
Posttranslational Modification of Distinct Microtubule 
Subpopulations During Cell Polarization and 
Differentiation in the Mouse Preimplantation Embryo 
Eve lyn  Hou l i s t on  a n d  B e r n a r d  M a r o  

Institut Jacques Monod, Unit6 257 de l'Institut National de la Sant6 et de la Recherche M&iicale, 
Centre National de la Recherche Scientifique, Universit6 Paris VII, Tour 43, 75005 Paris, France 

Abstract.  During the course of preimplantation devel- 
opment, the cells of the mouse embryo undergo both a 
major subcellular reorganization (at the time of com- 
paction) and, subsequently, a process of differentiation 
as the phenotypes of trophectoderm and inner cell 
mass cell types diverge. We have used antibodies 
specific for tyrosinated (Kilmartin, J. V., B. Wright, 
and C. Milstein. 1982. J. Cell Biol. 93:576-582) and 
acetylated (Piperno, G., and M. T. Fuller. 1985. J. 
Cell Biol. 101:2085-2094) ot-tubulin in immunofluo- 
rescence studies and found that subsets of microtu- 
bules can be distinguished within and between cells 
during the course of these events. Whereas all 
microtubules contained tyrosinated c~-tubulin, 
acetylated ot-tubulin was detected only in a subpopula- 
tion, located predominantly in the cell cortices. Strik- 
ing differences developed between the distribution of 
the two populations during the course of development. 

Firstly, whereas the microtubule population as a whole 
tends to redistribute towards the apical domain of cells 
as they polarize during compaction (Houliston, E., 
S. J. Pickering, and B. Maro. 1987. J. Cell Biol. 
104:1299-1308), the microtubules recognized by the 
antiacetylated oL-tubulin antibody became enriched in 
the basal part of the cell cortex. After asymmetric di- 
vision of polarized cells to generate two distinct cell 
types (termed inside and outside cells) we found that, 
despite the relative abundance of microtubules in out- 
side cells, acetylated microtubules accumulated prefer- 
entially in inside cells. Treatment with nocodazole 
demonstrated that within each cell type acetylated 
microtubules were the more stable ones; however, the 
difference in composition of the microtubule network 
between cell types was not accompanied by a greater 
stability of the microtubule network in inside cells. 

THOUGH the successive differentiative events of em- 
bryonic development depend upon the expression of 
a genetic program, cellular mechanisms exist that 

modulate that program and can direct the fate of a cell or of 
its progeny. During the preimplantation development of the 
mouse, it has been found that a series of such mechanisms 
are involved in the diversification of the first two cell types, 
inner cell mass and trophectoderm. The first is a dramatic 
cellular polarization which takes place during compaction at 
the eight-cell stage. At this time the blastomeres flatten upon 
each other and become polarized both at the surface and in 
the cytoplasm, such that by the end of the eight-cell stage the 
organization of the blastomeres has been changed from being 
radially symmetric to polarized, with the axis of polarity be- 
ing oriented orthogonal to cell contacts. The second cellular 
mechanism is one of asymmetric cell division which oper- 
ates on some of the polarized cells when they divide, and oc- 
curs as a consequence of their polarized organization. If the 
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orientation of the cleavage furrow falls parallel to the axis of 
polarity, division results in the formation of two polarized 
daughter cells; however, if the cleavage is orthogonal to the 
axis of polarity it produces two different daughter cells: one 
polar cell which has inherited the apical region of the mother 
cell and one nonpolar cell derived from the basal part. Third- 
ly, the unequal adhesive properties of the apical and basal 
surfaces of the polar cells result in the formation and main- 
tenance of a complete cover of nonpolar cells (inside cells) 
by polarized ones (outside cells). This process is important 
for the divergence of cellular phenotypes because without 
this cover, the nonpolar cells tend to develop a polar pheno- 
type. In the intact embryo, outside cells always give rise to 
trophectoderm and may give rise to inner cell mass as well, 
whilst inside cells tend to give rise to the inner cell mass, but 
may, in certain circumstances contribute to the trophecto- 
derm if for example moved to the outside of the embryo. (For 
detailed discussion of these events see Johnson, 1985). 

