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Abstract. Reducing the internal pH of cultured cells 
by several different protocols that block endocytosis is 
found to alter the structure of clathrin lattices on the 
inside of the plasma membrane. Lattices curve inward 
until they become almost spherical yet remain stub- 
bornly attached to the membrane. Also, the lattices 
bloom empty "microcages" of clathrin around their 
edges. Correspondingly, broken-open cells bathed in 
acidified media demonstrate similar changes in clathrin 
lattices. Acidification accentuates the normal tendency 
of lattices to round up in vitro and also stimulates 
them to nucleate microcage formation from pure solu- 
tions of clathrin. On the other hand, several conditions 
that also inhibit endocytosis have been found to create, 
instead of unusually curved clathrin lattices with ex- 

traneous microcages, a preponderance of unusually flat 
lattices. These treatments include pH-"clamping" cells 
at neutrality with nigericin, swelling cells with hypo- 
tonic media, and sticking cells to the surface of a cul- 
ture dish with soluble polylysine. Again, the unusually 
flat lattices in such cells display a tendency to round 
up and to nucleate clathrin microcage formation dur- 
ing subsequent in vitro acidification. This indicates 
that regardless of the initial curvature of clathrin lat- 
tices, they all display an ability to grow and increase 
their curvature in vitro, and this is enhanced by lower- 
ing ambient pH. Possibly, clathrin lattice growth and 
curvature in vivo may also be stimulated by a local 
drop in pH around clusters of membrane receptors. 

S 
EVE R AL different methods have recently been developed 
to block receptor-mediated endocytosis. These include 
potassium depletion (30, 36, 37, 38, 41, 46, 61), hyper- 

tonicity (14, 21, 22), and cytoplasmic acidification (15, 28, 
60). The first two treatments produce profound changes in 
the distribution of cytoplasmic clathrin, the protein that nor- 
mally produces geodesic "cages" around portions of the plas- 
ma membrane that undergo endocytosis (4, 19, 52, 53, 68). 
Clathrin-coated pits in the plasma membrane largely disap- 
pear, according to electron microscopic observations (21, 22, 
38), while diffuse clathrin immunofluorescence increases 
throughout the cytoplasm (22, 36). This diffuse fluorescence 
turns out to result from precipitation of cytoplasmic clathrin 
into unusually small "microcages" (21, 22), similar to the 
polymers that form during dialysis of pure clathrin into 
acidic media (32, 64, 69, 73). Hence, potassium depletion 
and hypertonicity appear to induce clathrin to come out of 
solution in a form that can no longer participate in the pro- 
duction of normal coated pits. 

Previous electron microscopy of acidified cells has not de- 
tected such structural changes (15, 60): coated pits remain 
visible and microcages have not been recognized. It has 
therefore been suggested that acidification somehow "para- 
lyzes" coated pits so that they can no longer pinch off from 
the plasma membrane to form coated vesicles (60). In this 
study we apply the freeze-dry replica technique (24) to the 
analysis of acidified cells. This provides further evidence for 
a "paralysis" of coated pits in that lattices with increased cur- 
vature but persistent attachment with the plasma membrane 

do indeed accumulate during acidification. In addition, how- 
ever, acidification is also found to cause the same precipita- 
tion of clathrin microcages seen after hypertonicity and 
potassium depletion, indicating that all these treatments have 
certain common features. 

In the course of this study it has also become clear that it 
is possible to manipulate the degree of curvature of clathrin 
lattices. Thus, flat lattices will round up "spontaneously" in 
vitro after cells are broken open, a process accelerated by 
acidic buffers and thus analogous to the increased curvature 
of lattices seen after in vivo acidification. Conversely, pH 
"clamping" the cytoplasm at neutrality leads to the accumula- 
tion of unusually flat clathrin lattices, a process that is 
promptly reversed upon subsequent acidification both in vivo 
and in vitro. These observations indicate that clathrin lattice 
behavior on the plasma membrane largely reflects the known 
properties of clathrin in solution: namely, that lowering am- 
bient pH promotes both clathrin assembly and curvature. In 
addition, they indicate that assembly and curvature can be 
separable phenomena and can be induced to occur sequen- 
tially, substantiating the idea that molecular rearrangements 
can occur within the assembled lattice to bring about curva- 
ture (20, 31). 

Materials and Methods 

Cell Culture 
Chicken fibroblasts were removed from primary culture with trypsin/EDTA 
and replated at 5 × l0 s cells/ml into 35-ram petri dishes containing several 
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3 x 3-mm pieces of No. 1 glass coverslip precleaned in hot chromic acid, 
washed extensively with water, and sterilized with ethanol before use. The 
cells were maintained in MEM supplemented with 10% FCS, 100 U/ml of 
penicillin, and 100 mg/ml of streptomycin. After 1 d of culture at 37°C, at 
a time when the cells had spread and reached subconfluence on the small 
glass squares, they were removed from the C(h incubator and washed four 
times at 37°C in a standard avian Ringer's solution before further experi- 
mental manipulation. 

