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Abstract. Transferrin receptors in detergent extracts of 
subcellular membrane fractions prepared from 3T3-L1 
adipocytes were measured by a binding assay. There 
was a small but significant increase (1.2-fold) in the 
amount of receptor in a crude plasma membrane frac- 
tion and a 40% decrease in the number of transferrin 
receptors in microsomal membranes prepared from 
insulin-treated cells, when compared with correspond- 
ing fractions from control cells. Intracellular vesicles 
containing insulin-responsive glucose transporters 
(GT) have been isolated by immunoadsorption from 
the microsomal fraction (Biber, J. W., and G. E. Lien- 
hard. 1986. J. Biol. Chem. 261:16180-16184). All of 
the transferrin receptors in this fraction were localized 
in these vesicles; however, because the GT vesicles 
contain '~30-fold fewer transferrin receptors than GT, 
on the average only one vesicle in three contains a 
transferrin receptor. 

The binding of ~25I-pentamannose 6-phosphate BSA 

to 3T3-L1 adipocytes at 4°C was used to monitor sur- 
face insulin-like growth factor II (IGF-II)/mannose 
6-phosphate receptors. Exposure of cells to insulin at 
37°C for 5 min resulted in a 2.5-4.5-fold increase in 
surface receptors. There was a corresponding 20% de- 
crease in the amount of IGF-II receptors in the 
microsomal membranes prepared from insulin-treated 
cells, as assayed by immunoblotting. Moreover, the 
IGF-II receptors and GT were located in the same in- 
tracellular vesicles, since antibodies to the carboxy- 
terminal peptide of either protein immunoadsorbed 
vesicles containing 70-95 % of both proteins initially 
present in the microsomal fraction. In conjunction 
with other studies, these results indicate that in 3T3- 
L1 adipocytes, three membrane proteins (the GT, the 
transferrin receptor, and the IGF-II receptor) respond 
similarly to insulin, by redistributing to the surface 
from intracellular compartment(s) in which they are 
colocalized. 

T 
HE rate of glucose transport into rat adipocytes is in- 
creased in response to insulin. At the subcellular level, 
insulin elicits a decrease in the number of intracellular 

glucose transporters (GT) j, which is accompanied by a cor- 
responding increase in the number of plasma membrane 
GT ~ (Cushman and Wardzala, 1980; Suzuki and Kono, 
1980). The translocation of GT to the plasma membrane 
contributes to the insulin-stimulated increase in the rate of 
glucose transport. A similar mechanism of insulin action has 
been described in mouse 3T3-L1 adipocytes (Biber and Lien- 
hard, 1986; Blok et al., 1988). Vesicles containing the insu- 
lin-responsive intracellular GT have recently been isolated 
from 3T3-L1 adipocytes (Biber and Lienhard, 1986) and 
from rat adipocytes (James et al., 1987). 

It is known that insulin also elicits translocation to the 
plasma membrane of the transferrin receptor in rat and in 
3T3-LI adipocytes (Davis et al., 1986; Tanner and Lienhard, 

1. Abbreviations used in this paper: Ct2Es, octaethylene glycol dodecyl 
ether; GT, glucose transporter; IGF-II, insulin-like growth factor II; KRP, 
Krebs-Ringer phosphate buffer; PMP-BSA, pentamannose 6-phosphate 
BSA. 

1987), and of the insulin-like growth factor II (IGF-II) recep- 
tor 2 in rat adipocytes (Oka et al., 1984; Wardzala et al., 
1984). In this study, we have examined the effect of insulin 
on the distribution of the transferrin receptor and the IGF-H 
receptor between a subcellular fraction from 3T3-L1 adipo- 
cytes containing the plasma membranes and one containing 
almost exclusively intracellular membranes. Moreover, the 
content of these receptors in the vesicles containing the insu- 
lin-responsive intracellular GT has been examined. The re- 
suits provide further evidence that these two receptors are 
translocated in response to insulin, and demonstrate that the 
insulin-responsive pools of GT, transferrin receptor, and 

2. Although it has been shown that the IGF-II receptor is identical with the 
cation-independent mannose 6-phosphate receptor, this protein will simply 
be referred to as the IGF-II receptor. Antibodies that have been raised 
against this protein will be referred to as mannose 6-phosphate receptor anti- 
bodies when the antigen was purified by affinity chromatography on phos- 
phomannan-Sepharose (gift of D. Messner and S. Kornfeld, Washington 
University School of Medicine, St. Louis, MO), or as IGF-II receptor attti- 
bodies when the antigen was purified by affinity chromatography on IGF-II 
coupled to Affi-gel 15 (gift of C. Scott and R. Baxter, Royal Prince Alfred 
Hospital, Camperdown, Australia). 
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IGF-II receptor reside largely in the same intracellular mem- 
branes. 

Materials and Methods 

Antibodies 
Affinity-purified rabbit antibodies against the purified human erythrocyte 
GT (Schroer et al., 1986) were used for detection of GT on immunoblots. 
Affinity-purified rabbit antibodies against the carboxy-terminal peptide 
(residues 477--492) of the human/rat GT (GT C-peptide antibodies) (Davies 
et al., 1987) were used for isolation of intracellular GT vesicles. Whole 
rabbit antiserum against the rat liver IGF-II receptor (kindly donated by 
C. Scott and R. Baxter, Royal Prince Alfred Hospital, Camperdown, Aus- 
tralia; Scott and Baxter, 1987) and against the bovine cation-independent 
mannose 6-phosphate receptor (a gift from D. Messner and S. Kornfeld, 
Washington University School of Medicine, St. Louis, MO) were used for 
detection of the IGF-II receptor on immunoblots. Whole rabbit antiserum 
against the carboxy-terminal peptide of the bovine mannose 6-phosphate 
receptor (also kindly donated by D. Messner and S. Kornfeld) was used for 
immunoprecipitation of the IGF-II receptor from solubilized GT vesicles 
(Fig. 4). 

We prepared affinity-purified rabbit antibodies against the carboxy-termi- 
nal peptide (C-peptide) of the rat placental IGF-II receptor (MacDonald et 
al., 1988). A peptide consisting of residues 2,048-2,060 (with cys-gly 
added to the NH2-terminus) was synthesized on a Biosearch (San Rafael, 
CA) 9500 solid phase peptide synthesizer and purified by T. Ciardelli, Dart- 
mouth Medical School (Ciardelli et al., 1988). The peptide was coupled to 
keyhole limpet hemocyanin using M-maleimidobenzoyI-N-hydroxysulfosuc- 
cinimide ester (Pierce Chemical Co., Rockford, IL). New Zealand rabbits 
were immunized at multiple intradermal sites with 60 p,g peptide coupled 
to 600/~g keyhole limpet hemocyanin in complete Freund's adjuvant, and 
boosted 4 wk later with 30 p.g peptide coupled in incomplete Freund's adju- 
vant. Antibodies were purified from 4 ml serum (collected 2 mo after the 
time of the first immunization) by affinity chromatography at 4°C, using a 
column (2 ml) of IGF-II receptor peptide (7 mg) coupled to Affi-ge115 (Bio- 
Pad Laboratories, Richmond, CA). After application of the serum, the 
column was washed with 20 ml PBS, and the bound antibodies were eluted 
with 0.2 M glycine, pH 2.5. The pH of the collected fractions was subse- 
quently adjusted to 7.4 using 2 M Tris. The protein content of the fractions 
was determined (Peterson, 1977), and immunoreactivity in the pooled frac- 
tions (2.25 mg protein) was assessed by an ELISA against the IGF-II recep- 
tor C-peptide. 

