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Abstract. Chromosome segregation in most animal 
cells is brought about through two events: the move- 
ment of the chromosomes to the poles (anaphase A) 
and the movement of the poles away from each other 
(anaphase B). Essential to an understanding of the 
mechanism of mitosis is information on the relative 
movements of components of the spindle and identi- 
fication of sites of subunit loss from shortening mi- 
crotubules. Through use of tubulin derivatized with 
X-rhodamine, photobleaching, and digital imaging mi- 
croscopy of living cells, we directly determined the 
relative movements of poles, chromosomes, and a 
marked domain on kinetochore fibers during anaphase. 
During chromosome movement and pole-pole separa- 
tion, the marked domain did not move significantly 
with respect to the near pole. Therefore, the 

kinetochore microtubules were shortened by the loss 
of subunits at the kinetochore, although a small 
amount of subunit loss elsewhere was not excluded. In 
anaphase A, chromsomes moved on kinetochore mi- 
crotubules that remained stationary with respect to the 
near pole. In anaphase B, the kinetochore fiber micro- 
tubules accompanied the near pole in its movement 
away from the opposite pole. These results eliminate 
models of anaphase in which microtubules are thought 
to be traction elements that are drawn to and depoly- 
merized at the pole. Our results are compatible with 
models of anaphase in which the kinetochore fiber 
microtubules remain anchored at the pole and in 
which microtubule dynamics are centered at the 
kinetochore. 

H 
ow kinetochore microtubules shorten in anaphase is 
a central question in the analysis of mitosis. In our 
previous effort to answer this question, we marked 

small domains on spindle fiber microtubules by photobleach- 
ing cells that had been microinjected with fluorescein-tu- 
bulin (Gorbsky et al., 1987). Phase-contrast observations of 
the living cell were followed by fixation and indirect immu- 
nofluorescence with an antibody to unbleached fluorescein, 
thus visualizing the photobleached domain as a region of re- 
duced immunofluorescence. Each photobleached domain was 
then analyzed at a single time-point alter photobleaching to 
determine its position with respect to the near pole during 
anaphase. We detected no significant movement and con- 
cluded that chromosomes move to the poles along station- 
ary microtubules that shorten by loss of subunits at the 
kinetochore. 

This conclusion runs counter to the generally accepted 
traction-fiber hypothesis, as expressed in recent textbooks 
(e.g., Alberts et al., 1983), that chromosomes are pulled to- 
ward opposite poles by forces that act on their kinetochore 
fibers, which get shorter and shorter by depolymerization at 
the pole. However, available evidence bearing on the site of 
depolymerization is indirect and contradictory. Forer's UV 
microbeam experiments (Forer, 1965) have generally been 
taken to indicate depolymerization at the pole, and Forer has 

reviewed and confirmed this interpretation (Forer, 1974, 
1985). However, in other studies where he quantitated the 
changes in birefringence along the length of individual chro- 
mosomal fibers (Forer, 1976), he concluded the opposite- 
that fibers shorten through depolymerization at the kineto- 
chore end. 

Pickett-Heaps et al. (1982), on the basis of indirect evi- 
dence, have suggested that chromosomal fibers shorten at the 
kinetochore. Hiramoto and Shoji (1982) suggested that the 
force for chromosome motion is generated near the chromo- 
somes, which is consistent with depolymerization at the 
kinetochore. However, in a photobleaching study from the 
same laboratory (Hamaguchi et al., 1987), it was reported 
that a bleached zone placed in the mitotic apparatus of a sand 
dollar egg moved poleward and, thus, that depolymerization 
of microtubules occurred at the pole. Mitchison et al. (1986), 
in a study using biotinylated tubulin, concluded that shorten- 
ing occurred primarily by loss of subunits at the kinetochore, 
but that treadmilling and loss at the pole also took place at 
a lower rate. Finally, our analysis (Gorbsky et al., 1987) 
combining photobleaching and hapten-mediated immuno- 
cytochemistry pointed toward loss at the kinetochore. Clear- 
ly there is scope for further evaluation of this important 
question. 