Methods of Cell Acidification 
Four different methods were used to acidify cells. Details of each method 
and documentation of the degree of acidification produced (as determined 
by carboxyfluorescein UV spectrofluorimetry) will be presented in a subse- 
quent report. (a) "Ammonia prepulse" developed by Boron and colleagues 
(8, 9, 58): Cells are exposed to 25 mM NH4CI in normal Ringer for 15 min 
at 37°C, which loads them with ammonium ions and free ammonia; they 
are then transferred to sodium-free (and low Cl) medium composed of 135 
mM N-methylglutamine neutralized to pH 7.2 with powdered Hepes (free 
acid form) containing 2 mM KCI, 5 mM MgCl2, 3 mM EDTA, 0.5 mM 
KH2PO4, and 10 mM glucose. The absence of NI-hCI from this medium 
promotes outward diffusion of accumulated ammonia from the cells, but 
since NIL, + is in rapid equilibrium with NH3 and NH3 is much more mem- 
brane permeable, most ammonia exits in the latter form. This leaves behind 
protons and rapidly acidifies the cells. Thereafter, acidification is main- 
tained as long as the Na/H exchanger or "antiporter" is blocked by elimina- 
tion of external Na. (b) Nigericin "pH clamp" developed by Thomas (66, 
67): cells are washed in a medium where K + replaces all Na+; they are 
then exposed to nigericin (10-SM). This ionophore supports electroneutral 
K+/H + exchange (54) so that when the K + concentration is made equal 
across the plasma membrane, H + concentration soon equalizes as well. In- 
tracellular pH thus becomes "clamped" at the value imposed by the external 
buffer. The specific composition of the isotonic K + medium is also de- 
signed to prevent Donnan swelling via chloride imbalance in that it contains 
50 mM K + gluconate, 50 mM KCI, 30 mM MES brought to pH 6.3 with 
KOH, 5 mM MgCI2, 3 mM EGTA, 0.5 mM KH2PO4, and 10 mM glu- 
cose. (c) Direct acidification via application of weak acids as developed by 
Rogers et al. (56, 57): Cells are exposed to 10 mM acetic acid in normal 
Ringer's solution. The undissociated form of this acid promptly penetrates 
the plasma membrane and dissociates in the cytosol, thereby lowering 
cytoplasm pH. To provide a high concentration of the penetrable form, the 
pH oftbe Ringer's is allowed to drop to 6.0 when acetate is added. (d) Simple 
acidification of the medium: As known for some time (7, 15, 35), intracellu- 
lar pH in most cells follows extracellular pH to some extent, usually lagging 
by 0.5-1.0 pH unit. Thus, severe acidification of normal Ringer's by sub- 
stituting its usual Hepes buffer with MES buffer at pH 5.5 creates significant 
cellular acidification. 

In experiments not detailed below, we have found that all four treatments 
have comparable effects on endocytosis, verging on total inhibition of bulk 
HRP uptake at an internal pH 6.3 or less, and all induce the changes in 
clathrin lattices described below. Grossly, cells treated by the various pro- 
tocols can be distinguished because treatment a (NI-hCI prepulse) also 
causes severe vacuolization of the endosomal/lysosomai system (the others 
do not), while treatment b (nigericin clamp) is alone in causing a dramatic 
nucleolar condensation. 

Preparing Carbon-Platinum Replicas of the 
Inner Cell Surface 
At the end of the treatments outlined above, cells on the small coverslips 
were exposed for 5 s to 0.3 mg/ml poly-L-lysine (35-50 kD; Sigma Chemi- 
cal Co., St. Louis, MO) dissolved in the appropriate experimental solution. 
Cells were then washed for 10 s in hypotonic medium, prepared by mixing 
one part of the experimental solution with two parts of distilled water. Cells 
were then transferred to buffer A (70 mM KCI, 30 mM Hepes, pH 7.2, 5 
mM MgCI2, 3 mM EGTA) and immediately broken open by placing an 
ultrasonic microprobe (Kontes Co., Vineland, N J) 4 nun away from the sur- 
face of the coverslip and delivering 15 % of maximum power for 1 s. Soni- 
cared cells were immediately transferred to 2% glutaraldehyde in buffer A 
for 30 min at room temperature. After fixation, the coverslips were washed 
exhaustively with distilled water. Thereafter, each coverslip was placed on 
a slab of aldehyde-fixed rabbit lung and attached to the plunger of a 
"Cryopress" freezing machine (Med-Vac, Inc., St. Louis, MO). Excess wa- 
ter was blotted from the coverslip and the sample was immediately frozen 
by abrupt contact with a copper block cooled with liquid helium, as previ- 

ously described (20, 26). The frozen coverslip was then transferred to a 
freeze-etch machine (model No. 301 or 400; Balzers S. p. A., Milan) and 
freeze-dried at -80°C for 15 min. A replica of its exposed surface was pre- 
pared by rotary evaporating 2-3 nm of platinum at an angle of 24 ° above 
the horizontal, followed by 10 nm of carbon at a 75 ° angle. The replica was 
then separated from the coverslip by immersion in full strength hydrofluoric 
acid, washed twice in distilled water, and cleaned by flotation on household 
bleach (5 % sodium hypochlorite) for 5-10 min. Finally, it was washed sev- 
eral times in distilled water and picked up on a 400-mesh Formvar-coated 
grid for electron microscopy. 