Cell Culture 
3T3-LI fibroblasts were cultured and differentiated as previously described 
(Frost and Lane, 1985). Mature 3T3-L1 adipocytes were used between 8 
and 12 d after initiation of differentiation, at which time >95 % of the cells 
exhibited the adipocyte phenotype. Cells were incubated for 2 h in serum- 
free Dulbecco's modified Eagle's medium (Gibco Laboratories, Grand Is- 
land, NY) at the beginning of each experiment. 

Cell Fractionation 
A low-density microsomal fraction was prepared from 3T3-L1 adipocytes 
by a modification (Brown et al., 1988) of a previously published procedure 
(Biber and Lienhard, 1986). 3T3-L1 adipocytes (6-cm dishes; ,~4 × 106 
cells/dish) were treated without or with porcine insulin (100 riM, final; a 
gift from Eli Lilly, Indianapolis, IN or purchased from Sigma Chemical 
Co., St. Louis, MO) and incubated at 37°C in 10% CO2 for the desired 
time. The plates were then transferred to ice, and the cell monolayers were 
washed twice with cold KCI buffer (150 mM KCI, 20 mM Hepes, 2 mM 
MgSO4, pH 7.4 at 4"C). The cells were scraped from each plate with a 
rubber policeman in 1.7 ml of cold KCI buffer containing protease inhibitors 
(200 p.M phenylmethylsulfonyi fluoride, 1.5/~M pepstatin A, and 10 t~M 
L-trans-epoxysuccinylleucylamido-[3-methyl]butane) and transferred to a 
30-ml homogenizer tube on ice (A. H. Thomas Scientific, Philadelphia, PA, 
3431-D88). The plate was rinsed with an additional 1.7 mi homogenization 
buffer; this wash was also transferred to the homogenizer tube, and cells 
were homogenized on ice with 25 hand strokes with a Teflon pestle. The 
homogenate was centrifuged at 16,000 gmax for 20 min at 4°C, followed by 
careful aspiration of the fat layer. The pellet contains 95% of the plasma 
membrane (Brown et al., 1988) and will be referred to as the crude plasma 
membrane fraction. The supernatant, designated the microsomal fraction, 
contains 50% of the total cellular GT. The GT in this fraction are insulin- 

responsive, since there is typically half as much GT in the microsomal frac- 
tion prepared from insulin-treated cells as from basal cells (see Fig. 3). 
There is a corresponding increase in the GT content of the crude plasma 
membrane fraction, from 50 (basal cells) to 75% (insulin-treated cells) of 
the total GT (Brown et al., 1988). Intracellular vesicles were inununoad- 
sorbed from the microsomal fraction (see below) or the membranes in the 
microsomal fraction were sedimented by ultraeentrifugation at 180,000 gmax 
for 1 h at 4°C. When 3T3-LI adipocytes were harvested from 10-cm dishes 
(107 cells/plate), the same fractionation procedure was carried out except 
that the cells were homogenized in a total volume of 8 ml. 

lmmunoadsorption of the GT-containing Vesicles and 
IGF-H Receptor-containing Vesicles 
GT-containing vesicles were immunoadsorbed by a previously published 
procedure (Biber and Lienhard, 1986). Formaldehyde-fixed Staphy lococcus  
aureus  cells (Pansorbin; Calbiocbem-Behring Corp., La Jolla, CA) were 
extracted with SDS-mercaptoethanol (Richert et al., 1979) and stored at 
-70°C. The S. aureus  cells were washed twice with KC1 buffer containing 
1% BSA, and then incubated with GT C-peptide antibodies for 2 h at room 
temperature on a rotating wheel. The antibody-coated S. aureus  cells were 
then washed twice with KCI buffer. An aliquot of the microsomal fraction 
(1 ml, equivalent to 12.5% of a 10-cm plate) was incubated with antibody- 
coated S. aureus  cells for 2 h at room temperature on a rotating wheel. The 
S. aureus  cells with the adsorbed GT vesicles were then pelleted in an Ep- 
pendorf microfuge (Brinkman Instruments Co., Westbury, NY) and the su- 
pernatant was saved. The protein in the immunoadsorbed supernatant (l ml) 
was precipitated with TCA 00% wt/vol) and resuspended in SDS sample 
buffer. 

A similar procedure was used to isolate intracellular vesicles containing 
IGF-II receptors, with the modification that aliquots of the microsomal frac- 
tion were incubated with S. aureus  cells coated with the afffinity-purified an- 
tibodies against the C-peptide of the rat IGF-II receptor. The S. aureus  cells 
with adsorbed IGF-II receptor vesicles were then pelleted, and the superna- 
tant was saved and prepared for SDS-PAGE as described above. 

Binding Assay for Solubilized Transferrin Receptor 
Vesicles immunoadsorbed to S. aureus  cells or membrane pellets were 
resuspended in KCI buffer containing 1% Triton X-100, 1 mg/ml BSA, and 
protease inhibitors (as above). Transferrin 3 binding to soluble receptors 
was measured by a modification of previously published procedures (Ciech- 
anover et al., 1983; Lamb et al., 1983). Samples (100 p.l; typically contain- 
ing membranes or vesicles derived from 500,000 cells) were incubated with 
1130 #1 of ~25I-transferrin, which was prepared as previously described (Tan- 
ner and Lienhard, 1987) (final concentration, 0.3 riM; 40,000 cpm/assay) 
in KCI buffer containing 1% BSA. After 1-2 h incubation at 4°C (by which 
time the binding was at equilibrium), 100/.tl of 2 mg/ml human gamma- 
globulin (Sigma Chemical Co.) and 245 pl of cold, saturated (NH4)2SO4 
(final concentration, 45% saturation) were added. The samples were kept 
on ice for 10 min, and, after the addition of 1 ml 45% (NH4)2SO4 in cold 
KCI buffer, were filtered through 24-ram Whatman Inc. (Clifton, N J) GFC 
glass-fiber filters. The filters were washed twice with l-ml aliquots of 45 % 
(NI-L,)2SO4 in cold KCI buffer, dried, and radioactivity was determined in 
a Beckman Instruments, Inc. (Fullerton, CA) gamma counter. A control ex- 
periment, in which the period of incubation in ammonium sulfate was short- 
ened from 10 to 5 rain, showed that there was no dissociation of the precipi- 
tated transferrin from its receptor during the 10 min. All results have been 
corrected for nonspecific binding, which was taken as the amount of t:sI- 
transferrin bound in the presence of excess (i ttM) unlabeled transferrin. 
The amount of nonspecific binding was independent of the presence of 
added cell extract, and was thus due to ammonium sulphate precipitation 
of free t25I-transferrin. 