It is obviously of great interest to understand the nature of 
the intercellular interactions and mechanics of the cellular 
responses that underlie these cellular mechanisms. Microtu- 
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bules have become the subject of some interest in this regard 
since they are known to be involved in many cellular pro- 
cesses such as cell division, control of cell shape, and cyto- 
plasmic organization (see De Brabander, 1982); and indeed 
they play a part in both the main cellular processes described 
above that are involved in the diversification of the inner cell 
mass and trophectoderm. Firstly, they are involved in the set- 
ting up of asymmetries within cells during compaction 
(Maro and Pickering, 1984; Johnson and Maro, 1985; Flem- 
ing et al., 1986; Houliston et al., 1987; for review see Maro 
et al., 1988). Secondly, of course, they form the mitotic spin- 
dles of the cleaving embryo, and thus are involved in the 
asymmetric cell divisions which generate different cell 
types. The relationship between the organization of the 
microtubule network in cells and the subsequent divergence 
of cellular phenotypes has not been described previously. 

It seems likely that changes in the organization of the mi- 
crotubule network, such as those that occur during compac- 
tion, could be accompanied by changes in the functional 
properties of the microtubules in different areas of the cells; 
and it is possible that such a functional diversity could arise 
from a structural diversity, perhaps at the level of microtu- 
bule components such as tubulin itself or some microtubule- 
associated protein(s). In this study we have addressed this 
possibility by examining the distribution of microtubules 
containing posttranslationally modified forms of o~-tubulin, 
since it has been shown in other cell types that certain 
modifications such as detyrosination (Gundersen et al., 1984) 
or acetylation (Piperno and Fuller, 1985) allow the identi- 
fication of microtubule subsets that, in some cell types, are 
dynamically different from the rest of the microtubule popu- 
lation (LeDizet and Piperno, 1986; Piperno et al., 1987; 
Gundersen et al., 1987; Kreis, 1987; Br6 et al., 1987; de 
Pennart et al., 1988). Until now, however, these subsets of 
microtubules have not been shown to be located in particular 
areas of the cells or to bear any spatial relation to changes 
in cell physiology, except in the cases of particularly stable 
microtubule organelles such as cilia and flagella (Piperno 
and Fuller, 1985; Sasse et al., 1987). In this study, we dem- 
onstrate the existence of a subset of acetylated microtubules 
in the cells of the preimplantation mouse embryo that de- 
velops an asymmetric distribution during compaction. This 
is transformed into a difference in pattern between daughter 
cells after a functionally asymmetric division. At both these 
stages the distribution of acetylated microtubules is spatially 
distinct from that of the other microtubules in the cells. 

Materials and Methods 

Recovery of Oocytes and Embryos 
Swiss female mice (3-6 wk; Animalerie Sp6cialis6e de Villejuif, Centre 
National de la Recherche Scientifique [CNRS], France) were superovulated 
by injections of 5-7.5 IU of pregnant mare's serum gonadotrophin (Intervet, 
Cambridge, UK) and human chorionic gonadotrophin (Intervet) 48 h apart. 
They were paired overnight with Swiss males (Animalerie Sp6cialis6e de 
Villejuif, CNRS, France) and inspected for vaginal plugs the next day. Late 
four-cell embryos were recovered by flushing late two-cell embryos at 46- 
50 h after human chorionic gonadotrophin followed by overnight culture in 
medium 16 containing 4 mg/ml BSA (M16+BSA; Whittingham and Wales, 
1969) under oil at 37°C in 5% CO2 in air. Late eight-cell embryos were re- 
covered by flushing at 65-70 h after human chorionic gonadotrophin. 