Fluorescence Microscopy 
To localize clathrin distribution by indirect immunofluorescence, human 
fibroblast monolayers grown on 22-mm square glass coverslips were sub- 
jected to the experimental treatments described above and then fixed with 
2% (wt/vol) paraformaldehyde in buffer B (100 mM NaCI, 20 mM Hepes 
buffer, pH 7.2, with 2 mM CaC12). The fixative was then quenched by 
washing the cells briefly in 50 mM NH4CI and 50 mM lysine in buffer B. 
Cells were then washed twice with buffer B alone and permeabilized with 
0.1% (wt/vol) NP-40 in buffer B for 5 rain at 25°C. Each coverslip was then 
covered with 100 #1 of mouse anti-clathrin IgG (50 gg/ml of monoclonal 
anti-heavy chain antibody "x22 ~, kindly provided by Dr. Francis Brodsky; 
cf. reference 10)] and incubated for 60 min at 25°C. After four washes (15 
min each) with buffer B, the cells were incubated with 100 #l of goat 
anti-mouse IgG conjugated to fluorescein isothiocyanate (50 #g/ml; No. 
F-3008; Sigma Chemical Co.) for 60 min at 37°C. The coverslips were 
finally washed and mounted on glass slides in 0.1 M N-propyl-gallate (Sigma 
Chemical Co.) in 90% glycerol/10% buffer B. Finally, they were viewed 
with a Leitz epifluorescence photomicroscope. 

Internalization of Horseradish Peroxidase 
Horseradish peroxidase (HRP) I uptake was analyzed as previously de- 
scribed (25). Cultured chick or human fibroblasts grown on 22-mm square 
coverslips were subjected to the above treatments, then incubated for 30 min 
at 37°C with 5 mg/ml HRP (type VI; Sigma Chemical Co.) while still in 
the experimental solution, and finally fixed with 2% formaldehyde and 
0.25% glutaraldehyde in buffer B for 1 h. The cells were then processed 
for visualization of internalized peroxidase with 0.05% diaminobenzidine 
and 0.01% H202 in buffer B as previously described (25). 

Preparation of Pure Clathrin for In Vitro 
Assembly Experiments 
Coated vesicles were prepared from calf brains by sucrose density centrifu- 
gation, and clathrin was stripped from them with 0.5 M "Iris, pH 7, as de- 
scribed (32, 34). Purification was achieved by ammonium sulfate precipita- 
tion and chromatography on Superose 613 also as described previously (76). 
Molecular intactness was assessed with SDS-PAGE (32) and deep-etch elec- 
tron microscopy of clathrin adsorbed to mica (23). Protein concentration 
was determined by absorbance at 280 nm. 

Electron Microscopy 
All electron micrographs were prepared using a JEOL 200CX electron mi- 
croscope operating at 100 KV. Stereo viewing and digitization and quan- 
tification of the micrographs was carried out as previously described (17, 
21, 22, 27, 34). 

Results 

Spontaneous Increase in Clathrin Lattice Curvature 
In Vitro 
Because clathrin lattices are found with many different 
degrees of  curvature when normal cells are examined in the 
electron microscope (20), their individual sequence of as- 
sembly and curvature must be relatively unsynchronized. 

1. Abbreviation used in this paper: HRP, horseradish peroxidase. 

The Journal of Cell Biology, Volume 108, 1989 402 



Any changes that occur in experimentally altered cells thus 
need to be assessed relative to this intrinsic variability. Here, 
we first determined that the various lattice configurations 
seen in whole cells fixed in glutaraldehyde (20, 27) were also 
encountered when cells were broken open by sonicatlon and 
then fixed (Fig. 1). When, however, fixation in glutaralde- 
hyde was delayed for several minutes after breaking cells 
open, significant changes were seen (Fig. 2). As detailed in 
Table I, clathrin lattices on broken membrane fragments be- 
came progressively more curved with time. 

This spontaneous increase in lattice curvature required no 
obvious energy source, occurring even when Mg-ATP was 
removed with apyrase, with hexokinase and glucose, or with 
EDTA. The only conditions that inhibited it were low tem- 
perature (10*C slowed it and 4°C stopped i0 and ionic media 
that approached lattice-depolymerizing conditions (i.e., 
buffers <20 mM ionic strength or > pH 8; cf. references 32, 
45, 73). Fortunately, however, lattice curvature increased 
slowly enough that it was not a problem when cells were 
manipulated in vivo and fixed immediately after sonication. 
It only became a problem when sonicated cells were manipu- 
lated for some time in vitro; any lattice changes observed un- 
der these conditions were superimposed on an inevitable in- 
crease in lattice curvature. 

