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Abstract. Murine mAbs were produced against pu- 
rified microvillus membranes of rat colonocytes in or- 
der to establish a marker protein for this membrane. 
The majority of antibodies binding to the colonic 
microvillus membrane recognized a single protein with 
a mean apparent Mr of 120 kD in both proximal and 
distal colon samples. The antigen is membrane bound 
as probed by phase-partitioning studies using Triton 
X-114 and by the sodium carbonate extraction proce- 
dure and is extensively glycosylated as assessed by en- 
doglycosidase F digestion. Localization studies in 
adult rats by light and electron microscopy revealed 
the microvillus membrane of surface colonocytes as 
the principal site of the immunoreaction. The antigen 
was not detectable in kidney or liver by immunopre- 
cipitation but was present in the small intestine, where 
it was predominantly confined to the apical membrane 

of crypt cells and much less to the microvillus mem- 
brane of differentiated enterocytes. During fetal devel- 
opment, the antigen appears first in the colon at day 
15 and 1-2 d later in the small intestine. In both seg- 
ments, it initially covers the whole luminal surface but 
an adult-like localization pattern develops soon after 
birth. The antibodies were also used to develop a ra- 
diometric assay for the quantification of the antigen in 
subcellular fractions of colonocytes in order to assess 
the validity of a previously developed method for the 
purification of colonic brush-border membranes (Stie- 
ger, B., A. Marxer, and H. P. Hauri. 1986. J. Membr. 
Biol. 91:19-31.). The results suggest that we have 
identified a valuable marker glycoprotein for the co- 
Ionic microvillus membrane, which in adult rats may 
also serve as a marker for early differentiation of en- 
terocyte progenitor cells in small-intestinal crypt cells. 

T 
HE main function of the mammalian colon is absorp- 
tion of water, sodium, and other minerals (Schultz, 
1984; Smith and McCabe, 1984; Binder and Sandle, 

1986), as well as short-chain fatty acids (Engelhardt and 
Rechkemmer, 1983; Luciano et al., 1984). It is likely that 
the microvillus "brush-border" membrane of colonocytes at 
the surface of the large-intestinal mucosa mediates some of 
these absorption processes (Schultz, 1981). However, knowl- 
edge of the functions and the molecular composition of the 
large-intestinal microvillus membrane is limited due to the 
difficulties encountered with the purification of this surface 
domain (Hauri et al., 1986; Gustin and Goodman, 1981, 
1984). A key problem for the isolation of pure large- 
intestinal microvillar membranes is the lack of a valid 
marker protein. The usefulness of alkaline phosphatase, a 
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proposed marker enzyme for this membrane in the rat 
(Vengesa and Hopfer, 1979; Brasitus and Keresztes, 1984), 
is controversial and has recently been questioned (Stieger et 
al., 1986). 

As a first step in studying the properties and functions of 
the colon brush-border membrane, we have recently devel- 
oped a procedure based on morphological criteria for the iso- 
lation of this surface membrane (Stieger et al., 1986) that 
proved to be useful for the characterization of sodium-proton 
exchange (Binder et al., 1986). As a second step, we have 
in the present study used the mAb approach to identify and 
characterize a marker membrane protein for the microvillus 
membrane of rat colon. The marker protein established is 
heavily N-glycosylated and is also expressed in the luminal 
surface of small-intestinal crypt cells. 

Materials and Methods  

Chemicals and Reagents 

Protein A was obtained from Pharmacia Fine Chemicals, Uppsala, Sweden; 
rabbit anti-mouse immunoglobulin (affinity purified) from Sera Lab, Sus- 
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sex, England; rhodamine-conjugated rabbit anti-mouse IgG from Nordic 
Immunology, Tilburg, The Netherlands; fluorescein-labeled sheep anti- 
mouse IgG from the Institut Pasteur, Paris, France; endo-13-N-acetylglucos- 
aminidase F (Endo F) ~ from New England Nuclear, Boston, MA; and 
Freunds adjuvant from Difco Laboratories Inc., Detroit, MI. Lactoperoxi- 
dase, neuraminidase (clostridium perfringens), endo-a-acetylgalactosami- 
nidase ("O-glycanase", diplococcus pneumoniae), and ¢t-L-fucosidase (beef 
heart) all came from Boehringer Mannheim GmbH, Mannheim, FRG. Tri- 
ton X-100 came from Serva, Heidelberg, FRG, Tissue Tek from Miles 
Laboratories Ltd., Slough, England, and [125I]Na (carrier free) from Eid- 
gen6ssisches Institut fiir Reaktor-forschung (Wiirenlingen, Switzerland). 
Sucrose and chloramin T were from E. Merck, Darmstadt, FRG. All of the 
following reagents were from Sigma Chemical GmbH, Munich, FRG: 
Rivanol (6,9-diamino-2-ethoxyacridine lactate), BSA (essentially globulin 
free), horseradish peroxidase, glucose oxidase, ovomucoid, Triton X-114, 
NP-40, O-pbenanthroline, phenylmethylsulfonyl fluoride (PMSF), pep- 
statin, benzamidine, and aprotinin. 

