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Abstract. The deposition of intestinal heparan sulfate 
proteoglycan (HSPG) at the epithelial-mesenchymal 
interface and its cellular source have been studied by 
immunocytochemistry at various developmental stages 
and in rat/chick interspecies hybrid intestines. Poly- 
clonal heparan sulfate antibodies were produced by 
immunizing rabbits with HSPG purified from the 
Engelbreth-Holm-Swarm mouse tumor; these antibod- 
ies stained rat intestinal basement membranes. A 
monoclonal antibody (mAb 4CI) produced against lens 
capsule of l l-d-old chick embryo reacted with em- 
bryonic or adult chick basement membranes, but did 
not stain that of rat tissues. Immunoprecipitation ex- 
periments indicated that mAb 4C1 recognized the 
chicken basement membrane HSPG. 

Immunofluorescent staining with these antibodies al- 
lowed us to demonstrate that distribution of HSPG at 
the epithelial-mesenchymal interface varied with the 
stages of intestinal development, suggesting that 

remodeling of this proteoglycan is essential for 
regulating cell behavior during morphogenesis. The 
immunofluorescence pattern obtained with the two 
species-specific HSPG antibodies in rat/chick epithe- 
lial/mesenchymal hybrid intestines developed as grafts 
(into the coelomic cavity of chick embryos or under 
the kidney capsule of adult mice) led to the conclusion 
that HSPG molecules located in the basement mem- 
brane of the developing intestine were produced exclu- 
sively by the epithelial cells. 

These data emphasize the notion already gained 
from previous studies, in which type IV collagen has 
been shown to be produced by mesenchymal cells 
(Simon-Assmann, P., E Bouziges, C. Arnold, K. 
Haffen, and M. Kedinger. 1988. Development 
(Camb.). 102:339-347), that epithelial-mesenchymal 
interactions play an important role in the formation of 
a complete basement membrane. 

PlTHELIAL-STROMAL tissue interactions are a prereq- 
uisite for cytodifferentiation of intestinal epithelial 
cells during ontogenesis (21) and in the adult organ 

(12). Substantial evidence supports the view that extracellu- 
lar matrix components and, in particular, basement mem- 
brane molecules are involved in such cell interactions in vari- 
ous organs (for review see 32). Basement membrane is a thin 
sheet of extracellular matrix that forms a boundary between 
connective tissue and epithelial, endothelial, muscle, and fat 
cells. Identification of the macromolecular components of 
basement membranes have been severely hampered by the 
extreme insolubility of these structures. To date heparan sul- 
fate proteoglycan (HSPG) ~ (16), laminin (40), nidogen-en- 
tactin (7, 9, 42), type IV collagen (41), and, more recently, 
BM 40 (10) have been identified as integral components of 
basement membranes. In the intestine, a descriptive study 
has shown that compositional changes of some extracellular 

1. Abbreviations used in this paper: Cm/Re, chick mesenchyme/rat endo- 
derm; EHS, Engelbreth-Holm-Swarm; HSPG, heparan sulfate proteogly- 
can; Rm/Ce, rat mesenchyme/chick endoderm. 

matrix molecules are temporarily related to intestinal mor- 
phogenesis and differentiation (35); indeed, it was reported 
that during development of the intestine, the interstitial colla- 
gens and fibronectin are distributed in a heterogeneous man- 
ner, related to morphogenetic events, while basement mem- 
brane constituents (laminin, nidogen, and type IV collagen) 
are always evenly distributed along the crypt-villus axis at 
the epithelial-mesenchymal junction like in the adult (14). 

In vitro studies have shown that single matrix molecules 
do not allow survival or elicit terminal differentiation of in- 
testinal epithelial cells, processes which are only triggered 
by viable mesenchymal or fibroblastic cells (23). Related to 
this, the formation of a true basement membrane required 
the presence of both epithelial and fibroblastic cells (13, 24, 
36). One could demonstrate that mesenchymal components 
are involved in the elaboration of an adequate extracellular 
matrix. In particular, basement membrane type IV collagen 
has been shown to be produced by the mesenchymal cells. 
This cell population also plays a predominant role in the 
modifications of the glycosaminoglycan synthesis pattern, 
which occur in epithelial-fibroblastic cocultures in parallel 
to epithelial cell differentiation (4). 
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In the present study, we have been investigating HSPG 
molecules located in the basement membrane that separates 
epithelial cells from the closely associated mesenchyme; 
these molecules appear to be implicated in the development 
and differentiation processes as well as with alterations found 
in cancer (for reviews see 2, 11, 18). Possible remodeling 
processes in the basement membrane HSPG molecules were 
examined during intestinal development. Furthermore, inter- 
species combinations of rat and chick tissue anlagen were 
used as a model to trace the cellular source of HSPG mole- 
cules in the intestinal basement membrane with species- 
specific antibodies. 