Preparation and Handling of Single Cells 
Late four-cell and late eight-cell embryos were exposed briefly to acid Ty- 
rode's solution (Nicolson et al., 1975) to remove their zonae pellucidae, 
rinsed in medium 2 containing 4 mg/ml BSA (M2+BSA; Fulton and Whit- 
tingham, 1978), and placed in Ca++-free M2 containing 6 mg/ml BSA for 
5-45 min, during which time they were disaggregated to singe four- or 
eight-cell blastomeres using a flame-polished micropipette. Isolated cells 
were cultured in polystyrene culture dishes (Falcon, Becton, Dickson, 
Grenoble, France) in drops of MI6+BSA under oil at 37°C in 5% CO2 in 
air. Each hour, the cultures were inspected for evidence of division to 2/8 
or 2/16 pairs. All newly formed pairs were removed and designated 0 h old. 
Pairs were then cultured in MI6+BSA as natural 2/8 or 2/16 pairs. 

Drugs 
A stock solution of l0 mM nocodazole (Aldrich Chemical, Strasbourg, 
France) in dimethylsulphoxide was used in these experiments and was 
stored at 4°C. For treatment of the cells, it was diluted in M16+BSA to final 
concentrations of 0.1-10 #M. A stock solution of 12 mM taxol in DMSO 
(gift of The National Institutes of Health (NIH); Lot T-4-112, NIH Beth- 
esda, MD) was also stored at 4°C. It was diluted to a final concentration 
of 2 #M in M16+BSA for treatment of embryos. 

Cell Fixation and lmmunocytological Staining 
Ceils were placed in specially designed glass or stainless steel chambers as 
described in Maro et al. (1984) except that the chambers were coated first 
with a solution of 0.1 mg/ml concanavalin A and after the samples were 
placed in the chambers, they were centrifuged at 450 g for 10 min at 30°C. 
After a recovery period of 10 min at 37°C, the cells were washed quickly 
in PHEM buffer (10 mM EGTA, 2 mM MgCl2, 60 mM Pipes, 25 mM 
Hepes, pH 6.9; derived from Schliwa et al., 1981) containing 0.6/zM tax- 
ol (PHEM-taxol), extracted for 5 min in PHEM-taxol buffer containing 
0.25% Triton X-100, washed in PHEM-taxol buffer, and fixed for 30 min 
with 1.8 % formaldehyde in PHEM-taxol buffer. All these steps were carried 
out at 30°C. We have checked in previous studies that the use of 0.6 ~M 
taxol in the extraction buffer does not cause alterations in the microtubule 
network (Houliston et al., 1987). 

Immunocytological staining was performed as described in Maro et al. 
(1984). The primary antibodies used were YLI/2, specific for tyrosinated 
t~-tubulin (Kilmartin et al., 1982), diluted 1/2,000-1/4,000, and 6-11B-l, 
specific for acetylated u-tubulin (Piperno and Fuller, 1985), diluted 1/5- 
1/10. Fluorescein-labeled anti-mouse immunoglobulin antibodies (Kirke- 
gaard & Perry Laboratories, Gaithersburg, MD) or rhodamine-labeled 
anti-rat immunoglobulin antibodies (Miles Laboratories, Ltd., Slough, 
UK) were used as second layers. To visualize chromatin, Hoechst dye 33258 
(5 /~g/ml in PBS) was included with the second antibody. 

Photomicroscopy 
The coverslips were removed from the chambers and samples were mounted 
in "Citifluor" (City University, London, UK) and viewed on a Diaplan mi- 
croscope (E. Leitz, Wetzlar, FRG) with filter sets L2 for FITC-labeled 
reagents, N2 for TRITC-labeled reagents, and A for Hoechst dye. Photo- 
graphs were taken on Kodak T-Max film using a Leitz Orthomat photo- 
graphic system. The three-dimensional structure of the cell is preserved on 
the whole mount, but as the size of the blastomeres is large (for instance 
30 #m in diameter at the eight-cell stage), it is impossible to photograph 
:he whole cell in the same focal plane. Therefore, we show optical sections 
with only one plane through the cell in sharp focus. 