Purification of Membranes 
Microvillar membranes (FI fraction) were purified from isolated rat small- 
intestinal enterocytes or colonocytes as described previously (Stieger et al., 
1986). Proximal colonocytes originated from the proximal half of the colon 
while distal colonocytes originated from the distal half of the colon. Brush- 
border membranes from human small-intestinal mucosa (Pz fraction) were 
isolated according to Schmitz et al. (1973). Total membrane fractions of kid- 
ney or liver were prepared as follows. One rat kidney or one rat liver lobe 
was homogenized in 10 ml 2 mM Tris-50 mM mannitol, pH 7.1, for 2 min 
with a homogenizer (Polytron Kinematica GmbH, Kriens, Switzerland) 
(15,000 rpm). The homogenate was centrifuged at 2,800 g for 10 min and 
the resulting supernatant was centrifuged at 105,000 g for 1 h. The pellet 
designated "total membrane fraction" was immediately used for immunopre- 
cipitation experiments. 

mAb Technique 
Mice were injected intraperitoneally with 50 lag colonic brush-border mem- 
brane protein in 200 lal PBS mixed with 200 lal complete Freund's adjuvant. 
A booster injection with the same amount of antigen in PBS, mixed with 
incomplete Freund's adjuvant, was administered 4 wk later. 7 (distal colono- 
cytes) or 9 wk (proximal co[onocytes) after the first immunization, a final 
booster with 100 lag membrane protein without adjuvant was given in- 
traperitoneally and 3 d later cell fusion was carried out according to estab- 
lished techniques (Fazekas de St. Groth and Scheidegger, 1980; Galfr6 et 
al., 1977), as described by Hauri et al. (1985b) using PAl myeloma cells 
(Stocker et al., 1982). Screening of antibodies was performed by a solid- 
phase radioimmunoassay (Hauri et al., 1985b) with colonocyte microvillar 
membranes (20 lag/ml) adsorbed to soft polyvinylchloride multiwell plates. 
Supernatants displaying nonspecific binding to BSA or to the glycoprotein 
ovomucoid were discarded. Positive cultures were expanded and frozen 
when approaching a cell number of "~3-5 x 10 -6 cells. The culture super- 
natants were concentrated 10-fold by ammonium sulphate precipitation and 
tested for brush-border specificity using cryosections of rat colon in con- 
junction with the immunofluorescence technique (see below). Hybridoma- 
producing antibodies that specifically bound to the luminal membrane of 
colonocytes were subeloned by limiting dilution, mAbs were either used as 
10-fold concentrated culture supernatants or in aseites form. In every in- 
stance, the antibodies in the ascites form had the identical specificity to the 
corresponding culture supernatant. For some experiments the mAbs were 
purified by DEAE 52 chromatography and coupled to horseradish peroxi- 
dase (Engvall, 1980). The antibody classes were determined by Ouchter- 
Iony double-diffusion assay using subclass-specific rabbit anti-mouse im- 
munoglobulins. 

l m m u n o f l u o r e s c e n c e  

For the secondary screening of mAbs and for the developmental study, 2 % 
paraformaldehyde-fixed rat colon tissue was included in Tissue Tek and 
5-I.tm-thick cryosections were cut with a cryostat. For fine localization 
studies small- or large-intestinal tissue fragments were fixed with 2 % para- 
formaldehyde-0.1% glutaraldehyde for 2 h, infused with 60 % sucrose, and 
frozen in liquid nitrogen. 0.5-1-lam-thick sections were cut with an ultra- 
microtome with cryoattachment (Reichert Jung S.A., Paris, France; Toku- 
yasu, 1978). The indirect immunofluoreseence technique was used to 

1. Abbreviation used in this paper: Endo F, endo-13-N-acetylglucosamini- 
dase E 

visualize the antigens with mAbs (ascites fluid 1:100 or 10-fold concentrated 
culture supernatants, undiluted). The second antibody was a rhodamine- 
conjugated goat anti-mouse IgG or a fluorescein-conjugated sheep anti- 
mouse IgG. 