Materials and Methods 

Animals 
Fetuses from pregnant Wistar rats bred in our laboratory, whose gestation 
had been accurately timed, were removed by cesarean section at various 
stages between the 14th d of gestation and birth. The day on which a vaginal 
plug was found was designated as day 0, and the developmental stages of 
the fetal rats were determined according to the number of days of gestation. 

White Leghorn chick embryos were used. The chicken eggs were in- 
cubated at 38 + I°C, and the developmental stages were referred to as days 
of incubation. 

Production of Antibodies 

Polyclonal Antibodies. HSPG was purified from Engeibreth-Holm-Swarm 
(EHS) mouse sarcoma as described previously (16). This procedure led to 
the purification of three types of HSPG: a high density proteoglycan that 
is extractable in saline buffer and high and low density proteoglycans that 
are extractable in urea. The low density proteoglycan probably corresponds 
to the native proteoglycan in the basal lamina (16). The results of SDS-PAGE 
before and after treatment of the low density proteoglycan with heparitinase 
were identical to those reported by Hassell etal. (16). The protein core has 
been identified as a 400-kD polypeptide, and no laminin or other con- 
taminating components were detected (data not shown). 

Antibodies against the low density form of HSPG and against laminin 
(purified from EHS tumor as previously described [40]) were prepared in 
rabbits. The specificities of the antibodies were tested either by ELISA or 
Western blot. Antibodies against HSPG were purified from the serum by 
cross-immunoabsorption on a laminin affinity column to remove laminin- 
reacting antibodies. 

Monoclonal Antibodies. Mice were immunized with lens capsule from 
ll-d-old chick embryos. In brief, the lens capsules were washed three times 
in distilled water containing 1% Triton X-100 and then crushed in liquid 
nitrogen. For the first immunization, the lens capsule powder (100-200/tg) 
was emulsified in a 50:50 mixture of water and Freund's adjuvant and in- 
jected subcutaneously in the foot pad. The animals were similarly boosted 
3 wk later and rested for an additional 3 wk. 3 d before being used for a 
hybridoma fusion, they received an intraperitoneal injection of antigen 
without Freund's adjuvant. 

The immune spleen cells were fused with NSI myeloma cells following 
methods previously described (25). The resulting hybridoma cultures were 
screened for production of antibodies using indirect immunofluorescent mi- 
croscopy on frozen sections of eyes taken from 6- or 11-d chick embryos 
(see below). Hybridomas were cloned by limiting dilution. 

The selected hybridomas were propagated as ascite tumors in BALB/c 
mice. Monoclonal antibodies were purified from pooled ascitic fluids by 
chromatography on protein A-Sepharose column (Pharmacia Fine Chemi- 
cals, Uppsala, Sweden). 

Purified mAb 33, identified as anti-chicken HSPG (1) was a generous girl 
of Dr. D. Fambrough (Carnegie Institute of Washington, Baltimore, MD). 

Characterization of the Monoclonal Antibodies 
Culture of Chicken Myotubes and Labeling Conditions. Chicken myo- 
tubes were obtained from ll-d-old chick embryos as described by Vallette 
et al. (43). They differentiate in a medium composed of 3:1 MEM/medium 
199 (Eurobio, Paris, France) with 10% horse serum (Gibco Laboratories, 

Grand Island, NY), 2 mM glutamine, 100 U/ml penicillin, and 100/~g/ml 
streptomycin. 

Differentiated myotubes (after 7-8 d in culture) were labeled with 100 
/~Ci/ml [35S]methionine (1,475 Ci/mmole; Amersham Corp., Arlington 
Heights, IL) in methionine-free MEM supplemented with 2% FCS for40 h. 
After exposure, the labeled medium was removed and centrifuged for 20 min 
at 20,000 g to remove cellular debris. The myotubes were scraped with a 
rubber policeman and homogenized in a potter glass teflon homogenizer in 
the following extraction buffer: 50 mM Tris-HCl, pH 7.4, 150 mM NaCi, 
0.5% NP-40, 0.02% SDS, and 0.5% Trasylol. The homogenate was then 
centrifuged at 20,000 g for 30 rain at 4°C. The supernatant fraction contain- 
ing the soluble, labeled proteins constituted the cell extract. 