Results 

Distribution of l)/rosinated and Acetylated 
Microtubules 
In early cleavage-stage (two- and four-cell) embryos the pat- 
tern of microtubules containing tyrosinated o~-tubulin con- 
sisted of a cortical network, a layer of perinuclear microtu- 
bules, and a few cytoplasmic microtubules. A depletion in 
the density of cytoplasmic microtubules close to areas of cell 
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Figure 1. Schematic representation of the experimental procedure 
used to study compaction at the eight-cell stage. During the eight- 
cell stage, the two cells in a pair flatten on each other, with both 
surface and cytoplasmic features becoming polarized along an axis 
orthogonal to the plane of cell contact. 

contact was also seen. The similarity between this pattern 
and our previous observations (Houliston et al., 1987) using 
an antibody recognizing all c~-tubulin (DM1A; Blose et al., 
1984), taken together with the immunoelectron microscopy 
previously performed with the antityrosinated ct-tubulin an- 
tibody (Houliston et al., 1987) suggest that essentially all 
microtubules are visualized with this antibody. In contrast, 
a distinct subpopulation of microtubules was detected at all 
stages of development with the antibody recognizing acetyl- 
ated ot-tubulin. These microtubules were found predomi- 
nantly in the cortices of interphase cells during early cleav- 
age stages (data not shown). 

Since the distribution of microtubules in whole mount 
preparations of mouse preimplantation embryos was difficult 
to distinguish (these embryos are ,070 #m in diameter and 
cytoplasmic background staining presents a major difficul- 
ty), we used small groups of cells for more detailed examina- 
tion of events at later stages, in particular pairs of cells de- 
rived by division in culture of isolated blastomeres in which 
the spatial relationships of cells to each other can be deter- 
mined easily (see Figs. 1 and 3 for experimental protocols). 
In such pairs it is possible to distinguish clearly individual 
microtubules by focusing through the samples. Photographs 
taken in focal planes passing through the cell cortex demon- 
strate the nature of the staining (Fig. 2 d), although focal 
planes passing through the centers of cells are shown else- 
where in order to enable comparison of cytoplasmic microtu- 
bule distributions (e.g., Fig. 2, a - c  and e). 

Eight-ceU Stage. At the eight-cell stage, during the pro- 
cess of compaction, cells flatten on each other and polarize 
both in the cytoplasm and at the surface (for review see John- 
son and Maro, 1986). Immunofluorescence staining with 
antibody YL1/2 confirmed that cytoplasmic microtubules 

Figure 2. Pairs of eight-cell blastomeres stained with the anti- 
tyrosinated ot-tubulin monoclonal antibody YL1/2 (a and b) or with 
the antiacetylated ot-tubulin monoclonal antibody 6-11B-1 (c-e). (a 
and c) 2-h-old pairs; (b, d, and e) 9-h-old pairs. (dand e) The same 
pair at different focal planes. Note that in 9-h-old blastomeres cyto- 
plasmic microtubules containing tyrosinated ot-tubulin are found in 
the apical domain of the cell (b) while microtubules containing 
acetylated t~-tubulin are found in the basal part of the cell, close 
to the surface (d and e). Bar, 10 #m. 
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Table L 

Time Number 
postdivision of cells 

Percentage of cells in which the microtubule network was 

enriched in depleted in cytoplasm augmented in cortex 
apical cytoplasm near contact areas* near contact areas~ 

Tyrosinated a-tubulin (YLI/2)  

Acetylated c~-tubulin (6- l IB-1)  

h 

2 56 41.1 78.6 0.0 
5 108 72.2 92.6 0.0 
9 154 77.9 79.9 0.0 

2 62 6.5 0.0 14.5 
5 47 6.4 2.6 52.6 
9 167 6.6 0.0 59.9 

* When compared with other areas of the cytoplasm. 
:~ When compared with other areas of the cell cortex. 

containing tyrosinated c~-tubulin redistribute to become rela- 
tively concentrated in the apical domain of the cell, leaving 
the more basal regions of the cytoplasm, especially those 
away from the cell cortex, relatively depleted in microtu- 
bules (Table I and Fig. 2, a and b; Houliston et al., 1987). 
In contrast, microtubules recognized by the antiacetylated 
c~-tubulin antibody were found to accumulate progressively 
in the basal part of the cell, close to the surface. Thus, 
whereas acetylated microtubules were observed distributed 
evenly around the cortex in early (2-h-old) eight-cell blasto- 
meres, they were found concentrated near the contact region 
in older (9-h-old) blastomeres (Table I and Fig. 2, c-e). 