Given the methods of observation used in our previous 
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work, our analysis was limited to a single time-point per cell 
and conclusions were necessarily qualitative in nature. More 
definitive conclusions could be drawn from a quantitative, 
kinetic analysis of the relative movements of the components 
of mitotic spindles during anaphase in the living cell. This 
could be achieved by direct imaging of fluorescent tubulin. 
However, dichlorotriazinylamino-fluorescein-labeled tubu- 
lin, the derivative that has been used most commonly in 
previous studies on microtubule dynamics in vivo (Keith et 
al., 1981; Salmon et al., 1984; Saxton et al., 1984; Wads- 
worth and Salmon, 1986; Gorbsky et al., 1987; Hamaguchi 
et al., 1987; Sammak et al., 1987), photobleaches rapidly 
when living cells are observed by fluorescence microscopy. 
Furthermore, we noticed that mitotic cells microinjected 
with fluorescein-tubulin were sensitized to illumination with 
blue light and would fail to complete mitosis even after ex- 
posures of only a few seconds. In contrast, uninjected mitotic 
cells were unaffected by brief exposure to light from the mer- 
cury arc source. 

To circumvent the problems encountered with fluorescein- 
tubulin, we have used a new derivative prepared by reaction 
of brain tubulin with the N-hydroxysuccinimide ester of 
x-rhodamine (Xrh). ~ This derivative, combined with the 
use of a highly sensitive video camera and digital imaging 
microscopy, has allowed us to visualize fluorescent microtu- 
bules in living cells at high resolution. Here, we extend our 
previous findings to a quantitative examination of the relative 
movements of chromosomes, mitotic poles, and kinetochore 
fiber microtubules during anaphase in living cells. 

Materials and Methods 

Protein Preparation 
Microtubule protein was obtained from porcine brain by cycles of assembly 
and disassembly (Borisy et al., 1975). Pure tubulin was prepared from 
microtubule protein by DEAE-cellulose chromatography (Vallee and Bo- 
risy, 1978). Xrh-tubulin was prepared by reacting pure tubulin with carboxy- 
X-rhodamine-N-hydroxysuccinimide ester (Research Organics Inc., Cleve- 
land, OH). Tubulin at 7-8 mg/ml was polymerized into microtubules at 
370C for 10 min in 0.1 M Pipes, 1 mM EGTA, 0.5 mM MgC12, 1 mM 
GTE and 10% DMSO. The microtubules were sedimented at 20,000 g for 
20 min at 37~ The resulting pellet was resuspended in an ,x,20-fold volume 
of the same buffer without DMSO, and chilled at 0~ for 10 min to de- 
polymerize the microtuboles. This material was centrifuged at 20,000 g for 
20 min at 0~ to eliminate any cold stable aggregates. DMSO to 10% was 
added to the supernatant (•4 mg/ml tubulin), and the material was warmed 
to 37~ to assemble microtubules. Carboxy-X-rhodamine-N-hydroxysuc- 
cinimide ester was dissolved at 10 mg/ml in DMSO. With rapid vortexing, 
the dye was added to the protein at a molar ratio of 60 to 1. After 15 min 
at 37~ the reaction was quenched by adding a 10-fold molar excess of so- 
dium glutamate. To remove assembly-incompetent tubulin and free dye, the 
microtubules were pelleted by centrifugation and subjected to two cycles of 
assembly and disassembly. Derivatized tubulin at 8 mg/ml was stored in 
small aliquots in liquid nitrogen. Yields were generally 30-50%. Based on 
an absorption coefficient of 6.3 x 104 M -~ cm -j at 582 rim, the calculated 
dye-to-protein ratio of the conjugate varied from 0.2:1 to 0.4:1. For the ex- 
periments described here, a single preparation of derivatized tubulin with 
a dye-to-protein ratio of 0.4:1 was used throughout. 

An in vitro-seeded assembly assay (Murphy et al., 1977) was used to test 
the effect on the polymerization of pure native tubulin when mixed with the 
X rh derivative. At a final dye-to-tubulin ratio of 0.09:1, about the maximum 
expected in a microinjected cell, the mixture polymerized at 96 % the initial 
rate and 87% the final extent of control, i.e., pure underivatized tubulin. 
Negative stain electron microscopy revealed that the mixed population as- 
sembled into primarily single microtubules with normal ultrastructure. 
Fluorescence microscopy of the same sample showed thin single fibers indi- 

1. Abbreviation used in this paper: Xrh, X-rhodamine. 

caring that the derivative had been incorporated into the polymer (Sammak 
and Borisy, 1988). 