Effects of  Acidification on In Vitro Lattice Curvature 

Complementary to the inhibitory effects of in vitro alkalin- 
ization mentioned above, in vitro acidification of the media 
around exposed clathrin lattices caused them to curve much 
more intensely and much more rapidly than usual (Fig. 3 and 
Table I). The apparent threshold for this phenomenon was 
between pH 6.3 and 6.5 (not shown). A further effect of in 

vitro acidification was to cause some lattices to break up into 
sharply curved sublattices (Fig. 4). This bizarre result oc- 
curred particularly frequently in regions of cells that hap- 
pened to be adherent to the underlying coverslip, due to brief 
pretreatment with polylysine before sonication. It was not 
seen in unattached regions of the same cells nor in the ab- 
sence of in vitro acidification. Thus it appeared to reflect a 
competition between an abnormal resistance to membrane 
curvature (due to the polylysine) and an abnormal tendency 
for lattice curvature (due to the low pH of the medium). As 
in the spontaneous curvature described above, low pH-in- 
duced curvature also was not dependent on ATP availability 
and could only be inhibited by cooling to <10°C. 

In Vivo Acidification of  Living Cells 

Acidifying the cytoplasm of whole cells by any of the several 
protocols outlined in Materials and Methods led to an abrupt 
arrest of HRP uptake in chick and human fibroblasts (Fig. 
5), but as noted by other investigators (15, 60), did not in- 
volve the loss of clathrin lattices. Two lines of evidence con- 
firmed this: first, immunofluorescent localization of clathrin 
in acidified cells displayed normal numbers of bright surface 
spots (Fig. 6); second, replicas of acidified cells displayed 
normal numbers of clathrin lattices (Table I). Thus, coated 
pits in acidified cells do indeed appear to become "para- 
lyzed". A similar interpretation has been given to the persis- 
tence of coated pits in A431 cells during mitosis (55), at 
which time endocytosis is also inhibited (48, 59, 72). 

To determine the possible structural basis of such a "paral- 
ysis" of coated pits, freeze-etch replicas of acidified cells 
such as Fig. 7 were examined. These displayed an unusually 
great abundance of nearly spherical clathrin lattices, similar 

Table I. Experimental Alteration of the Curvature of Clathrin Lattices beneath Coated Pits In Vivo and In Vitro 

Relative curvature of clathrin lattices¢ 

Total No. Almost 
of lattices Gently completely 

Treatment evaluated * Flat curved Hemispherical spherical 

Whole  cells, fixed 47 0.10 0.40 0.20 0.30 
Fixed immediately 

after breakage 118 0.15 0.35 0.25 0.25 
Sat 5' at pH 7.2 

after breakage 87 0.10 0.05 0.45 0.35 
Sat 5' at pH 6.2 

after breakage 68 0.05 0.10 0.00 0.80 
pH 6 clamped 

with nigericin 81 0.15 0.15 0.10 0.50 
"Rebound" acidity 

after NIL  prepulse 73 0.10 0.15 0.20 0.60 
pH 7 clamped 

with nigericin 91 0.55 0.15 0.10 0.20 
Control for pH 7 clamp 

(neutral KCI medium) 49 0.25 0.30 0.15 0.25 
Prolonged polylysine 

exposure 41 0.80 0.05 0.00 0.15 

* Representing all of the lattices that were present on a total of 50 t~m 2 of membrane surface area, i.e., on 20 electron micrographs taken at 50,000x, of fields 
chosen only for their technical quality. 
* These values represent fractions of the total number of lattices evaluated, rounded off to the nearest 0.05, so that the total is not necessarily 1.00. To assess 
curvature, stereo pairs were analyzed to obtain unambiguous visual cues of depth. For the nonstereo images presented in this paper, degree of curvature is indicated 
by the relative whiteness of the image: the more domed the lattice, the more platinum is deposited on it and, in reverse contrast, the whiter it appears (cf. Figs. 
1 and 2, showing the range between flat and sharply curved lattices). 
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Figure 1. Gallery of coated pit profiles on the inner surface of nor- 
real chicken fibroblasts growing in culture, illustrating the range of 
lattice curvature seen normally. Bar, 0.2 ~m. 

Figure 3. Gallery of relatively large clathrin lattices allowed to 
round up in vitro before fixation and freezing. The initially large 
size of these particular lattices caused them to form multiply curved 
domains, a-f  were from membrane fragments exposed to neutral 
media, while g-l were from membrane fragments exposed to pH 
6.2 media. This clearly exacerbated their tendency to curve and to 
parcel up into multiply curved domains. Bar, 0.2 #m. 