In a control experiment where specific binding of t25I-transferrin to sol- 
uble receptors was measured after incubation with varying concentrations 
of ammonium sulfate (20-55% saturation), similar levels of specifically 
bound 125I-transferrin were measured at 45, 50, and 55% ammonium sul- 
fate, but the level of nonspecific binding increased with increasing amounts 
of ammonium sulfate. This result suggests that the soluble transferrin recep- 
tors are entirely precipitated by 45% ammonium sulfate. 

The dissociation rate of 1251-transferrin from its receptor was measured 
by incubation of aliquots of a Triton X-100 (1%) cell extract with t251- 
transferrin (1 nM) at 4°C for 50 min, followed by the addition of unlabeled 
transferrin (1 ttM) and measurement of the amount of specifically bound 
transferrin remaining after various times at 4°C. The first-order rate con- 

3. Diferric transferrin will be referred to as transferrin for the sake of brevity. 
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stant for dissociation (k-t) was 0.038 min -t .  The rate of association of 
transferrin with its receptor was measured by incubation of a Triton X-100 
(!%) cell extract with 3 nM 12sI-transferrin at 4°C for 15 s-50 min, fol- 
lowed by measurement of specific binding. Equilibrium binding was achieved 
within 7 min, and the half-time was ',~2 min. The rate constant for associa- 
tion (k+0 was calculated to be 1.1 x l0 s min-I/M -l.  The kinetically de- 
rived value (k-i/k+t) for the dissociation constant, Kd, is thus 0.35 nM, 
which agrees well with the value derived from equilibrium binding of t2sI- 
transferrin (0.5 nM, see Fig. 1). 

Preparation of l2Sl-Pentamannose 6-Phosphate-BSA 
(PMP-BSA) 

Penatamannose 6-phosphate (160 mg; a girl from M. E. Slodki, United 
States Department of Agriculture, Peoria, IL) and BSA 02  mg; Sigma 
Chemical Co., A-7638) in 1 m150 mM N,N-bis(2-hydroxyethyl)glycine, pH 
9.0, at 37°C, were incubated with sodium cyanoborohydride (9.8 rag; Al- 
drich Chemical Co., Milwaukee, WI) for 45 h at 37°C (Braulke et al., 
1987). The reaction mixture containing PMP-BSA was then dialyzed 24 h 
at room temperature against 1 liter of PBS, with one buffer change. Cou- 
pling of PMP-BSA resulted in an increase in its apparent Mr from 59000 
to 76,000, as determined by SDS-PAGE under nonreducing conditions. 

PMP-BSA (100/~g in 100/~1 PBS) was incubated with Na-t2~I (1 mCi; 
Amersham Corp., Arlington Heights, IL) in a glass test tube coated with 
l0/~g iodogen (Pierce Chemical Co.) for 15 min at room temperature. 1251- 
PMP-BSA (sp act 9.6 Ci/g) was isolated by gel filtration (Sephadex G-25) 
in PBS, made 1 mg/ml in BSA, and stored at -70°C. 

125I-PMP-BSA Binding to Cells at 4°C 

Cell monolayers in a six-well cluster dish (35 mm/well; 2 x 106 cells/well) 
were washed twice with 1-ml aliquots of Krebs-Ringer phosphate buffer 
(KRP; 128 mM NaCl, 4.7 mM KCI, 1.25 mM MgSO4, 1.25 mM CaCl2, 
5 mM NaH2PO4, pH 7.4) at 37°C, followed by the addition of 995 #l of 
KRP and, when desired, 5 #l insulin (100 nM, final). At the appropriate 
time, buffer was removed from all wells of a six-well plate, and cell mono- 
layers were washed rapidly three times with ice-cold PBS. The six-well plate 
was then transferred to ice and 1 ml of cold KRP was added to each well. 
Subsequently, buffer was replaced with 1 ml 12sI-PMP-BSA (1 nM; 100,000 
cpm/well) in cold KRP containing 1 mg/ml BSA and cells were incubated 
at 4°C. At the end of 3 h (at which time binding was at equilibrium), un- 
bound ligand was aspirated, and nonspecific binding was reduced by three 
1-ml (1 rain each) washes with cold KRP. Cells were solubilized with 2 ml 
of 1 N NaOH, and the radioactivity was determined in a Beckman Instru- 
ments, Inc. gamma counter. A control experiment, in which the efficacy of 
three rapid washes was compared with three 1-min washes, indicated that 
none of the specifically bound lESI-PMP-BSA was lost in the latter proce- 
dure, whereas the nonspecific binding was reduced. Nonspecific binding 
was taken as the 125I-PMP-BSA bound in the presence of 5 mM mannose 
6-phosphate (Sigma Chemical Co.); the same level of nonspecific binding 
was observed in the presence of 1 /.tM PMP-BSA. ~sI-PMP-BSA binds 
specifically to the IGF-II receptor, since the presence of 5 mM mannose 
1-phosphate (Sigma Chemical Co.) does not reduce the amount of bound 
ligand. In addition, the omission of CaCl2 and MgSO4 from the binding 
buffer or the addition of EDTA (5 raM) had no effect on the amount of J25I- 
PMP-BSA bound to basal and insulin-treated cells. 

Gel Electrophoresis and lmmunoblotting 

Final concentrations in SDS sample buffer were 4 % SDS (Pierce Chemical 
Co.; Lauryl brand), 10% (vol/vol) glycerol, 1 mM EDTA, 95 mM Tris-HCI 
(pH 6.8), 120 #g/ml bromphenol blue, and protease inhibitors (1 mM di- 
isopropyl fluorophosphate, 10 #M L-trans-epoxysuccinylleucylamido-[4- 
methyl]butane, and 1.5 p.M pepstatin A). SDS-PAGE was carried out as pre- 
viously described (Gibbs et al., 1986) under nonreducing conditions, using 
5 and 7.5% (wt/vol) acrylamide, respectively, for the stacking and separat- 
ing gels. For immunoblotting, samples were electrophoretically transferred 
to 0.2/~m nitrocellulose (BA83; Schleicher & Schuell, Inc., Keene, NH) 
in 25 mM sodium phosphate (pH 6.5) for 2 h at 350 mA. The blots were 
then blocked with BSA; treated with afffinity-purified GT antibodies, and/or 
with antiserum against the rat liver IGF-II receptor, or bovine mannose 
6-phosphate receptor (see figure legends for details); and then labeled with 
125I-labeled goat antibodies against rabbit IgG (New England Nuclear, 
Boston, MA) at 1.2 × 105 dpm/ml as described elsewhere (Lienhard et 
al., 1982). 

For quantitation of the immunoblots, autoradiograms were aligned over 

the nitrocellulose, and labeled bands were cut out and counted in a gamma 
counter. Each value was corrected for background by curing and counting 
a region within the same lane that exhibited no labeled band. It was shown 
by the application of SDS samples containing various amounts of 3T3-L1 
membranes that the amount of t2SI-labeled goat antibodies against rabbit 
IgG specifically bound to the GT and IGF-II receptor was proportional to 
the amount of protein applied over the range used for quantitation in this 
study. 

