T  T G A G G C T G A C A T C A A C G G C T  TGCGCCGAGTCC TGGATGAGC TGAC 
191  F R L K Y E N E L A L R Q G V E A D I N G L R R V L D E L T 

7 2 1  C C  T GGCCAGGAC T GAC C TGGAGAT GCAGA TCGAGGGCC TGAATGAGGAGC T A G C C  T A C C T G A A G A A G A A C C A C G A ~ . G A G G A G A  T GAAGGA 
221  L A R T D L E M Q I E G L N E E L A Y L K K N H E E E M K E 

81 1 G T T C A G C A G C C A G C T G G C C G G C C A G G T ~ A A T G T G G A G A T G G A ~ G C A G C A C C G G G T G T G G A C C T G A C C C G T G T G C T G G C A G A G A T G A G G G A  
2 5 1  F S S Q L A G Q V N V E M D A A P G V D L T R V L A E M R E 

8 0 1  GCAGT A C G A G G C C A T  GGCGGAGAAGAACCGCCGGGA TG T CGAGGCC T GGT T C T T C A G C A A G A C  T G A G G A G C T G A A C A A A G A G G T  GGCC T C 
~ 8 1  Q Y E A M A E K N R R D V E A W F F S K T E E L N K E V A S 

9 9 1  C A A C A C A G A A A  T GA T C C A G A C C A G C A A G A C G G A G A  T C A C A G A C C  T GAGACGCACGAT GCAGGAGC T GGAGA T CGAGC T GCAGT CC CAGC T 
3 1 1  N T E M I Q T S K T E I T D L R R T M Q E L E I E L Q S Q L 

1 0 8 1  C A G C A T G A A A G C T G G G C T G G A G A A • T C A C T G G C C G A G A C A G A G T G • C G • T A T G C C A • G C A G • T G • A G C A G A T C • A G G G G C T • A T T G G T G G  
9 4 1  S M K A G L E N S L A E T E C R Y A T Q L Q Q I Q G L I G G 

1 1 T 1  C C  T GGAGGCCCAGC TGAGTGAGC T C C G A  TGCGAGAT GGAGGC T C A G A A C C A G G A G  T A C A A G A ' r  GC TGC T T G A C A T A A A G A C A C G G C  T GGA 
3T1  L E A Q L S E L R C E M E A Q N Q E Y K M L L D I K T FI L E 

1 2 6 1  G C A G G A G A T C G • T A • T T A • • G C A G • C T G C T • G A G G G • C A G G A T G C C A A G A T G G • T G G C A T T G G c A T • A G G G A A G C C T • T T C A G G A G G T G G  
4 0 1  Q E I A T Y R S L L E G Q ~ D A K M A G I G I R E A S S G G G 

1 3 5 1  T G G T A G C A G C A G C A A T  T TCCACATCAATGTAGA.~ .GAGTCAGTGGA] "  GGACAGGT GGT T T C T  T C C C A C A A G A G A G A A A T C T A A G T G T  C T A T  
4 3 1  G S S S N F H I N V E E S V D G Q v V S S H K R E I 

1 4 4 1  T G ~ A G G A G A A A C G T ~ c C T T G C C A ~ T C C C C A c T ~ T C A T C A G G C C A A G T G G A G G A ~ T G G C C A G A G G G c C T G ~ A C A T G C A A A C T C C A G T C C C T  

1 5 3 1  GCC T TCAGAGAGC T G A A A A G G G T C C C  T CGGTC T T T T A T  T TCAGGGC T T "r GCATGCGC TCT  AT T C C C C C  TC T G C C T C T C C C C A C C T  TC TT  T 

1 6 2 1  G G A G C A A G G A G A T G C A G C T G T A T  T G T G T A A C A A G C  T C A T  T T G T A C A G T G T C  TGT T C A T G T A A T A A A G A A T  TAC ]" T T T C C T T  T T GCAA.&TA 

1 ~' 11 A~, ,~ ,AAAAAAAAAA 

Figure 7. Nucleotide sequence and 
deduced amino acid sequence of 
human cytokeratin 15. The se- 
quence 5' of the triangle was de- 
rived from the KpnI/KpnI frag- 
ment of the genomic clone LKHI52 
whereas the sequence 3' of the tri- 
angle was determined from the 
cDNA clone pKHI5 ~, which was 
confirmed by sequencing the ge- 
nomic clone. Asterisk denotes the 
stop codon. The end of the ct-hel- 
ical coiled-coil rod domain is 
demarcated by an arrow, the ca- 
nonical polyadenylation site is 
underlined. The Bgll site used for 
truncation prior to in vitro tran- 
scription is overlined. The broken 
line denotes the region represented 
by the synthetic polynucleotide 
cloned in pKHI5:. 
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Figure 8. Comparison of the amino acid sequence of human cytokeratin 15 (H 15) with those of human cytokeratin 14 (H 14; 61) and the 
Xenopus laevis cytokeratin XK81 A, (XK81; 44, 63). Residues which are identical to human cytokeratin 15 are printed in bold letters. 
The positions of the a-helical coils in rod domains are designated Cla, Clb, and C2 (arrows). H, head region, T, tail domain. Sequence 
conservation of the three proteins is high in the rod domain but restricted to certain oligopeptide motifs in the tail and head region. 
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Distribution of  mRNAs for Cytokeratins 4 and 15 
as Determined by In Situ Hybridization 