Figure 2. Gallery of the more rounded types of clathrin coated pits 
seen in normal chick fibroblasts (a-d), compared with the un- 
usually rounded appearance of coated pits on membrane fragments 
derived from cells that were broken open and allowed to remain in 
pH 7 buffer for 10 min at 25°C before fixation and freeze drying 
(e-l). Bar, 0.2 #m. 

Figure 4. Examples of clathrin lattices that were induced to curve 
by exposure to pH 6.2 media after cell rupture, but under conditions 
in which the membrane was first stuck to the underlying coverslip 
by pretreatment with polylysine. This physically prevented the nor- 
mal curvature of the lattices and resulted in elaborate partitioning 
into multiple subdomains, each of which appear in stereo to be 
roughly hemispherical. Bar, 0.2 ~,m. 
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Figure 5. HRP uptake in control and treated chick fibroblasts in cul- 
ture, as seen by phase-contrast light microscopy, a illustrates nor- 
mal uptake after exposure to 5 mg/ml HRP for 20 min at 37°C. b 
and c illustrate severe inhibition of HRP uptake resulting from 
acidification of the cytoplasm. In b, this was accomplished by ex- 
posure to 10 -5 M nigericin in an isotonic K + medium at pH 6.3, 
while in c it was accomplished ~ ammonia ~prepulse" (see 
Materials and Methods). In other experiments, these treatments 
also inhibited receptor-mediated uptake of specific ligands and 
toxins, as expected (42). Note that acidification with nigericin (b) 
also caused a characteristic condensation of the two nucleoli, d il- 
lustrates that nigericin applied at neutral pH, e.g., pH clamping, 
also partially inhibits HRP uptake. In this case, internalized tracer 
ends up in swollen endosomes. Bar, 10/~m. 

Figure 6. Fluorescence microscopy of human fibroblasts reacted 
with Brodsky's ×22 anti--clathrin antibody (10). a and b display 
control cells illustrating the characteristically punctate distribution 
of clathrin at the cell surface seen normally (5, 6, 16, 18, 39). Pre- 
sumably, this is clathrin at coated pits. c and d illustrate clathrin 
distribution in fibroblasts acidified with nigericin for 30 min. Sur- 
face staining appears unaltered at this low magnification; the only 
difference is inside, where bright rings of fluorescence now appear. 
These may be organelles that failed to uncoat because low pH in- 
hibited the 70-kD uncoating ATPase (50, 63) or they may be 
clusters of clathrin microcages, as seen in hypertonically treated 
cells (21, 22) and in metabolically inhibited cells (44, 49). Bar, 
10 #m. 

to those seen after in vitro acidification, as well as an unusual 
prevalence of the form of clathrin lattice illustrated in Fig. 
8. This form was superficially reminiscent of  the partitioned 
lattices seen after in vitro acidification (Fig. 4), but differed 
significantly in that the partitions were generally smaller, al- 
ways more uniform in diameter (50--60 nm), and almost per- 
fectly spherical. (This made them appear very white in 
contrast-reversed images because the platinum on their up- 
per and lower surfaces became superimposed during photog- 
raphy.) Such tiny, closed lattices of  clathrin have been termed 
"microcages" in previous reports (21, 27). They clearly dis- 
play the appropriate polygonal construction for clathrin, 
with the predominance of pentagons over hexagons expected 
for unusually small lattices (12, 13, 23, 31, 51, 70, 71). They 
do not, however, contain any internal membranes:  no com- 
parable membrane  invaginations have been seen in the envi- 

rons of  coated pits in previous thin sections of  acidified cells 
(15, 60) nor were they seen when we freeze-fractured 
through the membranes of  coated pits in acidified cells (data 
not shown). Thus they appear to be abnormally empty poly- 
mers, incorrectly attached to the plasma membrane. 

Finding that such microcages form during acidification in 
vivo but not in vitro raised the obvious possibility that they 
derive from a cytoplasmic pool of  clathrin. In vitro lattices 
would of course not have the opportunity to nucleate poly- 
merization of clathrin in response to a drop in pH even if they 
had the tendency to do so, simply because the cytoplasmic 
pool would be totally washed away. The following experi- 
ments demonstrate that in vitro lattices in acid do indeed dis- 
play a clathrin-nucleating propensity. 
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Figure 7. Survey view of a human fibroblast acidified by nigericin treatment at pH 6.3 for 2 min at 37°C. This results in several changes 
in the clathrin lattices, including excessive rounding and the appearance of adjacent foci of extremely intense curvature (two of these "buds" 
are indicated at the arrows). Bar, 0.1 /zm. 