Results 

Effect of Insulin on the SubceUular Distribution of 
Transferrin Receptors 

Insulin elicits a redistribution of transferrin receptors in both 
rat adipocytes (Davis et al., 1986) and in 3T3-L1 adipocytes 
(Tanner and Lienhard, 1987). After a 5-min exposure to in- 
sulin at 37°C, there is a twofold increase in surface receptors 
on 3T3-L1 adipocytes. There is a corresponding decrease in 
intracellular receptors, as assayed by the decrease in intracel- 
lular ~25I-transferrin at steady state (Tanner and Lienhard, 
1987). Further evidence for insulin-stimulated translocation 
of transferrin receptors has been obtained through measure- 
ment of the transferrin receptor content of subcellular frac- 
tions prepared from basal and insulin-treated cells (Table I). 
The amount of transferrin bound to receptors in the crude 
plasma membrane fraction increased from 183 to 238 fmol 
per 10-cm plate in response to insulin, as measured by bind- 
ing of tESI-transferrin at a single concentration (Table I). In 
six experiments of this type, the fold increase in the amount 
of transferrin bound to receptors in the crude plasma mem- 
brane fraction averaged 1.2 + 0.04 (SEM). Although at first 
glance this value may appear to be in disagreement with the 
twofold increase in surface receptors observed in intact cells, 
the data are in fact consistent. The reason is that the crude 
plasma membrane fraction contains intracellular as well as 
surface transferrin receptors. This fraction contained 71 + 
2 % (SEM, n = 6) of the total receptors in the basal state and 
83 + 1% (SEM, n = 6) in the insulin-treated state. On the 
other hand, only 15 % of the total receptors in the cell are 
on the surface in the basal state, as assayed by the steady-state 
distribution of ~2q-transferrin (Tanner and Lienhard, 1987). 
Thus, the increase of receptors in the crude plasma mem- 
brane fraction by 12% of the total is consistent with the 

Table L Subcellular Localization of Transferrin Receptors 

~25I-Transferrin bound (fmol/fraction per 10-cm dish) 

Crude Microsomal 
Condition plasma membranes membranes GT vesicles 

Basal 183 ± 10 96 + 9 107 ± 13 
Insulin 238 ± 9 58 + 7 62 + 3 

Cells were treated with or without insulin (100 nM, final) for 5 min at 37°C. 
Cells were then homogenized and fractionated as described in Materials and 
Methods, and transferrin binding to receptors in the solubilized membrane 
fractions and GT vesicles was assayed as described in Materials and Methods. 
GT vesicles were isolated by adsorbing 1 ml of the microsomal fraction with 
2 izl of S. aureus cells coated with 3 pg of GT C-peptide antibodies. Transferrin 
bound to vesicles adsorbed to nonimmune lgG-coated S. aureus cells was rou- 
tinely 20-35% of the amount of transferrin bound to vesicles adsorbed to GT 
antibody-coated S. aureus cells (data not shown). The results are presented as 
the mean + SD of duplicate determinations of fractions prepared from dupli- 
cate basal and insulin-treated plates. Similar results were obtained in a sepa- 
rate, independent experiment. In addition, separate experiments in which the 
receptors in the crude plasma membranes and the microsomal membranes (n = 
2) or in the crude plasma membranes and the GT vesicles (n = 2) were assayed 
in this way yielded similar results. 
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Figure 1. Effect of insulin treatment on transferrin receptor content 
in the microsomal membranes. Cells were treated without (D) or 
with (m) insulin (100 nM, final) for 5 min at 37°C, followed by 
transfer of cell monolayers to ice, and isolation of the microsomal 
membranes, as described in Materials and Methods. Transferrin 
binding to the solubilized receptors was then measured as described 
in Materials and Methods, with a fixed amount of '25I-transferrin 
and increasing concentrations of unlabeled transferrin. 10% of the 
microsomal membranes from a 10-cm plate was used per assay. The 
points shown are the individual values from duplicate determina- 
tions at each ligand concentration, and are representative of results 
obtained in four independent experiments. 

amount necessary for the surface receptors to increase by 
twofold (from 15 to 30% of the total). 

The supernatant from the 16,000 g centrifugation contains 
microsomal membranes, which can be pelleted upon cen- 
trifugation at 180,000 g (see Materials and Methods). Trans- 
ferrin binding to receptors in the microsomal membranes 
prepared from basal and insulin-treated cells was also mea- 
sured. Insulin elicited a reduction in the amount of transfer- 
rin bound, from 96 to 58 fmol/10-cm plate (Table I). This 
result was representative of four separate experiments, in 
which there was a 41 + 4% (SEM) decrease in the amount 
of transferrin bound to receptors in the microsomal mem- 
branes from insulin-treated cells. There was no change in to- 
tal cellular transferrin receptor binding (crude plasma mem- 
branes plus microsomal membranes) in response to insulin 
(n = 4). These results further support the conclusion that in- 
sulin elicits translocation of transferrin receptors in 3T3-L1 
adipocytes. 

In principle, the changes in the amount of transferrin bound 
to receptors in the crude plasma membrane and microsomal 
membranes prepared from insulin-treated cells (Table I) 
could result from changes in receptor affinity rather than 
changes in receptor number. To check that this was not the 
case, Scatchard analysis of transferrin binding to receptors 
in the microsomal membranes prepared from basal and insu- 
lin-treated cells was performed, and results from a represen- 
tative experiment are shown in Fig. 1. In four independent 
experiments, there was a 45 % reduction in the amount of 
transferrin receptors from 273 + 12 (SEM) to 150 + 3 
fmol/10-cm dish in response to insulin. There was no change 
in receptor affinity; the values for the dissociation constant 
were 0.56 + 0.04 (SEM) and 0.51 + 0.02 nM for the recep- 
tors in the microsomal membranes prepared from basal and 
insulin-treated cells, respectively. 

Insulin also elicits translocation of GT in 3T3-L1 adipo- 
cytes. When subcellular fractions are prepared from basal 
cells and from cells exposed to 100 nM insulin for 15 min 

at 37°C, there is a 1.5-fold increase in GT content in the 
crude plasma membrane fraction (from 50 to 75 % of the total 
GT), and a 50% decrease in GT content in the microsomal 
fraction of insulin-treated cells (from 50 to 25 % of the total 
GT) compared with the corresponding fractions prepared 
from basal cells (Brown et al., 1988). The microsomal frac- 
tion prepared from cells exposed to 100 nM insulin for 5 min, 
instead of 15 min, at 37°C (conditions which were used in 
this paper [Table I and Fig. 1] and which are optimal for 
translocation of transferrin receptor [Tanner and Lienhard, 
1987]) exhibited a 39 + 3% (n = 6; SEM) decrease in GT 
content when compared with the microsomal fraction from 
basal ceils (data not shown). The GT content of the crude 
plasma membrane fraction under these conditions was not 
examined. Thus, the insulin-induced change in the subcellu- 
lar distribution of transferrin receptors is paralleled by a 
similar change in the subcellular distribution of GT. 