Heparitinose Treatment. Heparitinase was obtained from Miles Labora- 
tories Inc. (Elkhart, IN). The labeled medium was incubated with 10/~g/ml 
of heparitinase (910 U/rag) in PBS containing 3 mM of Ca2CO3 for 1 h at 
37°C. In the same conditions, heparitinase treatment of the low density pro- 
teoglycan purified from the EHS tumor released a protein of ,~400 kD, 
which corresponds to the protein core of the proteoglycan as previously de- 
scribed by Hassell et al. (16) (data not shown). 

lmmunoprecipitation. The procedure used for immunoprecipitation of 
cell lysates and media was adapted from that of Bumoi and Reisfeld (5) and 
Rotundo (31). Protein A-Sepbarose was allowed to swell in saline buffered 
with 10 mM Tris-HCI, pH 7.4, containing 0.5% Triton X-100 (buffer A). 
To reduce background, the cell extracts or media were preabsorbed as fol- 
lows: 50/~1 of protein A-Sepharose was incubated with 20/~1 of nonimmunc 
serum with constant agitation at room temperature for I h. The IgG-protein 
A complex was washed three times with 1 ml of buffer A. The cell lysate 
or the medium was then incubated with the IgG-protein A complex with 
constant agitation for 1 h at 25°C. The absorbed lysates or media were re- 
covered after removal of the IgG-protein A-Sepharose complex by centrifu- 
gation. The complex was discarded. This preabsorption procedure was 
repeated using another batch of nonimmune serum. 

The immunoprecipitation per se was then performed. 50/tl  of protein 
A-Sepharose was incubated with 20/tl of immune serum, affinity-purified 
antibodies against iaminin (40 #g), or purified monoclonal antibodies 
against HSPG (40/~g) for I h with agitation at 4°C. Nonimmune serum was 
used as control. The IgG-protein A complex was washed as described above 
and then incubated with either absorbed lysate or medium at 4°C for 1 h. 
The resulting antigen-antibody protein A-Sepbarose complex was recov- 
ered by centrifugation (30 s at 200 g). The complex was washed twice with 
1 ml of extraction buffer; twice with 1 ml of buffer A plus 1 M NaCI; twice 
with 1 ml of buffer A plus 0.02% SDS, 0.3 M NaCI; and twice with buffer 
A. The resulting complex was denatured at 100°C for 3 rain in 62 mM Tris, 
pH 6.8, 2.5% SDS, 10% glycerol, 65 mM DTT and was then electropho- 
resed on a 7 % polyacrylamide gel according to the method of Laemmli (27). 
After electrophoresis the gels were fluorographed with EN3HANCE (New 
England Nuclear, Boston, MA), dried, and exposed to RP/2 Royal X-omat 
film (Eastman Kodak Co., Rochester, NY) at -70°C for varying periods 
of time. 

Immunocytochemistry. Antibodies were tested (as described below) on 
the following tissues: whole eye or intact anterior eye segments from chick 
embryos or from post hatched chicks (up to 3 wk), skeletal anterior latissi- 
mus dorsi from 3-wk-old chickens, and solcos or gastrocnemus from 2-too- 
old rats. 

lnterspecies Intestinal Recombinants 

Associations between rat and chick intestinal tissue components have been 
performed using an experimental procedure described previously (20). 
Briefly, 5-d chick embryonic and 14-15-d fetal rat intestinal anlagen were 
removed. The mesenchyme was separated from the endoderm after incuba- 
tion of the intestinal segments in an 0.03% solution of collagenase (1 h at 
37°C). Two types of interspecies recombinations of the isolated endodermal 
and mesenchymal components were performed: chick mesenchyme/rat en- 
doderm (Cm/Re) and rat mesenchyme/chick endoderm (Rm/Ce). After 
overnight culture on agar-solidified medium to ensure their cohesion, the 
associations were grafted either into the coelomic cavity of 3-d chick em- 
bryos or under the kidney capsule of adult nude mice (nu/nu Swiss mice). 
The developed intestinal segments were harvested 10-14 d later. 