Cell Culture and Microinjection 
LLC-PK cells were grown in DME (Gibco, Grand Island, NY) sup- 
plemented with 10% FBS (HyClone Laboratories, Sterile Systems Inc., Lo- 
gan, UT), 20 mM Hepes, and antibiotics. Cells were cultured in 35-ram 
dishes on glass coverslips containing carbon-finder patterns, and were mi- 
croinjected in prophase or prometaphase as previously described (Gorbsky 
et al., 1987). After injection of several cells, the medium was replaced with 
MEM without phenol red, supplemented with 10% FBS, 20 mM Hepes, 
and antibiotics. This medium was prepared using a 100x stock of MEM 
amino acids and a 50x stock of MEM vitamins, also from Gibco. The 
medium in the culture dish was overlaid with mineral oil and the dish 
returned to the incubator to allow the cells to progress further into mitosis. 
After ,',,I0 min in the incubator, culture dishes Were transferred to the stage 
of the IM-35. The stage and culture dish were maintained at 34-35~ 
by means of an air curtain incubator (Nicholson Precision Instruments 
Inc., Galthersburg, MD). A cell was allowed to enter anaphase and then 
photobleached. 

Photobleaching 
The photobleaching apparatus has been presented in detail previously 
(Gorbsky et al., 1987; Sammak et al., 1987) and is described briefly below. 
The 514.5-nm beam from an argon ion laser (model 2020, Spectra-Physics 
Inc., Mountain View, CA) was imaged through a 300-mm focal length lens 
and a 200-mm focal length cylindrical lens to produce a bar-shaped beam 
focused in the specimen plane. The laser was operated at 400-600 mW with 
an exposure of 500 ms, and the beam was attenuated by a 0 . 9 0 D  neutral 
density filter. The beam was channeled into the epiillumination system of 
an inverted microscope (model IM-35, Carl Zeiss Inc., Thornwood, NY). 
When focused through a planapochromat 100• 1.3 N.A. objective, the 
beam produced a bleached band "~ ~tm wide in the spindle of a typical in- 
jected cell. 

Immunolabeling 
A few anaphase cells and some interphase cells were prepared for im- 
munolabeling with antitubulin to ascertain whether photobleaching had 
damaged microtubules. Within a short time of photobleaching (a few sec- 
onds for anaphase cells and a few minutes for interphase cells), coverslips 
were twice rinsed in a buffer containing 60 mM Pipes, 25 mM Hepes, 
10 mM EGTA, and 2 mM MgCl2, pH 6.95. The cells were then lysed with 
0.5% Triton X-100 in the same buffer for 90 s. Then the cells were fixed 
for 20 min in 5 mM ethylene glycol bissuccinic acid N-hydroxysuccinimide 
ester (Sigma Chemical Co., St. Louis, MO). The fixative was prepared as 
a 100-mM stock in DMSO. Just before use, 100 [.tl of the stock was added 
to 1.9 ml of buffer. 

After fixation, the cells were rinsed several times with 140 mM NaCl, 
3 mM KC1, l0 mM PO4, 3 mM NaN3, pH 7.3 (PBS), and processed for 
immunolabeling with antitubulin and a fluorescein secondary antibody as 
described previously (Gorbsky et al., 1987). 

Imaging of Living Cells 
Phase and fluorescent images of living cells were visualized with a silicon- 
intensified target video camera (model 66; DAGE-MTI, Wabash, MI). A 
tungsten light source provided illumination for phase-contrast microscopy, 
while a 100-W point mercury arc source served for fluorescence excitation. 
The mercury arc light was attenuated by neutral density filters of OD 
0.3-1.2, depending on the intensity of the fluorescent spindle and the age 
of the mercury arc light bulb. 