Localization of Transferrin Receptors in the 
Intracellular GT Vesicles 

Our laboratory has optimized a procedure for isolation of 
vesicles containing insulin-responsive intracellular GT (Biber 
and Lienhard, 1986; Brown et al., 1988). Since insulin 
elicits translocation of the GT and the transferrin receptor, 
we next examined whether transferrin receptors are located 
in the intracellular GT vesicles. As shown in Table I, there 
were equivalent amounts of transferrin bound to microsomal 
membranes and to GT vesicles isolated from parallel ali- 
quots of the microsomal fraction, from both basal and insu- 
lin-treated cells. Thus, all of the transferrin receptors in the 
microsomal fraction were contained in the GT vesicles. 
There were 107 fmol transferrin bound to GT vesicles pre- 
pared from basal cells, and 62 fmol bound to GT vesicles 
prepared from insulin-treated cells. This result was repre- 
sentative of four separate experiments, in which there was a 
48 :i: 5 % (SEM) decrease in transferrin receptor binding to 
the GT vesicles from insulin-treated cells. Transferrin bind- 
ing to GT vesicles immunoadsorbed to antibody-coated S. 
aureus cells was not observed when Triton X-100 was omit- 
ted from the assay (data not shown). This observation is con- 
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Figure 2. Time course of insulin stimulation of PMP-BSA binding 
to cell surface receptors. Cells were incubated at 3"/°C with insulin 
(100 nM, final) for 0-20 min, followed by rapid cooling of the cells, 
and measurement of specific binding of PMP-BSA to cells at 4°C, 
as described in Materials and Methods. The results shown are the 
average of triplicate determinations and are representative of results 
obtained in three independent experiments. 
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Figure 3. IGF-II receptor and GT content of microsomal mem- 
branes prepared from basal and insulin-treated cells. Cells were in- 
cubated at 37°C with vehicle or insulin (100 nM, final) for 20 min, 
followed by rapid cooling of the cells, homogenization, and isola- 
tion of microsomal membranes, as described in Materials and 
Methods. Increasing amounts of microsomal membranes from 
basal cells (lanes 1-4) and insulin-treated cells (lanes 5-8) were 
subjected to SDS-PAGE, immunoblotting, and autoradiography. 
0.875 (lanes I and 5), 1.75 (lanes 2 and 6), 3.5 (lanes 3 and 7), and 
7% (lanes 4 and 8) of the microsomal membranes (,~300 #g total 
protein) from 10-cm dishes of basal and insulin-treated cells were 
applied to the gel. The upper half of the immunoblot was incubated 
with a 1:10,000 dilution of rabbit antiserum against the bovine man- 
nose 6-phosphate receptor, and the lower half of the immunoblot 
was incubated with 0.5 #g/ml afffinity-purified antibodies against the 
GT. Both halves were then incubated with 125I-goat anti-rabbit 
IgG. Film exposure was for 17 h. Similar results were obtained with 
two other 10-cm plates prepared on the same day. 

ceptor content of  the microsomal membranes prepared from 
basal and insulin-treated cells. Shown in Fig. 3 is an au- 
toradiograph of  an immunoblot of increasing amounts of the 
microsomal membranes prepared from basal (Fig. 3, lanes 
1-4) and insulin-treated cells (Fig. 3, lanes 5-8).  In this ex- 
periment, over the range where the signal in immunoblotting 
was proportional to the amount of  sample, there was 35 % 
less IGF-II receptor in the microsomal membranes prepared 
from insulin-treated cells as compared with the correspond- 
ing fraction prepared from basal cells (Fig. 3, compare lane 
2 vs. 6 and lane 3 vs. 7). These results indicate that insulin 
elicited a decrease in the amount of  intracellular IGF-II 
receptors, which correlates with the insulin-stimulated in- 
crease in t25I-PMP-BSA binding to cell surface receptors 
(Fig. 2). From a number of experiments of  this type, the av- 
erage reduction in the amount of intracellular IGF-II recep- 
tors in the microsomal membrane fraction in response to in- 
sulin was 16 + 3% (n = 18; SEM). For comparison, in the 
experiment shown in Fig. 3 the GT content was also exam- 
ined. Insulin elicited a 70% decrease in the amount of GT 
in the microsomal membranes (Fig. 3, compare lane 1 vs. 
5 and lane 2 vs. 6). 

Localization o f  lGF-H Receptors in the Intracellular 
GT Vesicles 

We investigated whether IGF-II receptors are located in the 

sistent with the binding site of  the transferrin receptor being 
oriented towards the lumen of  the vesicle. 

Effect o f  lnsulin on the Subcellular Distribution o f  
IGF-H Receptors 

Insulin elicits translocation of  IGF-II receptors in rat adipo- 
cytes (Oka et al., 1984; Wardzala et al., 1984). We used 
~2~I-PMP-BSA, a ligand developed for study of  the man- 
nose 6-phosphate receptor (Braulke et al., 1987), to examine 
the effect of  insulin on surface IGF-II receptors in 3T3-L1 
adipocytes. The IGF-II receptor and cation-independent man- 
nose 6-phosphate receptor are the same protein (see Discus- 
sion). The time course of  insulin stimulation of 12~I-PMP- 
BSA binding to surface receptors is shown in Fig. 2. When 
3T3-L1 adipocytes were exposed to insulin, there was a max- 
imal 2.5-fold increase in the capacity of cells to bind t25I- 
PMP-BSA. In three independent experiments, the half-time 
for insulin action at 37°C was 2.3 + 0.4 min (SEM), and in- 
sulin elicited a 2.5-4.5-fold stimulation in the amount of 
~2sI-PMP-BSA bound to cell surface receptors. Scatchard 
analysis of PMP-BSA binding demonstrated that the insulin- 
induced increase was due to an increase in the number of  cell 
surface receptors (11.5 [basal] vs. 40 fmol/well [insulin]), 
with little effect on the value of the dissociation constant (1.8 
nM [basal] vs. 1.3 nM [insulin]; results not shown). Thus, 
translocation of IGF-II receptors most likely also occurs in 
3T3-L1 adipocytes. 