16-ceU Stage. When polarized eight-cell blastomeres di- 
vide, two types of pairs of 16-cell blastomeres can be gener- 
ated: polar/polar pairs or polar/nonpolar pairs (see Fig. 3). 
Cells in a polar/polar pair will tend to flatten on each other 
(giving two outside cells) while the polar cell in an po- 
lar/nonpolar pair will tend to enclose the nonpolar cell (giv- 
ing one inside and one outside cell). This reflects the fact that 
the apical surface of polar cells is less adhesive than the baso- 
lateral surface while nonpolar cells are uniformly adhesive. 

When such pairs were stained with the antityrosinated 
o~-tubulin antibody, the following pattern of microtubules 
was observed: cortical networks were predominant in all 
cells (Fig. 4, a and b), however cytoplasmic and perinuclear 
microtubules were much more abundant in outside than in- 
side cells (Fig. 4 b). Cortical microtubules were again prefer- 
entially acetylated, with this effect being much more marked 
in the inside cells than the outside ones, giving the impres- 
sion that there were more acetylated microtubules in inside 
cells (Fig. 4 c). These observations were confirmed when 
pairs were double stained with the two antibodies (Fig. 5). 

Since the pattern of microtubules (both acetylated and 
tyrosinated) was different between inside and outside cells, 
we checked that these differences were not due to an artifact 
linked to the geometry of the cell cluster. To do this, we sepa- 
rated enveloped pairs (polar/nonpolar) from nonenveloped 
pairs (polar/polar) 8 h after division and cultured both groups 
in Ca++-free M16+BSA for a further hour in order to in- 
hibit cell adhesion and reverse the enclosure process (Fig. 4, 
d-g). This treatment was successful in reversing enclosure 
in '~75 % of enclosed pairs. When these pairs were stained 
with the two antibodies the asymmetries observed in control 
pairs tended to be maintained; in pairs stained with YL1/2, 
one cell had fewer cytoplasmic and perinuclear tyrosinated 

microtubules (Fig. 4 e) while in pairs stained with 6-11B-1 
one cell had more cortical acetylated microtubules (Fig. 4 
g). Similarly, nonenveloped pairs retained their more sym- 
metrical patterns of staining (Fig. 4, d and f ) .  

32-ceU Stage. A similar pattern of microtubule staining 
was observed in clusters of four cells derived by the culture 
of isolated eight-cell blastomeres to the 32-cell stage (Fig. 6, 
a-d). Inside ceils were enriched in microtubules containing 

Isolated 
8-cell 

blastomere Dlfferentlatlve / \ Conservative division / ~ division 

Pairs of 
, flattening bla16toeme lel res 

enclosureoT ~ S ~  

0 0 ~ Clusters Of 32-cell 
blastomeres 

<:!:~i!! !!!!:!::" 

Mini 
blastocyst 

Figure 3. Schematic representation of the experimental procedure 
used to study cell diversification at the 16- and 32-cell stages. At 
the 16-cell stage, after a differentiative division, the polar cell en- 
closes the nonpolar cell; while after a conservative division, the 
cells flatten on each other. Differentiative division can also occur 
at the 16-32-cell transition. Each interphase lasts ,~10-12 h. 
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Figure 4. Pairs of 9-h-old 16-cell blastomeres stained with the antityrosinated c~-tubulin monoclonal antibody YL1/2 (a, b, d, and e) or 
with the antiacetylated a-tubulin monoclonal antibody 6-11B-1 (c, f, and g). (a-c) Control pairs. (d-g) Pairs exposed to Ca++-free 
medium, d and fare  polar/polar pairs while e and g are enclosed pairs (polar/nonpolar) where the enclosure process has been reversed. 
Note that cytoplasmic and perinuclear microtubules containing tyrosinylated tubulin are more abundant in outside than inside cells (b) 
and that cortical microtubules are preferentially acetylated (c), this effect being more marked in inside cells. Also, note that the asymmetries 
observed in control pairs are maintained when the enclosure process is reversed (e and g). Bar, 10 #m. 

acetylated ot-tubulin whereas outside cells had more cytoplas- 
mic and perinuclear microtubules than inside cells (Fig. 6). 