Lattice Edges Act as Clathrin Nucleating Sites 

When normal cells were sonicated open and the remaining 
membrane fragments were bathed in 0.1 mg/ml pure clathrin 
(initially dissolved in 50 mM Tris, pH 7.5, to keep it soluble), 
nothing happened to their exposed clathrin lattices, beyond 
their usual slow rounding up. However, when the medium 
containing soluble clathrin was subsequently acidified by 
injecting a 1/10 vol of 1 M MES buffer at pH 6.0 with 20 
mM MgC12, the exposed lattices acquired microcages that 
looked exactly like those seen after in vivo acidification. Fig. 
9 (g-l) illustrates this. After 5 min of acidification at 25°C, 
numerous small clathrin cages appeared around the edges of 
all coated pits, which as usual had become curved as a result 
of the 5 min of in vitro incubation at low pH. These looked 
identical to the microcages that form around clathrin lattices 
during in vivo acidification (Fig. 8 and Fig. 9, a-f). Hence, 
under pH conditions in which clathrin is induced to come out 
of solution in the form of small cages (13, 32, 64, 69, 73, 74), 
the edges of existing coated pits appear to nucleate this 
phenomenon, presumably because the edges of normal lat- 
tices are incomplete and thus display uncommitted triskelion 
legs that can induce the polymerization. This in vitro result 

substantiates the idea that microcage formation during in 
vivo acidification involves a similar nucleation phenomenon, 
but in that case from the normal cytoplasmic pool of clathrin. 

The Fate of Acid-induced Microcages 

When cytoplasmic pH was held at 6.0-6.3 for prolonged 
periods (30-60 rain), clathrin rnicrocages continued to be 
found in contact with the persistent "paralyzed" clathrin lat- 
tices, as well as elsewhere on the inner surface of the plasma 
membrane. Subsequent restoration of normal intracellular 
pH resulted in their prompt dissolution; within 5 min at 37°C 
they were completely gone. Interestingly, dissolution of mi- 
crocages also occurred in vitro within 5 min of breaking cells 
open in buffers ofpH 7.2 or higher. Hence, to preserve them 
once they were formed, it was necessary to fix cells immedi- 
ately after sonication or else to maintain them in acidic buffer 
between sonication and fixation. 

Clamping of Ceils at Neu tral pH 
One set of control experiments for the nigericin technique of 
acidifying cells entailed exposing cells to an isotonic K + 
medium that did not contain nigericin and was not acidic; 
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Figure & Gallery of selected views of the characteristic microcage 
nucleation that occurs around clathrin lattices in acidified cells, a-c 
illustrate chick cells acidified by ammonia prepulse, d-fiUustrate 
human cells acidified by nigericin at pH 6.3 for 2 min, and g-i illus- 
trate chick cells acidified by nigericin treatment at pH 6.3 for 5 min, 
all at 37°C. Bar, 0.2/~m. 

Figure 9. Gallery of selected views of clathrin lattices that display 
microcage nucleation around their edges from whole cells acidified 
with nigericin at pH 6.3 (a-f), compared to in vitro nucleation of 
clathrin assembly onto preexisting clathrin lattices (g-l). In the lat- 
ter instances, cells were broken open and exogenous clathrin (0.1 
mg/ml) was provided before acidifying their environment. Small 
clathrin lattices tend to form in suspension as a result of this acidi- 
fication; however, on the membrane fragments in question, such lat- 
tices are found only at the margins of coated pits. Bar, 0.2/zm. 

Figure 10. Gallery of typical examples of the appearance ofclathrin- 
coated pits in chick fibroblasts exposed to nigericin in neutral media 
(pH clamped) for 30 min at 37°C. Lattices under these conditions 
become unusually flattened and display a tendency to coalescence. 

this had no obvious effect on endocytosis or on clathrin orga- 
nization (not shown). However, when nigericin was added to 
this neutral K ÷ medium, yet a different change in clathrin 
was observed: membrane associated lattices became virtu- 
ally flat (Table I). Often, they also became unusually large 
and confluent (Fig. lO and Fig. lla, b), approaching the ex- 
treme of flatness seen relatively infrequently in normal cells 
(Table I). Associated with this change, HRP uptake became 
restricted to a small number of very distended endosomes 
(Fig. 5 d), though was not as inhibited as after acidification 
(Fig. 5, b and c). 

Two experiments demonstrated that the unusually flat lat- 
tices in nigericin pH-clamped cells were still capable of 
curving. First, when such cells were sonicated open and left 
for several minutes before fixation, their lattices rounded up 
in the same fashion as untreated cells (not shown). Second, 
when such cells were challenged by brief (1-2 min) acidi- 
fication immediately before preparation for electron micros- 
copy, their large flat lattices were replaced by more curved 
ones that displayed regions of the sort of fragmentation seen 
during in vitro acidification (Fig. 11, c-e) and displayed 
many examples of the sort of polymerization of microcages 
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Figure 11. Gallery of typical clathrin lattices seen on the inner surfaces of chick fibmblasts exposed to nigericin at neutral pH without 
subsequent treatment (a and b) or followed by brief acidification of the extracellular medium before fixation and freeze drying (c-t). In 
c-e, acidification was applied for 1 min. In f-i, acidification was applied for 2 1/2 min. The sections are thus arranged to illustrate a progres- 
sive increase in the extent of microcage nucleation around the edges of lattices that start out unusually fiat (due to the initial pH clamp). 
This plate thus summarizes the extremes of clathrin lattice configuration that can be generated by manipulation of intracellular pH. Bar, 
0.2 #m. 

seen during in vitro clathrin decoration (Fig. 11, f-i). These 
results show that the unusually flat lattices that accumulate 
in pH clumped cells are just as capable of rounding up and 
nucleating clathrin polymerization as are normal lattices. 
Thus, it is not clear why clathrin lattices accumulate in flat 
forms during cytoplasmic clamp at pH 7. 