Further evidence for insulin-stimulated translocation of 
IGF-II receptors was obtained by comparing the IGF-II re- 

Figure 4: Immunoadsorption of the IGF-II receptor from solubi- 
lized GT vesicles. GT vesicles were isolated from the microsomal 
fraction of 16 10-cm plates of basal cells by immunoadsorption onto 
S. aureus cells, and then solubilized with 300 #1 1% Ct2Es in 150 
mM NaC1, 20 mM Hepes, 2 mM MgSO4, pH 7.4. The C~2Es ex- 
tract (37/d; 20 #g protein; equivalent of two 10-cm plates) was in- 
cubated for 2 h at room temperature with 10 #1 S. aureus cells 
precoated with 100/zg nonimmune rabbit IgG (lane 2), 10 #1 of rab- 
bit antiserum against the C-peptide of the bovine mannose 6-phos- 
phate receptor (lane 3), or 10 #1 of rabbit antiserum against the rat 
liver IGF-II receptor (lane 4). The supernatants from the immuno- 
adsorptions were diluted in SDS sample buffer, samples (equivalent 
of 0.6 of a 10-cm plate) were subjected to SDS-PAGE as described 
in Materials and Methods, and the gel was stained with Coomassie 
blue. An equivalent amount of C~2E8 extract of GT vesicles which 
had been untreated was also run (lane 5). The standard proteins 
(150 ng each protein [Bio-Rad Laboratories]; molecular weights in- 
dicated at right xl03) are shown in lanes I and 6. Immunoadsorp- 
tion of the C~2Es extract with S. aureus cells precoated with rabbit 
antiserum against the rat liver IGF-II receptor was performed in two 
other experiments, with identical results. 
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intraceUular GT vesicles. The protein composition of GT 
vesicles was examined by solubilization of the vesicle pro- 
teins with octaethylene glycol dodecyl ether (Ct2E8), resolu- 
tion by SDS-PAGE, and staining with Coomassie blue (Fig. 
4). The C~2Ea extract of the vesicles contains a major poly- 
peptide of Mr 230,000 (Fig. 4, lane 5). Incubation of the 
Ct2Es extract with S. aureus  cells coated with either anti- 
bodies against the rat liver IGF-II receptor (Fig. 4, lane 4) 
or antibodies against the C-peptide of the bovine mannose 
6-phosphate receptor (Fig. 4, lane 3) resulted in a selective 
depletion of this protein. In contrast, there was no depletion 
of any protein when the C~2Ea extract was incubated with 
S. aureus  cells coated with nonspecific rabbit IgG (Fig. 4, 
lane 2). These results demonstrate that the IGF-II receptor, 
which has been previously shown to have an apparent Mr of 
220,000 in a nonreducing gel (Rechler and Nissley, 1985), 
is a major component of the intracellular GT vesicles. This 
conclusion is supported by the finding that the IGF-II recep- 
tor was also detected on an immunoblot of the C~2Es extract 
of GT vesicles with antibodies against the IGF-II receptor 
(data not shown). Parenthetically, we note that the Coomas- 
sie blue-stained band in Fig. 4 with an apparent molecular 
mass in the range of the GT (~50,000) is not the GT, since 
during C~2Es solubilization of the vesicle proteins the GT 
remains bound to its antibodies on the S. aureus  cells (Brown 
et ai., 1988). 

To characterize further the intracellular GT vesicles, im- 
munoadsorption of the membranes in the microsomal frac- 
tion was performed with GT C-peptide antibodies and anti- 
bodies against the C-peptide of the IGF-II receptor (Fig. 5). 
Immunoadsorption of the microsomal fraction with S. aureus  

cells coated with GT C-peptide antibodies (Fig. 5, lane 3) 
resulted in a 70 % depletion of IGF-II receptor, as well as an 
88% depletion of GT, when compared with the original su- 
pernatant (Fig. 5, lanes 1 and 8). In five separate experi- 
ments, there was an 82 + 4% (SEM) depletion of IGF-II 
receptors and a 90 5:3 % (SEM) depletion of GT. This result 
reinforces the conclusion drawn from the data in Fig. 4 that 
the intracellular GT vesicles also contain IGF-II receptors. 
Immunoadsorption of the microsomal fraction with S. au-  

reus  cells coated with antibodies to the C-peptide of the IGF- 
II receptor (Fig. 5, lane 2) resulted in a 70% depletion of both 
IGF-II receptor and GT. In three separate experiments, there 
was a 77 5= 5 % (SEM) depletion of IGF-II receptor and a 
76 + 10% (SEM) depletion of GT. Thus, almost all of the 
vesicles containing GT also contain IGF-II receptor. When 
the microsomal membrane fraction was incubated with S. au-  

reus cells coated with nonimmune IgG, there was no loss 
of either IGF-II receptor or GT immunoreactivity (Fig. 5, 
lane 4). 

The amounts of S. aureus  cells and antibody that were 
used in the experiment shown in Fig. 5 are saturating, since 
similar results were obtained when 1-ml aliquots of the mi- 
crosomal fraction were immunoadsorbed with 4 /xl cells 
coated with 15/~g of the appropriate antibodies (results not 
shown). The immunoreactive band in Fig. 5, lanes 2-7, of 
Mr 150000 is due to IgG that dissociated from the  S. au-  

reus cells into the supernatant during the 2-h incubation. 
This band is absent from Fig. 5, lanes 1 and 8, which contain 
microsomal fractions that were not immunoadsorbed. In ad- 
dition, when immunoblots were probed with ~25I-labeled 
goat antibodies against rabbit IgG in the absence of prior in- 

Figure 5. Immunoadsorption of GT-containing vesicles and IGF-II 
receptor-containing vesicles from the microsomal fraction, l-ml 
aliquots of the microsomal fraction (12.5 % of microsomal fraction 
from a basal 10-cm plate) were incubated at room temperature for 
2 h with 2 #l S. aureus cells coated with 6/zg afffinity-purified anti- 
bodies against the C-peptide of the rat IGF-II receptor (lanes 2 and 
5), 6/~g afffinity-purified GT C-peptide antibodies (lanes 3 and 6), 
or 6 #g nonimmune rabbit IgG (lanes 4 and 7). Lanes 1 and 8 con- 
tain samples of equivalent amounts of untreated microsomal frac- 
tion. In addition, 0.1% Triton X-100 was present during the im- 
munoadsorption of the samples in lanes 5-7. The vesicles adsorbed 
to the antibody-coated S. aureus cells were then pelleted, and the 
resulting supernatants were subjected to SDS-PAGE and immuno- 
blotting, as described in Materials and Methods and in the legend 
to Fig. 3. An 18-h exposure of the autoradiogram is shown. Similar 
results on the parallel immunoadsorption of IGF-II receptor and GT 
from the microsomal fraction by incubation with S. aureus cells 
coated with affinity-purified GT C-peptide antibodies were ob- 
tained in four additional experiments. Similar results on the parallel 
immunoadsorption of IGF-II receptor and GT from the microsomal 
fraction by incubation with S. aureus cells coated with affinity- 
purified antibodies against the C-peptide of the IGF-II receptor 
were obtained in two additional experiments. 

cubation with antibodies against the GT or IGF-II receptor, 
the band of Mr 150,000 was the only one present (data not 
shown). 

To be certain that the results shown in Fig. 5, lanes 2 and 
3, were not due to cross-reactivity of the GT antibodies and 
IGF-II receptor antibodies with the IGF-II receptor and GT, 
respectively, parallel immunoadsorptions were performed in 
the presence of 0.1% Triton X-100. Under this condition, 
where the membranes in the microsomal fraction were solu- 
bilized, immunoadsorption of the microsomal fraction with 
S. aureus  cells coated with antibodies against the C-peptide 
of the IGF-II receptor resulted in a 45 % loss of IGF-II recep- 
tor, but no loss of GT (Fig. 5, lane 5). Conversely, there was 
a 94 % depletion of GT, but no loss of IGF-II receptor, when 
the microsomal fraction was incubated with S. aureus  cells 
coated with GT C-peptide antibodies (Fig. 5, lane 6). Again, 
immunoadsorption of the microsomal fraction with S. au-  
reus cells coated with nonimmune IgG resulted in no loss of 
either GT or IGF-II receptor (Fig. 5, lane 7). These results 
indicate that the antibodies against the C-peptides of the GT 
and IGF-II receptor exhibit no cross-reactivity for the other 
protein. In another control experiment, S. aureus  cells coated 
with antibodies against the C-peptide of the IGF-II receptor 
did not adsorb purified human erythrocyte GT reconstituted 
into membranes, under conditions where S. aureus  cells 
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coated with GT C-peptide antibodies resulted in quantitative 
adsorption (results not shown). 