Images from the camera were processed with an image processor (model 
9200; Quantex Corp., Sunnyvale, CA) and recorded with a high resolution 
3/4-inch video tape recorder (model NV9240XD; Panasonic Co., Secaucus, 
NJ). Phase images were processed by averaging 16 or 32 video frames to 
minimize noise from the camera. Fluorescent images were processed in two 
ways. For focusing, averaged images of three video frames (0.l-s total ex- 
posure) were captured in the processor image memory and displayed on the 
video monitor. When the correct focal plane had been found, images of 
higher quality were recorded by summing 16-75 video frames (0.5-2.5-s to- 
tal exposure). Automatic sequences for the opening and closing of shutters 
(Vincent Associates, Rochester, NY) and the capture of images into the 
processor memories were controlled by programs from the processor. Fluo- 
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Figure 1. Photobleaching does not disrupt microtubule bundles. (a) Phase-contrast image of living cell at moment of photobleaching with 
superimposed exposure of light emitted from Xrh-tubulin upon excitation by laser (arrow). (b) Phase-contrast image of same cell lysed 
and fixed 25 s after photobleaching. (c) Fluorescence image of Xrh emission from lysed cell. (d) Antitubulin immunofluorescence. The 
Xrh fluorescence shows a distinct bleached zone. The antitubulin immunofluorescence reveals that fibers are present and continuous through 
the bleached zone. Bar, 5 ~tm. 

rescent images recorded on video tape were optimized to enhance contrast 
by adjusting image gain and offset with the image processor. The images 
were displayed on a high-resolution black and white monitor (Sierra 
Scientific Corp., Mountain View, CA), photographed with 35-mm Tech Pan 
2415 film, and developed with HC-110, dilution E 

Data Analysis 
Digital images of the living cells were used to quantitate the positions of 
poles, chromosomes, and bleached zones. The following procedure was 
used to achieve a consistent means of locating spindle poles. A fluorescent 
image of a spindle was displayed on the video monitor and a line defining 
the spindle axis was entered into the overlay memory. A cursor was then 
positioned on the line and radiance measurements were taken to determine 
the brightest position in a pole vicinity. The abequatorial pixel position at 
80% maximum brightness was arbitrarily chosen to define the pole. The po- 
sition of the bleached zone on a fluorescence image was defined as the center 
of the bleached area intersecting the spindle axis. 

The average chromosome-to-pole distances were determined as follows. 
The positions of the poles, determined as described above for the fluorescent 
image nearest in time, were marked on the phase image of the spindle. Next, 
an acetate overlay containing 11 parallel lines was placed over the image 
such that the central line connected the two poles (spindle axis). A line per- 
pendicular to the spindle axis was then drawn through each pole (pole 
horizontal). The positions of the chromosomes were determined as the most 
poteward points where they intersected each of the 11 lines. Distances be- 
tween the chromosomes and the pole horizontal were computed and the 
chromosome-to-pole distance was calculated as the mean of the 11 measure- 
ments. To obtain the correct radial distance from the pole, these measure- 
ments should be divided by the cosine of the angle subtended by each 
kinetochore fiber on the spindle axis. However, because microscopy allows 
only a two-dimensional image of a three-dimensional structure, and because 
the chromosomes and kinetochore fibers overlapped, it was not possible to 
determine this angle for each chromosome. Nevertheless, the error in 
neglecting radial correction was not great. Assuming that on average a chro- 
mosome lay 25 degrees off the spindle axis, the true distance would be un- 
derestimated by 10%. 

Results 

Experimental Design 
Our experimental plan was to create a reference mark on 

kinetochore microtubules by photobleaching a domain in the 
half-spindle after the cell had equilibrated with fluorescently 
labeled tubulin. Xrh-tubulin microinjected into cells incor- 
porated normally into the spindle microtubules and had no 
apparent effect on the progress of cells through mitosis. In 
contrast with fluorescein-tubulin, several fluorescent images 
of cells microinjected with Xrh-tubulin could be obtained 
without appreciably bleaching the fluorescence of the micro- 
tubules or disturbing mitosis. However, the amount of mer- 
cury arc illumination that could be tolerated was still limited. 
For this reason we kept exposures short, attenuated the mer- 
cury arc light source with neutral density filters, and took 
only five or fewer images of each cell. 