Immunoelectron Microscopy 
Small- or large-intestinal tissue fragments were fixed in a mixture of 2% 
paraformaldehyde and 0.1% glutaraldehyde for I h at room temperature, and 
then stored in 2% paraformaldehyde at 4°C until further processing. Low 
temperature embedding in Lowicryl K4M was performed according to tech- 
niques described previously (Roth et al., 1981; Armbruster, et al., 1982; 
Tokuyasu, 1978; Fransen et al., 1985). In short, fixed tissue fragments were 
dehydrated in a graded ethanol series, during which the temperature was 
gradually lowered to -35°C. Infiltration into the resin and embedding took 
place at -35°C. Polymerization by UV light was performed for 48 h at 
-40°C, followed by 48 h at room temperature. Sections were preincubated 
for 5 min at room temperature on drops of 1% BSA dissolved in PBS, 
pH 7.4. Sections were incubated at room temperature successively with 
mAb CD1/62 (10-fold concentrated culture supernatant) diluted 1:2 with 
PBS/BSA for 1 h, with rabbit anti-mouse IgG in PBS/BSA for 1 h, and 
finally with protein A complexed to 10-nm colloidal gold particles (Slot and 
Geuze, 1985) in PBS/BSA for 1 h. The sections were washed thoroughly 
with PBS/BSA after each incubation. In control incubations the first anti- 
body was omitted, which resulted in little to no background labeling. After 
washing with distilled water, the sections were stained with a saturated aque- 
ous solution of uranyl acetate and lead citrate, and observed in an electron 
microscope (model EM201, Philips Electronic Instruments, Inc., Mahwah, 
N J) operating at 80 kV. 

Iodination 
Triton X-100-solubilized small- or large-intestinal microvillar membranes 
were labeled with [t25I]Na using the lactoperoxidase-glucose oxidase 
method as described (Hauri et al., 1985b). Protein A- or DEAE 52-purified 
mAbs were labeled with [125I]Na using the chloramine T procedure 
(Hunter and Greenwood, 1962). 

Radiometric Assay for Quantification of Antigen 
This assay is based on a recent study by Rothwell et al. (1985) and was per- 
formed as follows. Cell fractions to be assayed were solubilized with Triton 
X-100 in 100 mM sodium phosphate, 1 mM EDTA (pH 7.4, detergent/pro- 
tein ratio [wt/vol] = 3) for 1 h on ice. To 100 lal of twofold serially diluted 
sample (1% BSA in PBS, pH 7.4) 150 lal of ~ZSl-labeled mAbs (containing 
60,000 cpm) were added. After overnight incubation at room temperature, 
the immunocomplexes were precipitated with Rivanol, the supernatant was 
discarded, and the radioactivity of the pellet was determined in a y-counter. 
The data were analyzed by computer using program I developed by Ritchie 
et al. (1983) and the formula Y = (a-d)/[l+(X/c)b]+d, where Yis the re- 
sponse; X, the arithmetic concentration; a, the response when X = O; d; 
the response for infinite concentration; c, the EDs0; i.e., the concentration 
resulting from a response halfway between a and d with b as the slope factor 
that determines the steepness of the curve. The enrichment factor of a given 
brush-border membrane fraction relative to the corresponding homogenate 
was determined by comparing EDs0 values of the two curves that were 
fixed to the same d value. 

Immunoprecipitation, SDS-PAGE, Autoradiography, 
and Immunoblotting 
Antigens were immunoisolated from Triton X-100-solubilized membranes 
by using protein A-Sepharose at pH 8.0 (Hauri et al., 1985b; Ey et al., 
1978). The antigen-antibody complexes were separated by SDS-PAGE ac- 
cording to Laemmli (1970). ZZ~l-labeled proteins in the dried gel were 
visualized by autoradiography using Kodak X-Omat AR or S films. Unla- 
beled proteins were stained with silver (Merill et al., 1984) or Coomassie 
Blue. The method of Towbin et al. (1979) was used to transfer proteins from 
SDS gels to nitrocellulose sheets (Schleicher & Schuell, Inc., Keene, NH). 
The immunoreaction on nitrocellulose strips was visualized by a second an- 
tibody (rabbit anti-mouse) followed by ~2SI-labeled protein A in the pres- 
ence of 1% defatted milk (Hauri and Bucher, 1986). 

Phase Separation in Triton X-114 
This procedure was carried out according to Bordier (1981). Detergent- 
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solubilized small- or large-intestinal brush-border membranes were labeled 
with 125I as described above. 6-10 x 106 cpm were used for phase parti- 
tioning in 100 mM sodium phosphate containing 2% (wt/vol) preclouded 
Triton X-114. The final detergent phase contained 70-80% and the aqueous 
phase 20-30% of the counts. Both phases were separately immunoprecipi- 
tated with antibody CP1/126 and subjected to SDS-PAGE and autoradiog- 
raphy. 

Sodium Carbonate Extraction 

1 mg purified brush-border membranes of rat small intestine were radioiodi- 
nated by the chloramine T procedure. Free iodine was removed by centrifu- 
gation (100,000 g, 1 h). The membrane pellet was resuspended in 0.1 M 
Na2CO3, pH 11.5, and left on ice for 30 rain (Fujiki et al., 1982), after 
which time the membranes were recovered by centrifugation (100,000 g, 
1 h). After sotubilization with Triton X-100, the membrane and the superna- 
rant fractions were separately immunoprecipitated. 