Discussion 

We have shown that insulin elicits the translocation of trans- 
ferrin receptors and IGF-II receptors in 3T3-L1 adipocytes, 
and that intracellular GT vesicles contain these two addi- 
tional insulin-responsive membrane proteins. In our earlier 
study, in which the steady-state distribution of 12sI-transfer- 
rin between the surface and interior of intact cells was mea- 
sured, we concluded that insulin increased the number of 
surface transferrin receptors and reduced the number of in- 
tracellular transferrin receptors, due to an increase in the rate 
constant for externalization of the receptor (Tanner and Lien- 
hard, 1987). In this study, subcellular fractionation and 
measurement of transferrin binding to soluble receptors has 
provided further evidence for translocation of transferrin 
receptors in response to insulin (Table I). Moreover, all of 
the transferrin receptors in the microsomal fraction prepared 
from both basal and insulin-treated cells were immunopre- 
cipitated by S. aureus cells coated with GT C-peptide anti- 
bodies (Table I). 

Previously, we found that the amount of surface transferrin 
receptors on a 35-mm dish of 3T3-L1 adipocytes increases 
by ~12 pmol in response to insulin (Tanner and Lienhard, 
1987). Since the number of cells on a 10-cm plate is about 
six times greater, the expected increase for a 10-cm plate is 
*72 pmol. By comparison, insulin treatment of intact cells 
resulted in a reduction in the amount of transferrin receptors 
in the microsomal membranes from a 10-cm plate by 120 
pmol (Fig. 1). This calculation indicates that all of the insu- 
lin-responsive intracellular transferrin receptors are con- 
tained in the microsomal fraction, as is also the case for the 
insulin-responsive GT (Brown et al., 1988). 

An estimate of the number of transferrin receptors in the 
GT vesicles can be made in the following way. According to 
electron microscopy, the GT vesicles are ~50 nm in di- 
ameter (Biber and Lienhard, 1986). The molecular weight 
of the phospholipid in a vesicle of this size is --1.5 × 107 
(Huang and Mason, 1978). Since 11 p.g of membrane lipid 
are present in the GT vesicles isolated from the microsomal 
fraction of a 10-cm plate of basal cells (Brown et al., 1988), 
there are *0.7 pmol of vesicles in the microsomal fraction. 
Since this fraction contains 0.27 pmol of transferrin receptors 
(Fig. 1), on the average only one vesicle in three contains a 
transferrin receptor. By comparison, the average vesicle con- 
tains eight GT (Brown et al., 1988). 

In contrast to rat adipocytes which possess no IGF-I recep- 
tors (Massagu6 and Czech, 1982), 3T3-L1 adipocytes have 
high levels of both IGF-I and IGF-II receptors, as demon- 
strated by affinity labeling (Massagu6 and Czech, 1982). 
IGF-II binds with high affinity to the IGF-II receptor, and 
with lower affinity to the IGF-I receptor (Rechler and Niss- 
ley, 1985). For this reason, binding of 12sI-PMP-BSA, rather 
than ~2sI-IGF-II, was used to monitor cell surface IGF-II 
receptors. Recent studies have proven that the IGF-II recep- 
tor is identical to the cation-independent mannose 6-phos- 
phate receptor (Roth, 1988). Insulin elicited a redistribution 
of IGF-II receptors in 3T3-L1 adipocytes. There was a 2.5- 
4.5-fold increase in the number of surface receptors (Fig. 2), 
and an average 16% decrease in the amount of intracellular 

IGF-II receptors in microsomal membranes (Fig. 3). These 
results are similar to those obtained in rat adipocytes, where 
insulin treatment resulted in a 2.5-10-fold increase in the 
amount of surface IGF-II receptors, and a 17-40% decrease 
in intracellular IGF-II receptors (Oppenheimer et al., 1983; 
Oka et al., 1984; Wardzala et al., 1984; Appell et al., 1988). 

Given that the microsomal membranes contain an insulin- 
responsive pool of intracellular IGF-II receptors (Fig. 3), 
and that an average of 80% of the IGF-II receptors in the mi- 
crosomal fraction were immunoadsorbed by incubation with 
S. aureus cells coated with GT C-peptide antibodies (Fig. 5), 
the IGF-II receptors localized in the GT vesicles most likely 
constitute this insulin-responsive pool. It is unlikely that im- 
munoadsorption of the IGF-II receptor from the microsomal 
fraction by incubation with $. aureus cells coated with GT 
C-peptide antibodies could have resulted from nonspecific 
sticking of separate IGF-II receptor-containing vesicles. The 
GT vesicles isolated from the microsomal fraction are highly 
enriched; only 15/zg vesicle protein is obtained from 300/~g 
of membrane protein present in the microsomal fraction 
from a 10-cm plate of basal cells (Brown et al., 1988). We 
cannot, of course, rigorously exclude the possibility that 
specific fusion of separate vesicles containing IGF-II recep- 
tor with ones containing GT occurred during the isolation 
procedure. 

A rough estimate of the average IGF-II receptor content 
per vesicle can be made in the following way. On the basis 
of visual estimation of the intensity of the Coomassie blue 
stain in the IGF-II receptor band relative to the intensity of 
150 ng of each standard protein (Fig. 4), there is ,,0250 ng 
of IGF-II receptor in the GT vesicles from the microsomal 
fraction of a 10-cm plate of basal cells. The molecular mass 
of the receptor calculated from its deduced amino acid se- 
quence is 275 kD (Lobel et al., 1988; Oshima et al., 1988). 
Consequently there are 0.9 pmol of receptor in the GT vesi- 
cles, which corresponds to an average of 1.3 receptors per 
GT vesicle (see above). A content of at least one IGF-II 
receptor per GT vesicle is consistent with the results shown 
in Fig. 5, where S. aureus cells coated with antibodies against 

Table 111. Subcellular Distributions of  the GT, Transferrin 
Receptor, and IGF-H Receptor 

Crude plasma Microsomal 
Cell surface membranes membranes 

Basal Insulin Basal Insulin Basal Insulin 

% % % % % % 

GT 15 43 50 75 50 25 
Transferrin 

receptor 15 30 66 80 34 20 
IGF-II 

receptor 1.7 5.9 73 77 27 23 

The values, given as a percentage of the total, are from the following sources. 
(GT) Cell surface, by quantitative immunoelectron microscopy (Blok et al., 
1988); crude plasma membranes and microsomal membranes, by immunoblot- 
ting (Brown et al., 1988). (Transferrin receptor) Cell surface, by steady-state 
distribution of ~2~I-transferrin (Tanner and Lienhard, 1987); crude plasma 
membranes and microsomal membranes, from Table I. (IGF-II receptor) Cell 
surface, calculated on the assumption that the 27% of receptor in basal micro- 
somal membranes equals 1.1 pmol (see Discussion) and the pmol of surface re- 
ceptor as measured by binding of ~I-PMP-BSA (see Results); crude plasma 
membranes and microsomal membranes, by immunoblotting (see Results and 
Fig. 3), with the value for insulin crude plasma membranes obtained by dif- 
ference. 
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the C-peptide of the rat IGF-II receptor adsorbed 70% of 
both the IGF-II receptor and the GT present in the micro- 
somai fraction. 