Previous investigators have reported that illumination of 
sufficient intensity to cause photobleaching in a cell microin- 
jected with fluorescein-tubulin does not cause ultrastructural 
damage to the illuminated microtubules (Saxton et al., 1984; 
Keith, 1987). Because Xrh is more resistant to photobleach- 
ing, it was necessary to use higher intensities of laser light 
than were used in our previous studies with fluorescein-tu- 
bulin. To verify that the laser photobleaching did not cause 
disorganization of kinetochore fiber bundles, we lysed and 
fixed cells soon after photobleaching and processed them for 
antitubulin immunofluorescence (Fig. 1). When visualized 
for Xrh emission, clear bleached zones were seen in the spin- 
dies. The antitubulin immunofluorescence showed that no 
disruption of the kinetochore fibers was apparent. In inter- 
phase cells, where individual microtubules could be more 
easily distinguished, no breakage of the microtubules after 
photobleaching could be detected (data not shown). 

Analysis of Individual Cells 
Fig. 2 shows a photobleaching experiment in a cell that was 
injected in prophase with Xrh-tubulin. Fig. 2 a was taken 
42 s after anaphase onset but before photobleaching. The 
cell was photobleached at 60 s and the image in Fig. 2 b was 
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Figure 2. Photobleaching experiment in living anaphase cell. (a) Fluorescence and (e) phase-contrast images of early anaphase cell betore 
photobleaching. The cell was photobleached at 60 s. (b-d) Fluorescence and ~-h) phase-contrast images demonstrating the progression 
of the cell after photobleaching. The bleached zone (bars) remained stationary with respect to the near pole as the kinetochore fibers 
shortened. The bleached zone also accompanied the pole in its migration away from the spindle equator. As sometimes happens, the spindle 
underwent a twisting motion in late anaphase. Time in seconds after anaphase onset is indicated in the upper lefthand corner of each panel. 
Bar, 5 ~tm. 

captured at 70 s. The bleached zone appeared as a dark band 
~ 2  I, tm wide, 2 tam from the upper pole. In Fig. 2 c, taken 
212 s after anaphase onset, the cell had progressed in 
anaphase and the bleached zone, although less distinct, re- 
mained clearly visible. Yet later, 422 s after anaphase onset 
(Fig. 2 d),  when chromosome movement had almost ceased 
and the cell had begun to cleave, the bleached zone, though 
less distinct, was still apparent. The phase-contrast images 
(Fig. 2, e-h) show the positions of  the chromosomes at vari- 
ous times during the process. During the extensive anaphase 
motion of the chromosomes, the bleached zone did not move 
appreciably with respect to the near pole although the poles 
separated considerably. In Fig. 3 the movements of the poles, 
bleached zone, and average leading position of the chromo- 
somes are quantitated for the cell shown in Fig. 2. While the 

chromosomes approached the bleached zone, the zone itself 
did not move appreciably with respect to the near pole. How- 
ever, the bleached zone did move with respect to the spindle 
equator accompanying the outward motion of the pole. 

If it is true that kinetochore fiber microtubules do not move 
toward the pole during the time that the3,' are shortening in 
anaphase, then a bleached zone placed closer to the chromo- 
somes in early anaphase should be encroached upon and 
finally overrun by the advancing chromosomes. Such an ex- 
periment is exemplified by Fig. 4. Fig. 4 a  shows the cell 26 s 
after anaphase onset and 10 s after photobleaching. The po- 
sitions of the chromosomes at 24 s after anaphase onset are 
seen in Fig. 4 d. By 96 s (Fig. 4 b), the bleached zone has 
been encroached upon by the advancing chromosomes which 
are shown at 94 s in Fig. 4 e. Finally by 260 s (Fig. 4 c), 
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Figure 3. Movements of spindle components. Data for the cell pic- 
tured in Fig. 2 are plotted with respect to the equator (defined as 
the midpoint between the poles). From the moment of photobleach- 
ing (arrow), the kinetochore (k)-to-pole (p) distance decreased by 
2.9 Ixm, while the bleached zone (b)-to-pole distance changed only 
slightly (apparent increase of 0.4 Ixm). Time zero is the onset of 
anaphase, k', Average position of kinetochores in lower half-spindle; 
p', lower pole. 

the bleached zone has disappeared, overrun by the chromo- 
somes shown at 232 s in Fig. 4 f. 