Glycosidase Digestion 

Digestion with Endo F was performed as follows. The immunoisolated, 
~25I-labeled antigens were heated to 100°C for 3 min in 50 ~tl Endo F 
buffer (100 mM Na phosphate, pH 6.1, containing 50 mM EDTA, 1% NP- 
40, 0.1% SDS, 1% mercaptoethanol, 1 gg/ml pepstatin, 17.5 ltg/ml benzami- 
dine, 10 ttg/ml aprotinin, 1 mM PMSE and 2 mM O-phenanthroline). The 
samples were then digested with 2 ~tl endoglycosidase F (500 U/ml) for 22 
h at 37°C, after which time they were subjected to SDS-PAGE. Neuramini- 
dase was dissolved in and dialyzed against 20 mM sodium citrate, 20 mM 
maleate/Tris, pH 6.0. The immunoprecipitate was washed in 10 mM 
chloride-free sodium phosphate, pH 7.0, heat denatured, and digested for 
22 h at 37°C with 0.09 U neuraminidase in a final volume of 80 gl of ci- 
trate-maleate buffer containing pmtease inhibitors. O-glycanase digestion 
was done with 2 mU of the enzyme in the citrate-maleate buffer as for neur- 
aminidase. ¢t-L-Fucosidase digestion (100 p.g) was carried out with heat- 
denatured immunoprecipitates in a final volume of 100 pl 0.2 M Na acetate, 
pH 4.5, at 37°C for 22 h. 

Other Methods 

Protein was determined according to Bradford (1976). Sucrase was assayed 
according to Dahlqvist (1968). 

Results 

Identification of an Mr 120-kD Protein Recognized 
by Antimicrovillar Antibodies 

To identify the microvillar antigens recognized by the vari- 
ous hybridoma antibodies, proximal and distal colon brush- 
border membranes were solubilized with Triton X-100 and 
the 100,000 g supernatant was labeled with 125I followed by 
immunoprecipitation. None of the antibodies precipitated an 
antigen that was exclusively present in either the proximal or 
distal colon sample. Most supernatants precipitated a broad 
radioactivity band with a mean Mr of 120,000. This protein 
was designated colon microvillus membrane protein cmv 
120. Two hybridoma lines producing antibodies against this 
antigen were selected and subcloned to yield mAbs CP1/126 
(originating from a mouse immunized with proximal colon 
brush borders) and CD1/62 (originating from a mouse im- 
munized with distal colon brush borders). CP1/126 is an 
IgG2a and appears to recognize a discontinuous epitope of 
cmv 120 since it can immunoprecipitate the native Triton 
X-100-solubilized antigen (Fig. 1, lane 1), but fails to give 
an immunoreaction on Western blots. CD1/62 is an IgG1 and 
recognizes both the native, detergent-solubilized antigen in 
the immunoprecipitation and the denatured antigen on West- 
ern blots, and it was useful for antigen localization in 
Lowicryl-embedded tissue. CP1/126 and CD1/62 bind to the 
same protein (Fig. 1, lane 4) in a competitive manner as as- 
sessed by competitive ELISA (not shown). This indicates 

Figure 1. Identification of a novel rat brash-border membrane gly- 
coprotein, cmv 120, in large-intestinal colonocytes (lanes 1 and 4) 
and small-intestinal enterocytes (lanes 2 and 3) by means of mAbs. 
Purified brush-border membranes (FI fraction) of isolated colono- 
cytes or enterocytes were solubilized with Triton X-100 and labeled 
with [~25I]Na by the lactoperoxidase-glucose oxidase method. 6 x 
105 cpm (lane 1) or 5.5 x 106 cpm (lane 2) were subjected to im- 
munoprecipitation with mAb CP1/126 and the immunoprecipitates 
were separated by SDS-PAGE followed by autoradiography. In lanes 
3-5, the antigens were first immunoprecipitated from unlabeled co- 
lonic FI brush-border membrane fraction (100 gg protein per lane) 
by means of antibody CP1/126 and the immunoprecipitates were 
subjected to SDS-PAGE followed by Western blotting. The blots 
were incubated with antibody CD1/62 (lanes 3 and 4) or with a 
mAb, HBB2/614/88, against human sucrase-isomaltase as a nega- 
tive control (lane 5). The immunoreaction was visualized by using 
a second rabbit anti-mouse antibody followed by [~25I]protein A. 
The immunoreaction in the 50-kD region is due to the heavy chains 
of the mouse mAbs (IgGh). 

that the epitopes for these two antibodies might be in prox- 
imity on the protein. 