To examine the expression of the genes encoding cytokera- 
tins 4 and 15 in complex stratified tissues, we prepared radio- 
actively labeled antisense RNA probes and used them for 
hybridization in situ. For example, we show the results ob- 
tained for esophagus. Intense reactions were seen for both 
mRNAs (Figs. 9 and 10), in particular when compared to the 
much weaker hybridization signals obtained with the probes 
for the simple epithelial type cytokeratins 8 and 18 (cf. 9). 
In autoradiographs using the cytokeratin 4 mRNA probe the 
label was spread over most of  the epithelial cell layers (Fig. 
9, a and b) but showed, in some regions, a reduction over 
the basal cell layer (Fig. 9 c). Interestingly, in some epithelial 
regions the silver grain density was also drastically reduced 
in the upper, i.e., adluminal strata (Fig. 9 c). 

The antisense riboprobe for cytokeratin 15 mRNA always 
yielded uniform hybridization in all cell layers of  all samples 
examined (Fig. lO, a and b), indicative of the presence of this 
mRNA in the entire epithelium, including the basal cell 
layer. The same signal distribution was seen after hybridiza- 
tion with the synthetic polynucleotide probe representing the 
3'-noncoding region (Fig. l0 c). Hybridization reactions 
were also seen over ductal epithelia traversing the lamina 
propria, particularly for cytokeratin 15 mRNA (Fig. lO b, 
arrow). 

Similar results were obtained for other stratified epithelia 
such as exocervix (data not shown). Neither for cytokeratin 
4 nor for cytokeratin 15 mRNA have we noticed regional in- 
traepithelial heterogeneities of the kind recently described 
for murine tongue mucosa (76). 

Discuss ion  

In this study we have introduced and characterized two DNA 
clones encoding cytokeratins 4 and 15 which are both typical 
for certain differentiation programs of stratified epithelia. 
Notably, cytokeratin 4, which usually occurs in heterotypic 
"pair" complexes with cytokeratin 13 (11, 23, 38, 87), has 
been described as a hallmark of a developmental line for cer- 
tain squamous nonepidermal epithelia ("esophageal type of 
differentiation" sensu 11, 12, 87). 

The general molecular features of  these two polypeptides 
are similar to those of other type II (polypeptide 4) and I 
(polypeptide 15) cytokeratins. Interestingly, both cytokera- 
tins present a tail region with a comparatively low glycine 
content, unlike many other cytokeratins from squamous epi- 

Figure 9. Microscopic autoradiographs of frozen sections of human 
esophagus, showing the differential distribution of cytokeratin 4 
mRNA after hybridization with 3H-labeled transcripts of the 
Hindlll-linearized clone pKH4 ~. Symbols used are the same as in 
Fig. 1. (a, b) A region of the upper esophagus, showing a silver 
grain distribution that is nearly even over most of the epitheli- 
um (E), with somewhat lower density over the basal cell layer 
(brackets; broken line denotes basal lamina). (a) Survey autoradio- 
graph (dark field illumination); (b) higher magnification (bright 
field photograph). (c) Dark field illumination picture of a section 
from lower esophagus (in the transition zone to the stomach), show- 
ing distinctly lower concentrations of hybridization signals in the 
basal cell layers and in the upper cell layers (L, lumen). Note the 
absence of labeling over protrusions of the lamina propria (LP). 
Bars: (a and c) 250 I.tm; (b) 25 ~tm. 
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Figure 10. Microscopic autoradiograph of frozen sections of human esophagus, illustrating the homogeneous distribution of cytokeratin 
15 mRNA after hybridization with cRNA probes derived from the BglI-truncated clone pKH15 ~ (a, b) and the 5'-end-labeled, 3'-specific 
polynucleotide (c). Symbols are as in Fig. 9. (a) Bright field micrograph showing the rather evenly spread label obtained after hybridization 
with the [a-32p]UTP-labeled cRNA probe for cytokeratin 15. (b) Dark field survey autoradiograph of a section hybridized with antisense 
RNA of pKH15 z. Note the even signal distribution over the entire stratified epithelium and in the glandular ducts (arrow in b). (c) Dark 
field illumination of a section of the lower esophagus after hybridization with the [~/-32p]ATP-labeled polynucleotide complementary to 
residues 1606-1680 (for details, see Results). Bars: (a) 25 Ixm; (b and c) 250 I.tm. 

thelia such as various epidermal cytokeratins of human, bo- 
vine, murine and amphibian origin (37, 39, 45, 47, 54, 79, 
82, 83, 88). The probes specific for the 3'-noncoding region 
of both cytokeratins, which react specifically with only one 

mRNA species in the various cells and tissues examined, 
should be valuable in studying gene expression programs 
related to the formation of stratified epithelia, including 
squamous metaplasia of  simple epithelia, as well as in the 
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characterization of various types of squamous cell carcinomas 
which may be distinguished by the presence or absence of 
cytokeratin 4 and/or cytokeratin 15 (for gel electrophoretic 
and immunocytochemical analyses see references 4, 5, 8, 31, 
35, 64-67, 91). 