Other Means to Flatten Clathrin Lattices 

The above accumulation of flat lattices raised the question of 
whether clathrin lattices present at the outset of the experi- 
ment were flattening out after they were made, or whether 
the original population of clathrin lattices was being replaced 
by a new population of lattices that were starting off flatter 
than usual. Support for the former possibility came from 
finding two additional methods to produce flat clathrin lat- 
tices, both of which were extremely abrupt (occurring in less 
than the turnover time expected for coated pits). The first en- 
tailed exposing living cells to 0.1 mg/ml polylysine for 1 min; 

this glued the bottoms of most cells down to the coverslip 
and, in the process, flattened out most of their coated pits 
(not shown here, but also documented in reference 45). 
Preexisting coated pits could also be flattened out promptly 
by swelling cells with very hypotonic media (1 min in 5 mM 
phosphate buffer pH 7.0). The latter treatment was sufficient- 
ly abrupt to create numerous "faults" in the lattices as they 
flattened, faults much like the ones found in a cartographer's 
projection of the earth. Still, even these lattices were able to 
"heal" their faults and curve up into spheres in vitro; given 
5 min between sonication and fixation, the lattices on hy- 
potonically swollen cells became spherical as usual (not 
shown). 

Effects of  Gross Cell Damage 

Although the in vivo changes described above were in most 
cases fully reversible, the severity of some of the experimen- 

The Journal of Cell Biology, Volume 108, 1989 408 



tal conditions occasionally killed a small proportion of the 
cells in certain experiments. Such cells could be recognized 
by, among other things, the unique change in clathrin distri- 
bution illustrated in Fig. 12. This amounted to a massive ac- 
cumulation of relatively small and relatively flat lattices. 
This unusual condition could be readily distinguished from 
all the other lattice changes described above, dispelling con- 
cern that the above changes were also agonal ones. However, 
what causes this agonal accumulation of lattices remains to 
be determined. 

D i s c u s s i o n  

The data presented here indicate that acidification has three 
distinct effects on clathrin lattices. First, it stimulates lattice 
curvature, an effect that can be seen both in vitro and after 
cytoplasmic acidification in vivo (Table I). Second, it pro- 
motes the polymerization of soluble cytoplasmic clathrin 
into highly curved microcages, using the edges of preexisting 
lattices as major nucleating sites (Figs. 8 and 9). Third, it 
prevents curved lattices from going on to form coated vesi- 
cles; e.g., it prevents them from pinching off the plasma 
membrane and thereby stops endocytosis abruptly and com- 
pletely (Fig. 5). 

Figure 12. Survey view of a dying fibroblast, illustrating the typical 
recruitment of flat clathrin lattices and loss of membrane-associated 
actin that occurs just before cell rupture. This illustrates that the lat- 
tice changes presented in the above figures were not agonal changes. 
Bar, 0.2 gm. 

Interpreting these changes is complicated by the fact that 
electron microscopy does not permit the examination of any 
particular lattice both before and after treatment, it provides 
only a series of statistical samples of many lattices at differ- 
ent time points. Thus, the question arises of whether lattices 
present at the outset of the experiment have themselves 
changed, or wfiether they have been replaced by a new popu- 
lation of lattices that are different. Sometimes, the ex- 
perimental protocol used :to manipulate the lattices before 
electron microscopy will permit a reasonable answer to this 
question. Thus, for example, when membrane fragments 
containing clathrin lattices are manipulated in vitro and in 
simple buffers that do not contain the substrates necessary 
for new lattice formation, one can be relatively certain that 
the lattices present at the moment of cell rupture have them- 
selves gone on to change. Moreover, when changes are pro- 
duced in whole cells on a time scale that is much more rapid 
than the expected turnover time of clathrin lattices, one can 
again be relatively certain that preexisting lattices have them- 
selves changed. The latter conclusion is more problematic, 
however, because the normal rate of turnover of clathrin lat- 
tices is not known with any degree of certainty. The usual 
estimate is 1-5 rain (53), but this is based on somewhat in- 
direct evidence (4-6). In this respect, one of the major effects 
of the treatments applied here is to slow the rate of coated 
pit turnover or stop it entirely, hence most of the observed 
changes are likely to have happened to preexisting coated 
pits. Nevertheless, we cannot rule out the possibility that any 
changes seen in vivo represent a replacement of the original 
population of lattices with a new population that is different 
from the original. Only time-lapse electron microscopy 
could ever properly distinguish between these two alterna- 
fives. 