This rough estimate of intracellular IGF-II receptors also 
indicates that the decrease in IGF-II receptors in the micro- 
somai membranes in response to insulin can account for the 
increase in surface receptors as determined by PMP-BSA 
binding. The decrease in the microsomal membranes was 
,o0.18 pmol/10-cm plate (calculated from 0.9 pmol in the GT 
vesicles, 82 % immunoprecipitation of the IGF-II receptor in 
the microsomal fraction with the GT vesicles, and a 16% 
decrease in the IGF-II receptor content of the microsomal 
membranes by immunoblotting), whereas the increase in 
surface receptors was 0.17 pmol/10-cm plate (calculated 
from an increase of 28.5 fmol/35-mm dish measured by 
Scatchard analysis [see Results]). 

Table II summarizes the effects of insulin on the subcellu- 
lar distributions of the GT, transferrin receptor, and IGF-II 
receptor in 3T3-L1 adipocytes. As discussed above, insulin 
stimulated a two- to threefold increase in the level of each 
protein at the cell surface, and in each case the decrease in 
the content of the protein in the microsomal membranes can 
account for the increase at the cell surface. Although 85- 
100% of these three membrane proteins in the microsomal 
fraction are contained in the GT vesicles (see Table I and Fig. 
5), insulin's effect on the content of the proteins in this frac- 
tion was not uniform. The effect of insulin varied from a 50% 
decrease in the GT content to only a 16% decrease in the 
IGF-II receptor content. A possible explanation for this fact 
is that the GT vesicles consist of fragmented trans-Golgi 
reticulum (see below) and that translocation of these proteins 
to the plasma membrane involves a sorting step at the stage 
in which vesicles destined to fuse with the plasma membrane 
bud from this reticulum. In response to insulin, the GT may 
have a higher probability of being incorporated into these 
shuttle vesicles than does the IGF-II receptor. 

A vesicle population enriched in GT has also been pre- 
pared from rat adipocytes (James et al., 1987). The proce- 
dure involved isolation of a low-density microsomal fraction, 
followed by sucrose gradient centrifugation, and agarose gel 
electrophoresis. IGF-II receptors were present in the agarose 
fractions enriched in GT. However, it was unclear as to 
whether IGF-II receptors and GT were located in the same 
vesicles, or whether these two proteins were contained in 
different vesicle populations of the same size that comigrated 
on agarose gel electrophoresis. 

Results in two recently published papers suggest that insu- 
lin regulates the subcellular distribution of IGF-II receptors 
and GT by different mechanisms. In chloroquine-treated rat 
adipocytes, insulin stimulation of hexose transport and GT 
translocation is unaffected, but the insulin-induced increase 
in surface IGF-II receptors is markedly attenuated (Oka et 
al., 1987). Chloroquine treatment, however, does not affect 
the basal levels of surface IGF-II receptors. Although these 
results show that the IGF-II receptor and the GT behave 
differently in the presence of chloroquine, they do not indi- 
cate whether the trafficking of these proteins differs in its 
absence. The dissociation of lysosomal enzymes from intra- 
cellular IGF-II receptor is inhibited in the presence of chlo- 
roquine (reviewed by von Figura and Hasilik, 1986), and this 
may affect the sorting of the insulin-responsive pool of intra- 
cellular IGF-II receptors. In a second study (Appell et al., 
1988), it was found that in rat adipocytes the time courses 

for both the insulin-induced appearance of surface IGF-II 
receptors and the reversal of this effect upon insulin with- 
drawal are each more rapid than the corresponding time 
courses for the insulin stimulation of the rate of glucose 
transport and its reversal. However, recent results indicate 
that these different time courses do not necessarily mean that 
the insulin regulation of the translocation of the GT and IGF- 
II receptor differ. In 3T3-L1 adipocytes the appearance of GT 
at the cell surface in response to insulin occurs about twice 
as rapidly as does the increase in the rate of glucose transport 
(Gibbs et al., 1988). It remains to be determined whether the 
time course of the insulin-stimulated translocation of GT to 
the cell surface parallels that of the transferrin receptor and 
IGF-II receptor. 

Recently, a monoclonal antibody was raised against par- 
tially purified GT vesicles from rat adipocytes (James et al., 
1988). This antibody appears to react with the GT in rat fat 
and muscle, but not with the GT in rat brain or human 
erythrocytes. On this basis it has been proposed that there 
is a unique GT in insulin-responsive tissues. The antibodies 
that we have used for immunoadsorption of the GT vesicles 
were raised against the C-peptide of the human erythro- 
cyte/rat brain GT (Davies et al., 1987). Sequencing of a 
cDNA has shown that mouse 3T3-L1 adipocytes possess a 
GT that is very similar to those in erythrocyte and brain, with 
the same carboxy-terminal sequence (Reed, B. C., D. Shade, 
E Alperovich, and M. Vang, manuscript in preparation). 
It remains to be determined whether 3T3-L1 adipocytes pos- 
sess a second type of GT, and if so, whether our GT C-peptide 
antibodies react with it and whether the insulin-responsive 
pool of the two types of GT reside in the same vesicle popu- 
lation. 

The cellular locations of GT in ultrathin cryosections of 
basal and insulin-treated 3T3-L1 adipocytes have been exam- 
ined (Blok et al., 1988). In response to insulin, the GT con- 
tent of an intracellular compartment drops from 55 to 29% 
of the total GT, with the GT content of the plasma membrane 
correspondingly increased. Based on morphological crite- 
ria, the insulin-responsive intracellular GT appear to be in 
the trans-Golgi reticulum, an organelle in which secretory 
proteins and proteins destined for the plasma membrane and 
lysosomes are sorted (Griffiths and Simons, 1986). How- 
ever, this organelle cannot be unequivocally distinguished by 
its morphology (Blok et al., 1988; van Deurs et al., 1988) 
from the endosomal compartment in which ligands uncouple 
from their receptors (CURL) (Geuze et al., 1983). In this re- 
gard, the intracellular GT vesicles that contain the transfer- 
rin receptor are in communication with the extracellular 
medium. When 3T3-L1 adipocytes were incubated for 1 h at 
37°C with 12q-transferrin, the GT vesicles subsequently im- 
munoadsorbed from the microsomal fraction contained 
receptor-bound ~25I-transferrin (data not shown). Future re- 
search will be directed at identification of the organelle(s) 
from which the GT vesicles are derived. 
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