Cumulative Results 

A total of 29 cells were photobleached in anaphase. All com- 
pleted anaphase. Of these, 2 were not observed past ana- 
phase, 3 failed to cleave, and the remaining 24 completed 
cytokinesis normally. 4 of the 29 cells were photobleached 
twice, once in each half spindle. All 4 cleaved normally. In 
three cases, such as that shown in Fig. 4, the bleached zones 
were encroached upon or overrun by the chromosomes at the 
time that the second fluorescent image after photobleaching 
was taken. These bleaches were excluded from the quantita- 
tive analysis described below. 

The separation of the poles (anaphase B) was variable 
from cell to cell and seemed to be correlated to some extent 
with cell morphology. Long narrow cells tended to exhibit 
greater pole separation than did the more squat cells. The 
largest extent of pole movement seen was 5.4 I~m. The rate 
of pole migration appeared to be similarly related to cell 
morphology averaging 0.6 + 0.4 I~m/min (mean + SD). 
Some of the measured variation in the extent and rate of pole 
separation may also be due to the fact that all cells were 
not analyzed for precisely the same time interval during 
anaphase. 

In Fig. 5 we compare the movements of the poles with the 
movements of the bleached zones away from the spindle 
equator. The two movements were closely related showing 
a slope of 1.04 + 0.06 (estimated standard error of the slope) 
by least squares analysis and a correlation coefficient of 0.97. 
This result indicates that the bleached zones accompanied 
the poles in their movements away from the equator. Thus, 
the kinetochore fiber microtubules of the half-spindle ac- 
company the near pole during pole-pole separation. 

After determining the contribution of anaphase B, we were 
then in a position to analyze anaphase A. To combine data 
from all the cells in comparing the relative movement of 

bleached zones, chromosomes, and poles, we calculated 
rates of movement of chromosomes and bleached zones with 
respect to their near poles (Fig. 6). The average rate of chro- 
mosome movement was 0.95 + 0.44 rtm/min (mean + SD). 
However, the rate of chromosome motion varied with time 
in any given cell. Initially, chromosomes separated slowly, 
then accelerated to their most rapid rate in mid-anaphase, 
and finally slowed down as they neared the pole in late ana- 
phase. For most of the cells studied, only the most rapid 
phase of chromosome motion was recorded. However, some 
cells were observed into late anaphase, when the chromo- 
somes had slowed considerably. The 10 cells observed for the 
longest times after anaphase onset are shaded in Fig. 6 A. 
Excluding those 10 cells the rate of chromosome motion was 
1.12 + 0.44 p.m/min. In contrast to the rapid movement of 
the chromosomes, the bleached zones showed an apparent 
average rate of movement of only 0.095 + 0.13 lxm/min to- 
ward the pole. With the exclusion of the 10 late anaphase 
cells, this figure was 0.10 + 0.14 I.tm/min. These results indi- 
cate that the majority of the kinetochore fiber microtubules 
moved little, if at all, with respect to the pole during 
anaphase, and that all or nearly all of the movement of the 
chromosomes toward the pole was accountable by shortening 
of microtubules at the kinetochore. 

While the mean rate of movement of bleached zones to- 
ward the pole was not significantly different from zero, a few 
cells exhibited relatively greater rates of movement. The 
source of this variation is unknown. In any case, our results 
demonstrate that at most 10% of anaphase A chromosome 
movement and depolymerization of kinetochore fiber micro- 
tubules could be brought about by movement of the microtu- 
bules with respect to the pole, or by their disassembly at a 
location other than the kinetochore. 

Discussion 

Microtubule Dynamics in Living Anaphase Cells 

We have investigated the relative motions of chromosomes, 
their kinetochore microtubules, and the mitotic poles in 
anaphase by recording fuorescent images from living cells 
photobleached after microinjection with a new tubulin deriv- 
ative. Unlike most previous observations of fluorescently 
derivatized tubulin within living cells (Salmon et al., 1984; 
Saxton et al., 1984; Wadsworth and Salmon, 1986; Hama- 
guchi et al., 1987), a different fluorophore (Xrh vs. fuores- 
cein) and a different linking chemistry (the N-hydroxysuc- 
cinimide ester vs. the dichlorotriazinylamino group) were 
used. The fluorescein and Xrh derivatives behaved indistin- 
guishably within the cell, lending support to the idea that 
microinjection of tracer amounts of derivatized tubulin does 
not perturb cellular processes. In the present study, quantita- 
tive data about the relative motions of spindle components 
were obtained by fluorescence imaging of living cells through 
the use of a highly sensitive video camera and digital image 
processing. 