Immunofluorescent Staining of HSPG 
on Intestinal 7Issue 
Intestinal segments at differem developmental stages and interspecies re- 
combinants were processed similarly. They were embedded in Tissue-Tek 
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compound (Miles Laboratories Inc.), frozen in Freon cooled in liquid nitro- 
gen, and stored at -70°C until use. Transverse sections (5-6 #m thick) real- 
ized at -25°C were placed on gelatin-coated slides. 

Cr~stat  sections were then incubated for 30 min at room temperature 
with the antibodies diluted in PBS in a moist chamber. The anti-mouse HSPG 
antibody (from the mouse EHS tumor) was used at 1:500 dilution, and the 
anti-chick HSPG antibody (mAb 4C0 was used at 1:20 dilution. Slides 
were rinsed with PBS and washed in two changes of PBS for 5 min each. 
Sections were then incubated either with FITC-conjugated goat anti-rabbit 
• ,/globulin (1:20 in PBS; Nordic Immunological Laboratories, Tiiburg, The 
Netherlands) or sheep anti-mouse IgG antibodies (1:200; Institut Pasteur, 
Paris, France). Slides were washed, mounted in glycerol/PBS/phenylenedi- 
amine under a coverslip, observed under a microscope (Ortoplan; E. Leitz, 
Inc., Wetzlar, FRG), and photographed using HP5 film (ASA 400; Ilford 
Ltd., Basidon, Essex, England). 

Control sections were processed as above, but first affinity-purified anti- 
bodies were omitted; these controls did not show any fluorescence. 

Results 

Production and Characterization of  Antibodies 

Antibodies against the low density form of HSPG purified 
from the EHS tumor were prepared in rabbits. These anti- 
bodies did not react with laminin, type IV collagen, or 
nidogen-entactin purified from the same tumor. They inten- 
sively stained mouse eye basement membranes (15, 19, 44). 

Monoclonal antibodies against chick lens capsule have 
been produced. In three independent fusions, ,,o400 growing 
hybridoma cultures were obtained. 24 hybridomas were 
selected on the basis of their production of antibodies react- 
ing with the lens capsule of 11-d embryos. 14 monoclonal an- 
tibodies stained all the basement membranes tested, whereas 
the others revealed a heterogeneity of staining for the differ- 
ent basement membranes (data not shown). Our studies here 
are directed only to the monoclonal named mAb 4C~. This 
antibody reacted with all the embryonic or adult chick base- 
ment membranes tested; in contrast, it did not stain that of 
rat tissues (Fig. 1). 

Metabolic labeling of chicken myotubes with [3sS]methi- 
onine and isolation of the neosynthesized antigen(s) by im- 
munoprecipitation followed by SDS-PAGE have been per- 
formed. In the myotube culture medium there was a protein 
of 250-300 kD that firmly bound to any protein A-IgG com- 
plex (Fig. 2 a, lane a). This component is a major secreted 
molecule, and two preabsorption steps did not completely 
deplete the labeled medium from this unidentified material 
(see additional comments in the legend of Fig. 2). mAb 4Ct 
immunoprecipitated a material that did not migrate into the 
gel (Fig. 2 a, lane e) like purified mAb 33, identified as 
anti-chicken HSPG, did (Fig. 2 a, lane d). After heparitinase 
treatment, the immunoprecipitated material that did not mi- 
grate into the gel (Fig. 2 b, lane b) was converted into a pro- 
tein of "~400 kD (Fig. 2 b, lane a ) - i . e . ,  the molecular mass 
of the protein core expected for the basement membrane 
HSPG. 

In immunoprecipitation experiments performed with the 
labeled cell lysate, mAb 4C~ precipitated the 400-kD pro- 
tein core, which corresponds to the cellular form of the HSPG 
molecules in their process of biosynthesis (data not shown). 
However, one should notice that, in this case, several addi- 
tional proteins were nonspecifically immunoprecipitated and 
could not be completely removed from the labeled cell lysate 
by the two preabsorption steps. 