The cmv 120 was judged to be an internal membrane pro- 
tein since it partitioned predominantly into the detergent 
phase when '25I-labeled brush-border proteins were phase 
separated by the Triton X-114 procedure (Bordier, 1981). This 
is shown in Fig. 2, where 72% of the counts were im- 
munoprecipitable from the detergent phase (lane 3) while 
only 28% were recovered from the aqueous phase (lane 2). 
Membrane association of cmv 120 was confirmed by the so- 
dium carbonate extraction procedure (Fujiki et al., 1982). 
When colon microvillar membrane vesicles were subjected 
to this treatment, cmv 120 was quantitatively immunopre- 
cipitable from the membrane fraction (Fig. 2, lanes 4 and 5). 
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Figure 2. Membrane associa- 
tion of cmv 120 assessed by 
phase partitioning in Triton 
X-II4 or sodium carbonate 
treatment. Phase partitioning 
of cmv 120 in Triton X-114 
(lanes 1-3). Purified brush- 
border membranes (FI frac- 
tion) of isolated rat colono- 
cytes were solubilized with 
Triton X-100 and labeled with 
[125I]Na. 10 -7 cpm were sub- 
jected to phase separation in 
Triton X-114 as described in 
Materials and Methods. The 
detergent phase (lane 3), the 
aqueous phase (lane 2), or an 
untreated sample (10 7 cpm, 
lane 1 ) were immunoprecipi- 

tated with antibody CP1/126. The sodium carbonate treatment (see 
Material and Methods for details) was carried out with t25I-labeled 
brush-border membranes. The antigen was immunoprecipitated 
from the membrane fraction (lane 4) or the supernatant (lane 5). 
The immunoprecipitates were separated by SDS-PAGE and the gel 
was processed for autoradiography. 

Tissue Distribution of  cmv 120 

To determine whether the colon antigen was also found in ep- 
ithelial cells of other rat tissues, brush-border membranes of 
jejunum and total-membrane fractions of liver and kidney 
were prepared, detergent-solubilized, and individually im- 
munoprecipitated with antibody CP1/126. Fig. 3 shows a 
silver-stained SDS gel on which such immunoprecipitates 
were separated. No antigen was detectable in immunopre- 
cipitates of  kidney (Fig. 3, lane 6) and liver (not shown) 
while a 102-kD protein was precipitable from the small- 
intestinal fraction (Fig. 3, lane 4; see also Fig. 1, lane 2). 
Since this antigen was also recognized by CD1/62 (Fig. 1, 
lane 3) the results suggest that this protein is indeed related 
to cmv 120 despite its somewhat faster mobility on SDS gels. 
The small-intestinal antigen was predominantly expressed in 
crypt cells (see below). We therefore wondered whether cmv 
120 was also present in the established crypt cell lines IEC 
6 (Quaroni et al., 1979), IEC 17, and IEC 18 (Quaroni and 
Isselbacher, 1981) of rat small intestine. For this purpose 
confluent monolayers of  these cells were metabolically la- 
beled with [35S]methionine for 3 h, solubilized with Triton 
X-100, and immunoprecipitated with the CP1/126 antibody. 
No cmv 120 was detectable on fluorograms of a gel run with 
such immunoprecipitates (not shown). Thus cmv 120 does 
not seem to be expressed at detectable levels in these three 
cell lines. 

The Size Difference of  Colonic and Small-intestinal 
c m v  120 is Primarily Due to N-glycosylation 

The fairly broad band of cmv 120 on SDS gels pointed to the 
possibility that this protein may be a glycoprotein. Diges- 
tions with Endo F were performed to determine if the differ- 
ence in electrophoretic mobility between the colonic and the 
small-intestinal antigen was due to glycosylation. Endo F, 
which removes both complex and high-mannose N-linked 
oligosaccharides, greatly reduced the molecular mass of cmv 

120 in both intestinal segments and almost completely abol- 
ished the difference in electrophoretic mobility (Fig. 4). The 
Endo F-treated antigens had an apparent Mr of 48 kD in the 
colon and 47 kD in the small intestine. This suggests that the 
size difference of the colonic and the small-intestinal glyco- 
protein is essentially due to N-glycosylation. Both glycopro- 
teins are, at least to a low level, sialylated as indicated by 
their slight mobility shift after treatment with neuraminidase 
(Fig. 4). However, the size difference was not abolished and 
hence not attributable to sialic acid. Further treatment with 
O-glycanase only minimally lowered the apparent Mr fur- 
ther. This finding suggests that cmv 120 is predominantly, if 
not exclusively, N-glycosylated. ~t-Fucosidase produced a 
very small but reproducible reduction in the apparent Mr of 
the small-intestinal but not the large-intestinal antigen. 

Immunolocalization of cmv 120 in the Rat Intestine 

Light microscopy using 1-~tm intestinal cryosections in con- 
junction with the indirect fluorescence technique showed that 
in the colon the brush border of surface colonocytes was the 
principal site of immunoreaction for antibody CP1/126 (Fig. 
5, a and b). An identical pattern was obtained with antibody 
CD1/62 (not shown). There was no difference in labeling in- 
tensity between proximal and distal colon. In the small intes- 
tine, the strongest immunoreaction was found with the lumi- 