We interpret our fluorescent images as visualizing primar- 
ily pole-to-kinetochore microtubules. In the LLC-PK cell 
line, these microtubules are gathered into dense bundles 
that comprise the bulk of the fluorescence in immunofluores- 
cently stained specimens (Gorbsky et al., 1987). In our im- 
ages of the living cells, astral microtubules were not evident 
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Figure 4. Photobleaching experiment in living anaphase cell demonstrating encroachment and overrunning of the bleached zone by the 
chromosomes. (a-c) Fluorescence and (d-f) phase-contrast images showing progression of anaphase in cell photobleached at t6 s 
after anaphase onset. In a, the bleached zone is just ahead of the advancing chromosomes. By the time that b was taken, the chromosomes 
had partially encroached rendering the bleached zone (arrow) less distinct. By 260 s (c), the bleached zone had been overrun by the chromo- 
somes. Bar, 5 ~m. 

above background, and few fluorescent microtubule bundles 
were detectable in the interzonal region between the separat- 
ing chromosomes. Throughout mitosis, pole-to-chromo- 
some fibers could be easily distinguished from interzonal 
bundles. Thus, our bleached zones represented a reduction 
in fluorescence primarily in these pole-to-chromosome mi- 
crotubule bundles. 

Generally, bleached zones in the spindles of living cells 
became somewhat less distinct as anaphase progressed. Sev- 
eral factors probably account for this observation. First, the 
spindle changes shape during anaphase causing the kineto- 
chore fibers to shift slightly, relative to each other. This shift- 
ing causes the borders of the bleached domains to become 
misaligned. Second, some recovery of the fluorescence 
within the area of the bleached zone takes place. The detailed 

mechanism of fluorescence redistribution remains to be es- 
tablished, but it probably involves turnover of some of the 
spindle microtubutes. During anaphase, the astral microtu- 
bules elongate and interzonal bundles become more promi- 
nent. The turnover and assembly of these microtubules, in- 
corporating fluorescent tubulin in the region of the bleached 
zone, would result in a decreased contrast of the bleached 
zone. The recruitment of interzonal fiber microtubules into 
bleached zones of the spindle was detected directly in our 
previous study of anaphase in which cells were lysed and 
fixed and then labeled with antifluorescein antibodies (see 
Figs. 3 and 4 in Gorbsky et al., 1987). 

If  significant numbers of kinetochore fiber microtubules 
were drawn to the poles in anaphase, then large bundles of 
fluorescence should invade the bleached zone. Such an inva- 
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Figure 5. The bleached zone moves together with the pole in 
anaphase B. The movement of each bleached zone (with respect to 
the midpoint between the poles) is plotted vs. the movement of its 
associated pole. Although the magnitude of anaphase B was vari- 
able, linear least squares regression analysis showed that bleached 
zone movement was proportional to pole movement. Slope. 1.04 
+ 0.06 (estimated standard error of the slope); intercept, 0.16 
+ 0.11 (estimated standard error of the intercept); correlation co- 
efficient, 0.97. 

sion was not observed. We cannot at present eliminate the 
possibility that one or a very few kinetochore microtubules 
had translocated through the bleached zones. However, we 
feel it unlikely that one or a very few poleward moving 
kinetochore fiber microtubules are entirely responsible for 
chromosome movement. Complete accounting of microtu- 
bule dynamics within the anaphase spindle requires analysis 
of photobleaching experiments at the ultrastructural level. 
We are currently pursuing such studies. 

The fact that bleached zones generally remained stationary 
in anaphase strongly suggested that the kinetochore fibers re- 
mained stationary with respect to the near pole. Significant 
movement of a bleached zone toward the pole was detected 
only rarely; thus we feel that translocation of kinetochore 
microtubules toward the pole is not a requisite event in 
anaphase and contributes only marginally, if at all, to chro- 
mosome movement. One explanation of  why a few cells ex- 
hibited greater than usual amounts of bleached zone move- 
ment toward the pole is as follows. Cells showed varying 
amounts of changes in the shapes of their spindles during 

progression through anaphase. The mitotic spindle is a three- 
dimensional structure. Shape changes may artificially dis- 
tort our two-dimensional images and our one-dimensional 
measurements. For example, the spreading away from one 
another of the kinetochore fibers late in anaphase as the chro- 
mosomes crowd in toward the pole would result in an ap- 
parent movement of a bleached zone toward the pole. 