The immunocytochemical results of the present study, as 
well as previous reports on the distribution of cytokeratin 
4 in stratified tissues (22, 72, 91; see there also for similar 
data with cytokeratin 13 antibodies), have shown reduced or 
even absent reactions in the basal cell layer. This is reminis- 
cent of the negative reactions of basal cell layers of epidermis 
obtained with antibodies to certain epidermal components, 
(10, 41, 47, 55, 81, 87, 95). This has usually been interpreted 
to mean that the synthesis of these proteins is initiated only 
during or after commitment to vertical, i.e., suprabasal 
differentiation and is related to the transition of the specific 
cell from the basal to the suprabasal compartment (cf. 30). 
However, our in situ hybridizations show that mRNA for 
both stratification-related cytokeratins can be synthesized in 
all layers of esophagus, including the basal layer. Clearly, the 
gene encoding cytokeratin 15 is actively transcribed and 
cytokeratin 15 mRNA accumulated already in the basal cell 
layer. For cytokeratin 4, mRNA can also be seen in basal 
cells of some esophageal regions whereas other regions pres- 
ent only with low levels of mRNA in the basal compartment, 
which seems to correspond to the absence of immunocyto- 
chemically detectable amounts of this protein in basal layers 
of certain epithelia (this study; 22, 91). The reasons for the 
observed regional heterogeneities of cytokeratin 4 expres- 
sion in the basal cell layer as well as in adluminal cell layers 
are not known. 

These results, together with those obtained for cytokera- 
tins 8, 14, and 18 (9), also indicate that at least in certain 
stratified epithelia commitment to suprabasal translocation 
and vertical cell differentiation can already commence in the 
basal cell layer and that the genes for both kinds of cytokera- 
tins, the simple epithelial ones and the stratification-related 
ones, can be coexpressed, at least in certain regions. This 
also demonstrates that proliferation and expression of supra- 
basal marker proteins do not necessarily exclude each other. 
These conclusions also receive support from observations of 
the onset of synthesis of cytokeratin 4 in cell clusters of cer- 
tain glands and glandular ducts (this study; 91), in individual 
cells of various simple and complex epithelia such as en- 
docervix (22) and bronchial epithelium (91), which may 
reflect early changes toward squamous metaplasia, and in 
certain layers of fetal human epidermis (92). Noteworthy in 
this context are also observations that, in certain cells of 
squamous and transitional cell carcinomas, the simple epi- 
thelial cytokeratins 8 and 18 are often coexpressed with 
stratification-related ones such as cytokeratins 4-6 and 
13-17, although often only focally (cf. 22, 91). It will be im- 
portant to examine, by in situ hybridization, whether such 
cellular heterogeneities are only due to immunocytochemical 
phenomena such as epitope masking (for examples with IF 
proteins, see 14, 16, 21, 26, 95), or whether it is also evident 
at the mRNA level. 

The observation of coexpression of simple epithelial 
cytokeratins and cytokeratins 4 and 15 in basal cells of certain 
stratified tissues also raise the question of the nature of the 
cytokeratin complexes present in these cells. It is well con- 
ceivable that these polypeptides, when present at low con- 

centrations, as this is probably the case in the basal cells, can 
form heterotypic complexes with each other as well as with 
other complementary partners, as it has been shown by 
recombination of purified cytokeratins in vitro (18, 38) and 
by integration of mRNAs or cloned cytokeratin genes into 
cultured epithelial cells (25, 33). The possible combination 
of cytokeratin 4 with type I cytokeratins other than cytokera- 
tin 13 is also supported by reports of cells in which only 
cytokeratin 4 but not cytokeratin 13 has been detected such 
as amnion epithelium (75), certain cells of cornea and pan- 
creatic ducts (91), some squamous cell carcinomas (5, 35, 
65), and fetal epidermis (92). Vice versa, a number of cul- 
tured cell lines and squamous cell carcinomas synthesize 
considerable amounts of cytokeratin 13 without detectable 
cytokeratin 4 (1, 67, 77, 78). This raises the question of the 
coordinate regulation of "pairs" of cytokeratins in some cell 
types as opposed to the noncoordinated synthesis of these 
polypeptides in other cells. The new cDNA probes described 
in this paper will hopefully contribute to the identification of 
the level of regulation at which such coordinations and dis- 
proportionate syntheses take place, also with respect to 
changes of expression due the environment (15, 50, 89). 
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