Figure 3. cmv 120 is not detectable in the rat kidney. A total mem- 
brane fraction was prepared from one rat kidney and subjected to 
immunoprecipitation with antibody CP1/126. The immunoprecipi- 
tate was separated by SDS-PAGE and the proteins on the gel were 
stained with silver. For comparative purposes brush-border mem- 
branes from rat small intestine were subjected to the same proce- 
dure. (Lane 1 ) Control (no antibody); (lane 2) Mr markers (myo- 
sin = 205 kD; fi-galactosidase = 116 kD; phosphorylase = 97 kD; 
BSA = 66 kD; ovalbumin = 45 kD); (lane 3) brush-border mem- 
branes (10 I.tg protein); (lane 4) immunoprecipitate from 250 I~g 
brush-border membranes; (lane 5) total kidney membranes (10 Ixg 
protein); (lane 6) immunoprecipitate from 250 txg total kidney 
membrane protein. IgGh indicates the position of the heavy chain 
of the mAb in lanes 4 and 6. The arrowhead points to the position 
of the cmv 120 antigen which has an Mr of 102 kD in the small in- 
testine. Bands appearing in the 66-kD region and below in lanes 1, 
4, and 6 are due to albumin (and its breakdown products) used dur- 
ing the immunoprecipitation. 
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Figure 4. Glycosylation of 
12~I-labeled cmv 120 in the 
colon and the small intestine 
as determined by sensitivity to 
endo F, neuraminidase, O-gly- 
canase, and a-fucosidase. Iso- 
lated brush-border membranes 
were detergent solubilized and 
enzymatically labeled with 
[mI]Na. Aliquots containing 
5 x 106 cpm were immuno- 
precipitated with antibody 
CP1/126 and the immunopre- 
cipitates were subjected to 
digestion with the indicated 
glycosidases as described in 
Material and Methods. Shown 
are autoradiograms of SDS- 
polyacrylamide gels. COLON, 
FI fraction of colonocytes; 
SMALL, FI fraction of small- 
intestinal enterocytes. 

nal surface of crypt cells (Fig. 5, c and d). The labeling was 
found to be present down to the base of the crypts (not shown). 
Enterocytes of the villus tip displayed weak reactivity (Fig. 
5, g and h), while cells at the base of villi displayed an inter= 
mediate signal. The luminal surface of goblet cells was not 
labeled (Fig. 5, c-f). This suggests that in the small intestine 
cmv 120 is predominantly expressed in crypt cells giving rise 
to enterocytes and that its amount decreases when the cells 
undergo differentiation at the base of the villi. Immunoelec- 
tron microscopy using antibody CD1/62 confirmed and ex- 
tended the results obtained at the light microscope level. 
Ultrathin sections of Lowicryl K4M-embedded tissue, in 
conjunction with the protein A-gold labeling technique, re- 
vealed CD1/62-immunoreactivity on the extracytoplasmic 
side of the microvillus membrane of colonocytes or small- 
intestinal crypt cells (Fig. 6, b and c). This suggests that the 
epitope recognized by antibody CD1/62 is exposed on the lu- 
minal side of the apical surface membrane. The cells in the 
crypt of the colon showed a weaker labeling compared to sur- 
face colonocytes (Fig. 6 a). The labeling of enterocytes in the 
villus decreased from the base to the tip. Enterocytes of the 
tip showed a very weak labeling (Fig. 6 d). Apart from 
the brush-border membrane, labeling of intraceUular apical 
vesicles and tubules was also observed in particular with the 
large-intestinal surface colonocytes (Fig. 6 b). This labeling 
may be due to newly synthesized cmv 120 that is en route to 
the plasma membrane or due to endocytosed antigen. 

Development of cmv 120Antigen during Ontogeny 
The development of cmv 120 was studied with the im- 
munofluorescence technique using 5-~tm cryosections. First 
appearance of the antigen was detectable in the colon at day 
15 of gestation and in the small intestine at day 16-17 (Fig. 
7). Until birth, the antigen was evenly distributed at the lumi- 
nal cell surfaces of the epithelial cells lining the intestinal lu- 
men in both segments. Surprisingly, during crypt formation 
(1-3 d after birth) the antigen disappeared temporarily from 
the villi in the small intestine and from surface colonocytes 
concomittant with its reappearance in the crypts. At day 6 af- 

ter birth the cellular distribution ofcmv 120 was already vir- 
tually identical to that described for the adult intestine. Im- 
munoblotting experiments carried out with antibody CD1/62 
revealed that the fetal colonic and fetal small-intestinal anti- 
gens had the same mean apparent Mr of 100 kD (not 
shown). Between 21 d of gestation and 1 d after birth, the 
small-intestinal but not the colonic antigen decreased its ap- 
parent Mr by 15-20 kD. It is possible that this change in Mr 
reflects alterations in glycosylation taking place during crypt 
formation in the small intestine. 

Quantification of cmv 120 in Subcellular Fractions 
of Colonocytes 
In a previous study, the lack of an accepted marker protein 
rendered it impossible to precisely assess the enrichment 
factor of a brush-border membrane fraction obtained from 
large-intestinal epithelial cells by a novel fractionation pro- 
cedure (Stieger et al., 1986). For this purpose, we adapted 
a radiometric assay using mAb CP1/126 in conjunction with 
Rivanol. Rivanol has been shown to precipitate the anti- 
body-antigen complex while leaving the unbound antibody 
in solution (Rothwell et al., 1985). 