Our results with the living cells extend the findings of our 
previous study in which cells were analyzed by hapten-medi- 
ated immunocytochemistry after photobleaching. In both 
sets of experiments a photobleached zone was used to mark 
a domain on kinetochore microtubules. In the hapten-medi- 
ated immunocytochemical study, we were limited to one 
time-point per cell, but with direct imaging used here we ob- 
tained multiple data points on the same cell, which permitted 
kinetic analysis. 

The kinetic analysis demonstrated that, for pole-pole 
separation (anaphase B), the kinetochore fiber microtubules 
accompanied the near pole in its movement away from the 
spindle equator. During the movement of the chromosomes 
to the pole (anaphase A), the kinetochore microtubules re- 
mained essentially stationary with respect to the near pole. 
Bleached domains placed near the kinetochore in an early 
anaphase cell were approached, invaded, and subsequently 
overrun by the advancing chromosomes, indicating that 
kinetochore fiber microtubules dissassemble at the kineto- 
chore during anaphase. Thus the chromosomes move to the 
pole by translocating along kinetochore-to-pole microtubules. 

Similar conclusions were reached by Mitchison et al. 
(1986), who used electron microscopic immunocytochemis- 
try to follow the incorporation of biotin-tubulin into meta- 
phase cells. When cells were fixed at very short times after 
microinjection, they found that tubulin had been incorpo- 
rated into the kinetochore fiber microtubules at the kineto- 
chore. With longer intervals between injection and fixation, 
the label in the kinetochore fiber microtubules incorporated 
progressively toward the pole. The authors interpreted these 
experiments to indicate the existence ofa  poleward treadmill- 
ing of microtubule subunits from the kinetochore to the pole 
at an average rate of 0.5 ~tm/min. They suggested that this 
flux continues in anaphase. However, because cells injected 
in metaphase which rapidly entered anaphase showed little 
or no label at their kinetochores, the authors also concluded 
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Figure 6. Quantitative analysis of anaphase A. Rates of movement of the chromosomes (A) are compared to rates of movement of the 
bleached zones (B) for all photobleaching experiments. The rates were normalized by subtracting the movements of bleached zones and 
chromosomes due to pole-pole separation. The average rate of movement for the bleached zones was 0.095 + 0.13 tam/min (mean + SD) 
toward the pole. The average rate for the chromosomes was 0.95 + 0.44 Ixm/min (mean + SD). 10 cells (shaded bars in A) were observed 
in late anaphase, when chromosome motion had slowed considerably, thus lowering their overall average rates of chromosome movement 
(see text). 
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that most loss of microtubule subunits during anaphase oc- 
curs at the kinetochore. 

Our quantitative analysis of living cells permits us to place 
an upper limit on possible movement of the bleached zone 
with respect to the pole during anaphase. Most cells showed 
no significant movement. Some showed slight movement of 
the bleached zone toward the pole, and a few showed slight 
movement away from the pole. Movement of the bleached 
zone toward (or away from) the pole would be predicted if 
a small amount of depolymerization (or polymerization) of 
kinetochore fiber microtubules occurred at locations other 
than the kinetochore; e.g., at the pole or along the length of 
the fiber. On the other hand, the apparent movement of a 
bleached zone toward or away from the pole may be due to 
other factors, such as shape changes in the spindle during 
anaphase. Our data did not allow us to distinguish among 
these possibilities; however, such movement could account 
for, at most, only 10 % of the movement of the chromosomes 
and 10 % of the disassembly of the kinetochore fiber microtu- 
bules. Our results indicate that at least 90% of the chromo- 
some's motion comes about through the loss of microtubule 
subunits at the kinetochore. 

In conclusion, our results indicate that during anaphase 
the kinetochore fiber microtubules are anchored at the pole 
and accompany the pole in its anaphase B motion. For ana- 
phase A, the predominant site of microtubule disassembly is 
at the kinetochore. 
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