Acety la ted  Microtubules  Are  More  Stable 

We examined the stability of microtubules at various stages 
of development by use of the drug nocodazole. This drug in- 
hibits microtubule polymerization and thus if used at low 
doses can be used to assess the stability of microtubules. 
Various doses of nocodazole ranging from 0.1-10 #M were 
tested. 1/zM was used routinely. At this dose, many microtu- 
bules were still present after 15 rain in the drug but only a 
few after a 60-min treatment. 

In 9-h-old pairs of eight-cell blastomeres, exposure to no- 
codazole for 60 min resulted in the loss of most microtubules 
detected by the antityrosinated c¢-tubulin antibody. Those 
microtubules that remained tended to be located in the basal 
cell cortex (Fig. 7 a). Although the number of acetylated 
microtubules also decreased, a noticeable proportion re- 
mained present (Figs. 7 b and 8). Double immunofluores- 
cence experiments revealed that most of the remaining 
microtubules were acetylated (data not shown). 

At the 16-cell stage, it was interesting to note that the 
greater abundance of acetylated c~-tubulin in inside cells was 
not accompanied by a greater resistance of the microtubules 
containing it to depolymerization; treatment with 1 #M no- 
codazole for 60 min resulted in the depolymerization of al- 

most all microtubules in inside cells, while some remained 
in outside cells (Figs. 7, c and d, and 9). The microtubules 
that did remain did, however, contain acetylated ct-tubulin. 
Similar results were found at the 32-cell stage; inside cells 
had a greater number of acetylated microtubules but these 
were less stable than the ones present in outside cells (Fig. 
6, e-h). Thus, it seems that acetylation may correlate with 

Figure 5. Enclosed pair of 16-cell blastomeres double stained with 
the antityrosinated ot-tubulin monoclonal antibody YL1/2 (a) and 
with the antiacetylated tx-tubulin monoclonal antibody 6-11B-1 (b). 
Bar, 10 #m. 
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Figure 7. Pairs of 9-h-old eight-cell blastomeres (a and b) or 16-cell 
blastomeres (c and d) treated with nocodazole, a and b were treated 
with 1 tzM for 15 min at 37°C; c and d with 1/~M for 60 min at 
37°C. Pairs were stained with the antityrosinated ct-tubulin mono- 
clonal antibody YL1/2 (a and c) or with the antiacetylated a-tubulin 
monoclonal antibody 6-lIB-1 (b and d). Bar, 10 #m. 

Figure 6 Quartets of 32-cell blastomeres stained with the anti- 
tyrosinated ct-tubulin monoclonal antibody YL1/2 (a and e) or with 
the antiacetylated t~-tubulin monoclonal antibody 6-11B-1 (b and f ) .  
(c, d, g, and h) The corresponding phase-contrast pictures of a, b, 
e, and f, respectively. (/) Inside cell; (o) outside cell. (a-d) Control 
quartets; (e-h) quartets treated with 1 #M nocodazole for 60 min 
at 37°C. Note that cytoplasmic rnicrotubules containing tyrosin- 
ylated tubulin are more abundant in outside than inside cells (a) and 
that inside cells are enriched in cortical microtubules containing 
acetylated c~-tubulin (b). Bar, 10 #m. 

relative stability of microtubules within a cell but cannot be 
used as an indicator of relative microtubule stability in differ- 
ent cell types. 