To test the validity of the Rivanol assay, it was first applied 
to sucrase-isomaltase in subcellular fractions of human small 
intestinal mucosa. For this purpose antibody HBB 2/614/88 
against human sucrase-isomaltase (Hauri et al., 1985b) was 
J25I-labeled and sucrase-isomaltase was quantified in ho- 
mogenates and brush border membrane fractions. Sucrase 
activity was measured in parallel. The enrichment of the 
specific activity of sucrase-isomaltase in the brush-border 
fraction relative to the homogenate was found to be identical 
as measured by the two methods (not shown). The Rivanol 
assay was then used to measure relative enrichment factors 
of the cmv 120 antigen in brush-border fractions of rat small 
and large intestine. Representative results of such experi- 
ments are given in Fig. 8 for the colon. This method resulted 
in a relative enrichment of the cmv 120 in the colonic brush- 
border membrane fraction FI of 15-20-fold. 
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Figure 5. Immunofluorescence staining of cmv 120 in l-l.tm cryosections of rat distal colon (a) and rat small intestine (c, e, and g) at the 
level of crypts (oblique section, c), villus base (e), and villus tip (g). The sections were incubated with antibody CP1/126 (ascites fluid 
1:100) followed by rhodamine-conjugated rabbit anti-mouse IgG. Corresponding phase-contrast pictures are shown in b, d, f, and h. G, 
goblet ceil. The labeling of the brush border in g, although present, was too weak to withstand reproduction. It is important to note that 
the luminal surface of goblet cells is not labeled. Bar, 20 ~tm. 
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Figure 6. Localization of cmv 120 in ultrathin sections of Lowicryl K4M-embedded rat colonic and small-intestinal mucosa. Sections were 
incubated with antibody CD1/62 (culture supernatant 1:2), followed by rabbit anti-mouse IgG, and finally with protein A-10 nm colloidal 
gold. Brush-border labeling is shown in a crypt cell of rat distal colon (a), a surface colonocyte (b), a jejunal crypt cell (c), and a cell 
at the tip of a small-intestinal villus (d). In surface coionocytes, labeling of apical vesicles is sometimes observed (arrowheads). Bars, 0.5 lam. 

Discuss ion 

In the present study, a highly glycosylated protein, cmv 120, 
was identified by mAbs. This protein is associated with the 
luminal membrane of  rat large-intestinal epithelial cells. A 
number of  observations suggest that in the large intestine, 

cmv 120 can serve as a marker protein for the brush-border 
membrane, cmv 120 is a membrane protein as evidenced by 
phase-partitioning experiments using Triton X-114 and by 
means of  resistance to extraction in carbonate buffer at ele- 
vated pH. The protein's principal localization is the brush- 
border membrane of  colonocytes while the luminal mere- 
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Figure 7. Development of cmv 
120 in the small intestine (A-E) 
and in the colon (F-J) during 
ontogeny as visualized by im- 
munofluorescence. 5-1xm cryo- 
sections of 15- (A and F), 17- 
(B and G), and 20-d (C and 
H) fetal intestines or of intes- 
tines at 3 (D and I) and 6 d (E 
and J) after birth were incu- 
bated with antibody CP1/126 
followed by fluorescein-label- 
ed sheep anti-mouse IgG. 
Bars: (A, B, F, G, and I) 44 
p.m; (C and H) 78 gtm; (D, E, 
and J) 87 grn. 
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Figure 8. Representative example of the quantification of cmv 120 
in the homogenate (e) and the corresponding FI brush-border frac- 
tion (o) of isolated rat colonocytes by the Rivanol assay (see Mate- 
rial and Methods for details). The enrichment factor for brush 
borders was 20.5-fold as determined by the comparison of the 
EDs0 values which were 51.2 lig protein for the homogenate and 
2.5 lig protein for the brush-border fraction. Each point is the mean 
of duplicate values. 

brane of goblet cells does not appear to contain this protein 
as assessed by immunofluorescence. According to a postu- 
late of DeDuve (1964), a marker protein or marker enzyme 
should be associated with a single organelle and distributed 
homogeneously within its membrane. With the advent of ex- 
tremely sensitive techniques like high-resolution immuno- 
electron microscopy, this postulate is more difficult to meet 
since biosynthetic precursors of the postulated marker may 
be visualized in various organelles in addition to the prin- 
cipal location. Along this line, we believe that the weak intra- 
cellular labeling of apical vesicles and tubules observed at 
the ultrastructural level with antibody CD1/62 most probably 
reflects the biosynthetic and/or endocytotic pathway. Apart 
from its lower absolute amount, cmv 120 favorably compares 
with sucrase-isomaltase, an accepted marker enzyme of the 
small-intestinal brush-border membrane, in respect to its 
subcellular localization at the light and electron microscopic 
level (Fransen et al., 1985; Lorenzsonn et al., 1987). In the 
brush-border membrane, the cmv 120 appears to be uni- 
formly distributed with the exception of its absence from the 
very tip of the microvilli (the dense plaques). Again this is 
similar to sucrase-isomaltase, in that it is also excluded from 
the dense plaques (see Fig. 2 a of Hauri et al., 1985b; Lu- 
cocq and Baschong, 1986). 