Clathrin Latt ice Curvature 

In any case, it is clear that after a normal cell is broken open, 
its exposed clathrin lattices round up in an ATP-independent 
fashion. This indicates that the capacity to curve is normally 
built into clathrin lattices, even when they start out relatively 
flat. One of the effects of acidic pH is thus to enhance this 
natural tendency to curve. On the other hand, failure of lat- 
tices to curve in pH clamped cells suggest an active inhibi- 
tory influence. One such influence might be simply an altera- 
tion in the surface/volume ratio of the cell; clathrin lattices 
might be unable to round up until a sufficient amount of 
membrane was provided by exocytosis (cf. reference 25), and 
this process might be blocked by pH clamping. Such a con- 
straint would of course be relieved once a cell was broken 
open and the lattices were left clinging to membrane frag- 
ments. 

Microcage Formation 

It is of interest that three apparently different treatments, 
hypertonicity, potassium depletion, and acidification, all 
bring about the formation of clathrin microcages during inhi- 
bition of endocytosis (this paper and references 21, 22). This 
could be because all three treatments, not just the last, create 
some degree of cytoplasmic acidification (28, 40, 62). It is 
well documented that in vitro, acidic conditions induce the 
polymerization of clathrin into small empty cages (32, 64, 
69, 73). The abnormal formation of such structures in vivo 
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could deplete the pool of unpolymerized clathrin that nor- 
mally participates in the formation of coated pits or partici- 
pates in the final closure of coated pits into coated vesicles. 
Alternatively, microcage formation around the edges of 
coated pits might stearically hinder lattice completion. 
These are only two of the possible explanations for why 
coated pits become paralyzed during cytoplasmic acidifica- 
tion. There could also be major effects on ATP availability 
(11, 65) or direct membrane changes (15, 60). For,~example, 
acidification could somehow inhibit membrane fusion at the 
necks of coated pits after they have rounded up, and thus pre- 
vent them from finally pinching off to become coated 
vesicles. 

Physiological Relevance of the pH Effects Seen Here 
It is unlikely that cells normally modulate their overall en- 
docytotic rates by titrating the pH of their cytoplasm to the 
extremes employed in this study. Nevertheless, overall physi- 
ological conditions or cell cycle transitions that alter intracel- 
lular pH more subtly or transiently might change the equilib- 
rium between polymerized and nonpolymerized clathrin 
throughout the cell, as well as the overall tendency for 
clathrin lattices to curve, and thereby alter the ongoing rate 
of coated vesicle formation. One example of this seems to be 
during mitosis when endocytotic rates drop substantially (48, 
55, 59, 72); it will be interesting to learn what happens to 
the internal pH of cells during this natural inhibition. 

It also becomes of interest to consider whether pH varia- 
tion might be a control mechanism employed locally by the 
cell as well. An intriguing possibility is that pH alterations 
on a local level could modulate individual coated vesicle dy- 
namics. The origins of such pH changes can only be imag- 
ined, but they could involve membrane receptors. It is well 
known that membrane receptors tend to cluster in coated pits 
(5, 6, 16). Possibly, proton channels are drawn into coated 
pits along with receptors. Alternatively, the membrane- 
spanning domains of receptors themselves could form proton 
channels when brought into close proximity, analogously to 
the formation of membrane conductances by aggregated Fc 
receptors (74, 75) or IgE receptors (15a, 30a). Proton fluxes 
through individual clusters of channels might create an 
acidification that would be sufficiently local to promote 
clathrin assembly at the same sites, as well as stimulate lat- 
tice curvature, and thereby promote the internalization of the 
specific membrane domains that bore the clusters. 

The Mechanism of Clathrin Lattice Curvature 
The results in this study bear on another key question in the 
cell biology of clathrin. It has been known for some time that 
cells in culture commonly carry a certain amount of poly- 
merized clathrin in the form of flat lattices (20, 43, 47). One 
model of coated vesicle formation suggests that fiat lattices 
are the initial phase of clathrin polymerization and that they 
are induced to curve secondarily, by some other aspect of 
receptor or membrane activity (20, 31, 38). An alternate 
model is that curvature is obligately built into the clathrin lat- 
tice as it forms, like a virus coat (19, 33, 53). From this latter 
viewpoint, flat lattices have been interpreted as technical ar- 
tifacts (53), or frustrated attempts at endocytosis (1-3), or en- 
tirely different functional entities such as cell adhesion sites 
(43, 47). On the contrary, the present work demonstrates that 

flat lattices, even the ones that accumulate in pH-clamped 
cells, can be induced to curve in vitro. This supports the idea 
that lattice curvature can occur after assembly and that the 
flat lattices seen in normal cells are not de facto "dead ends", 
but are more likely to be stages between assembly and curva- 
ture. It thus remains a formidable challenge to explain how 
a lattice of the complexity of clathrin could rearrange its 
bonds internally, as it would have to do if it were to convert 
the flat hexagons of a planar array into the puckered penta- 
gons needed for a curved array. 
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