Microtubule Acetylation Is Not Restricted to the 
Basal Part of the Cell 

One possible explanation for the relative enrichment of acet- 
ylated microtubules in the basal part of  eight-cell blasto- 
meres could be that the enzyme responsible for the acetyla- 
tion, c~-tubulin acetyltransferase, is preferentially located or 
preferentially active in this area. Alternatively, the experi- 
ments with nocodazole described above suggest that micro- 
tubules are more stable in the basal cortex of the cell, and 
this may render them more susceptible to modification by the 
enzyme than less stable microtubules (located apically). To 
discriminate between these possibilities, we treated eight- 
cell blastomeres with a low dose of taxol (2/~M) for a short 
period of time (15 min) in order to stabilize briefly all cellular 
microtubules. After this treatment, basal and apical micro- 
tubules tended to be uniformly acetylated, indeed the anti- 
acetylated and antityrosinated ot-tubulin antibodies gave very 
similar staining patterns (Fig. 10). This result suggests that 
basal cortical microtubules become acetylated because they 
are more stable than apical ones and not because of an asym- 
metric distribution of acetyltransferase activity. 
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Figure & Histogram showing the effect of 1 #M nocodazole on the 
distribution of cortical microtubules in 9-h-old pairs of eight-cell 
blastomeres. Cells were observed under the fluorescence micro- 
scope and the microtubule distribution scored in the following way: 
(white space) no microtubules; (light grey bars) some microtu- 
bules; (medium gray bars) network; (dark gray bars) dense net- 
work. The results are expressed as the percentage of cells with a 
given score in control cells (0) and after 15-min (15) and 60-min 
(60) treatments with nocodazole. The numbers of cells scored for 
tyrosinated c~-tubulin (YLI/2) distribution were 205 controls, 80 af- 
ter 15-min nocodazole treatment, and 76 after 60-min nocodazole 
treatment. For acetylated a-tubulin (6-11B-1), these numbers are 
234 controls, 162 after 15-min nocodazole treatment, and 122 after 
60-min nocodazole treatment. 

Discussion 

In this paper, the redistribution of  microtubule subpopula- 
tions during the process of cell polarization has been de- 
scribed. One population of  cytoplasmic microtubules con- 
taining tyrosinated c~-tubulin redistributes towards the apex 
of  the cell during the eight-cell stage (Houliston et al., 1987). 
During the same period, a population of  cortical microtu- 
bules containing acetylated ct-tubulin accumulate near the 
zone of  intercellular contact in the basal part of  the cell. This 
is the first time, to our knowledge, that the progressive segre- 
gation of  two populations of  microtubules into different parts 
of  a cell has been described. The relative concentration of  
acetylated microtubules in basal regions appears not to be a 
consequence of  a localized enzyme activity, since apical 
microtubules become acetylated after brief stabilization by 
taxol. Given that these acetylated microtubules are preferen- 
tially resistant to the depolymerizing effect of  nocodazole, it 
appears that they constitute a more stable population of mi- 
crotubules in the blastomere, as has been noted for acetylated 
microtubules in other cell types (LeDizet and Piperno, 1986; 
Piperno et al., 1987) including mouse oocytes (De Pennart 
et al., 1988). These observations suggest that it is perhaps 
a difference in the dynamic behavior of the microtubule 
populations between apical and basal regions that results in 
the accumulation of acetylated microtubules basally, their in- 
creased stability allowing time for the acetyltransferase to 
modify the tubulin subunits. It is known that polymerized 
a-tubulin is a better substrate for tubulin acetyltransferase 
than the dimer (Maruta et al., 1986). 
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Figure 9. Histogram showing the ef- 
fect of 1 /~M nocodazole on the dis- 
tribution of cortical microtubules in 
9-h-old pairs of 16-cell blastomeres. 
Only polar/nonpolar pairs are in- 
cluded. Cells were observed under 
the fluorescence microscope and the 
microtubule distribution scored in 
the following way: (white bars) no 
microtubules; (light gray bars) some 
microtubutes; (medium gray bars) 
network; (dark gray bars) dense net- 
work. The results are expressed as 
the percentage of cells with a given 
score in control cells (0), and after 
15-min (15) and 60-min (60) treat- 
ment with nocodazole in inside and 
outside cells. The numbers of polar/ 
nonpolar pairs of cells scored for ty- 
rosinated u-tubulin distribution were 
70 (out of 176 pairs) controls, 13 (out 
of 38 pairs) after 15-min nocodazole 
treatment, and 24 (out of 61 pairs) af- 
ter 60-min nocodazole treatment. 
For acetylated a-tubulin, these num- 
bers are 66 (out of 149 pairs) con- 
trols, 16 (out of 42 pairs) after 15- 
min nocodazole treatment, and 22 
(out of 63 pairs) after 60-min noco- 
dazole treatment. 
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Figure 10. Pairs of 9-h-old eight-cell blastomeres treated with 2/~M 
taxo[ f6r15 min at 37°C and stained with the antityrosinated c~-tu- 
bulin monoclonal antibody YL1/2 (a) or with the antiacetylated 
t~-tubulin monoclonal antibody 6-lIB-1 (b). Note that the two anti- 
bodies give very similar staining patterns. Bar, 10/zm. 