The cmv 120 antigen was used to assess the validity of a 
previously established procedure for the isolation of colon 
brush-border membranes (Stieger et al., 1986). In the ab- 
sence of an accepted marker, the method had to rely on in- 
direct criteria like morphology and its applicability to the 
small intestine, for which a number of brush-border en- 
zymes can serve as markers. The present study now confirms 
the validity of the procedure that results in a 15-20-fold rela- 
tive enrichment of cmv 120 in the FI brush-border fraction. 

Differences relating to ultrastructure (Engelhardt and Rech- 
kemmer, 1983) and function (Binder and Sandle, 1986) have 
been reported for proximal and distal colon. The presence 
ofcmv 120 in both colonic segments, therefore, renders it un- 
likely that this glycoprotein is involved in segment-specific 

functions like active K absorption or active K secretion (Fos- 
ter et al., 1984). 

Although we have yet to define the function of cmv 120, 
some of its features render this protein an interesting subject 
for studies that go beyond its usefulness as a marker protein 
for the brush-border membrane of colonocytes. The cmv 120 
protein carries a substantial amount of glyeans. Endo F di- 
gestion decreased its apparent Mr by ,v72 kD in the colon. 
Assuming a contribution of a single N-linked oligosaccha- 
ride side chain of ~3  kD this reduction in apparent Mr would 
reflect removal of 24 side chains per polypeptide. The differ- 
ence in Mr of the colonic and small-intestinal glycoprotein 
appears to be essentially due to N-linked side chains since 
Endo F digestion almost completely abolished the difference 
in electrophoretic mobility. Glycoproteins that are common 
to both the small-intestinal and the large-intestinal micro- 
villus membrane have not been analyzed in detail yet. This 
first example suggests that N-glycosylation of cmv 120 is 
t issue-rather than protein-dependent. Similar to cmv 120, 
the 13 subunit of Na+/K+-ATPase displayed a higher appar- 
ent Mr in the colon than in the small intestine (Marxer, A., 
and H. E Hauri, unpublished observations). This would be 
in line with observations by Roth et al. 0985), who found 
one particular sialyltransferase expressed in rat large intes- 
tine but not small intestine. However, it is important to note 
that the Mr difference of the colonic and the small-intestinal 
cmv 120 was not abolished by neuraminidase treatment and 
therefore is unlikely to be due to sialic acid. 

In the small intestine, cmv 120 was found to be expressed 
on the luminal membrane of most crypt cells and to a lesser 
extent in the brush border of differentiated villus cells. Most 
notably, the goblet cells do not express cmv 120. Thus, cmv 
120 may also be useful as a marker for progenitor crypt cells 
giving rise to absorptive epithelial cells. Recently, Quaroni 
(1986) has described a number of mAbs that preferentially 
bind to the luminal cell surface of rat small-intestinal crypt 
cells, as shown by immunofluorescence. One of these anti- 
bodies (i.e., FBB 1/20) precipitated a protein having a simi- 
lar Mr to the cmv 120 described here. However, it appears 
unlikely that FBB 1/20 is identical to cmv 120 since the FBB 
1/20 antigen becomes confined to the crypt cells only after 
weaning. Another similar protein, expressed in the apical 
membrane of rabbit crypt cells, has been reported by Gorvel 
et al. (1986a, b). The protein has an apparent Mr of 140 kD 
but is absent from the rabbit large intestine. Thus, this pro- 
tein is clearly different from cmv 120. 

An interesting observation relates to the inverse gradients 
of cmv 120 in the adult colon and small intestine as revealed 
by immunofluorescence and immunoelectron microscopy. 
While in the colon, cmv 120 immunoreactivity is low at the 
bottom of the crypt cells and increases to a maximal level 
when the cells reach the intestinal surface. This protein is 
maximally expressed in small-intestinal crypt cells and grad- 
ually disappears while the cells migrate from the base to the 
tip of the villus. 

The cmv 120 protein was found to be already expressed 
during the late fetal stage before the development of crypt 
cells. Its transient disappearance from the cell surface after 
birth suggests a block of synthesis of this marker in surface 
cells during crypt formation. 

In conclusion, the present study suggests that cmv 120 is 
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a valuable marker for the apical membrane of colonocytes. 
Moreover, the cmv 120 protein may serve as a cell-surface 
marker for progenitor cells of enterocytes in small-intestinal 
crypt cells. 
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