The pattern of microtubules observed in outside and inside 
cells at the 16-cell stage was strikingly similar to the one ob- 
served in the apical and basal regions of polarized eight-cell 
blastomeres, perhaps reflecting the origin of the two cell 
types at division. Cortical networks of microtubules contain- 
ing tyrosinated c~-tubulin were again predominant in both 
cell types, with other cytoplasmic and perinuclear micro- 
tubules being much more abundant in outside than inside 
cells. The only obvious difference from the eight-cell stage 
was that the depletion of cytoplasmic microtubules near cell 
contacts seen in eight-cell blastomeres was less dramatic in 
16-cell blastomeres. Whether this difference reflects a change 
in the response of microtubules to some contact-induced sig- 
nal, a change in that signal, or simply the reduced volume 
of the cells is as yet unclear. As with the overall microtubule 
pattern, we found that the pattern of c~-tubulin acetylation in 
16-cell blastomeres corresponded to that in different parts of 
the eight-cell blastomere. Cortical microtubules were prefer- 
entially acetylated, especially those adjacent to regions of 
cell contact. However, inside cells, which when enveloped 
were in contact over their entire surface, seemed to have 
more acetylated microtubules than did the enveloping out- 
side cells. It is interesting to note that the greater abundance 
of acetylated ct-tubulin in inside cells was not accompanied 
by a greater resistance of the microtuhules containing it to 
depolymerization. A dose of nocodazole was found which 
resulted in the depolymerization of almost all microtubules 
in inside cells, while some remained in outside cells. The 
microtubules that did remain did, however, contain acetyl- 
ated c~-tubulin. Thus, it seems that acetylation may correlate 
with relative stability of  microtubules within a cell but can- 
not be used as an indicator of relative microtubule stability 
when different cell types are compared. We might imagine 
that high degree of acetylation in inside cells results from a 
higher proportion of stable (cortically located) microtubules 
in the cell because of a lower density of rapidly turning over 
(cytoplasmic) microtubules. 

The translation of the asymmetric microtubule organiza- 
tion of a polarized cell into differences between cells could 

provide a neat mechanism by which differences between 
cells can be created during cell diversification. It should be 
noted, however, that particular regional features of the mi- 
crotubule network cannot themselves be directly passed on 
from mother to daughter cells because the interphase micro- 
tubule network is replaced by a spindle during mitosis. It will 
be interesting to discover how differences in the microtubule 
network become established as the cell types of the early em- 
bryo diverge in phenotype, and what the cellular conse- 
quences (if any) of these differences are. 
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Note Added in Proof'. After the acceptance of this paper, Schatten et al. 
(Schatten, G., C. Simerly, D. J. Asai, E. Sz~ke, P. Cooke, and H. Schat- 
ten. 1988. Dev. Biol. 130:74-86) published a paper dealing with acetylated 
c~-tubulin during early development of the mouse. In the cleaving embryo, 
they observed acetylated microtubules only in the extremely stable midbod- 
ies, with no cytoplasmic network. They found no relationship between acet- 
ylation and microtubule stability, even in oocytes. The differences between 
their results and ours (this paper covering cleavage stages, and De Pennart 
et al. [De Pennart, H., E. Houliston, and B. Maro. 1988. Biol. Cell. 
64:375-378] concerning the egg) are probably due to differences in handling 
procedures. 
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