Immunoprecipitation with polyclonal antibodies against 
the low density form of HSPG purified from the EHS tumor 
gave rise to a similar electrophoretic pattern (Fig. 2 a, lane 
c). It is noteworthy that the intensity-i.e., the quantity of the 
immunoprecipitated material-was lower using the poly- 
clonal antibodies than the two monoclonal antibodies. This 
fact probably reflects a weak cross-reactivity of the poly- 
clonal antibodies vs. the chicken HSPG. The material immu- 
noprecipitated by the HSPG antibodies is clearly different 
from that precipitated by the anti-laminin antibodies. Immu- 
noprecipitation performed with affinity-purified anti-lanai- 

Figure 1. Immunofluorescence staining using mAb 4Cz. (a) Indirect immunofluorescence micrograph illustrating the staining pattern ir 
sections of the eye basement membranes of 6-d-old chick embryo: brm, Brusch's membrane; bom, Bowman's membrane; i/m, inner limiting 
membrane; and lc, lens capsule. (b) Immunofluorescence staining of sections of adult chicken anterior latissimus dorsi. (c) Immunofluores. 
cence staining of sections of adult rat soleus. Rat muscle basement membrane was not stained. Bar, 50/~m. 
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Figure 2. (a) Electrophoretic analysis of [35S]methionine-labeled 
proteins secreted by l l-d-old chicken myotubes. Medium was 
preabsorbed twice with protein A-Sepharose previously incubated 
with two different nonimmune sera. Then the proteins were immu- 
noprecipitated with the different antibodies. Immunoprecipitates 
were electrophoresed on a 7% SDS-polyacrylamide gel. (Lane a) 
Material precipitated by nonimmune serum (second preabsorption 
step); (lane b) material immunoprecipitated by polyclonal antibod- 
ies against laminin; (lanes c-e) material immunoprecipitated, re- 
spectively, by polyclonal antibodies against EHS tumor HSPG, 
mAb 33, and mAb 4C,; and (lane f )  no specific protein was im- 
munoprecipitated using another monoclonal antibody (mAb 4G3) 
produced against lens capsule. (b) Heparitinase treatment: (lane a) 
heparitinase-treated medium immunoprecipitated by mAb 4C~ and 
(lane b) medium incubated in the same conditions but without 
heparitinase and immunoprecipitated by mAb 4C,. (o) The hepar- 
itinase treatment released a 400-kD protein. '4C-myosin (200 kD), 
-phosphorylase b (92.5 kD), -albumin (69 kD), and -ovalbumin (46 
kD) (New England Nuclear) were used as globular molecular mass 
standards (arrows). (R ~ )  Top of the running gel. Note the presence 
in all the immunoprecipitates of a major 250-300-kD secreted pro- 
tein. Because of its strong affinity for the protein A-IgG complex, 
this protein could correspond to fibronectin. However, under non- 
reducing conditions this material was resolved in two bands, one 
with the same molecular mass (250 kD) and another with a higher 
molecular mass (,'~450-500 kD) corresponding presumably to non- 
reduced fibronectin. The intensity of the two bands was similar 
(data not shown). Furthermore, chromatography of the labeled 
medium on a gelatin-Sepharose column only partially depleted the 
medium from the unidentified material. These results suggest that 
the contaminating band can partially be attributed to fibronectin. 

nin antibodies precipitated three polypeptides of 400, 200, 
and 150 kD corresponding, respectively, to the A and B 
chains of laminin and to the nidogen 150-kD entactin known 
to be precipitated with laminin antibodies (28) (Fig. 2 a, lane 
b). Anti-entactin antibodies immunoprecipitated the same 
polypeptides (data not shown). 

Immunolocalization of HSPG in Rat Intestine 

The polyclonal anti-HSPG antibodies were first used to ex- 
amine the distribution of HSPG in the mature rat intestine 
and during its morphogenesis. 

Adult Organ. In the adult rat intestine, immunostaining 
with the anti-HSPG antibodies was found in the basement 
membrane lining the epithelium (Fig. 3 a); HSPG was pres- 
ent all over the crypt-villus axis, although the staining was 
more uniform and linear at the base of the villi and around 
the crypts (Fig. 3, b and c) than at the upper part of the villi 
(Fig. 3 d). The epithelial cells were completely negative. In 
the lamina propria, the basement membrane of blood ves- 
sels, lymph vessels, and smooth muscle cells were decorated 
(Fig. 3, a and d). The submucosa region was almost devoid 
of labeling in contrast to the muscularis mucosae, which ex- 
hibited a bright staining; in the longitudinal and circular 
muscular layers, the antigen delineated well-defined rings 
around each cell (Fig. 3, a and e). 

Developing Organ. At 14 d of gestation, before the onset 
of villus morphogenesis, anti-HSPG antibody revealed a 
strong labeling at the basement membrane zone. In addition, 
some immunostaining was seen around cells scattered over 
the whole thickness of the mesenchyme (Fig. 4, a and b). 

At 18 d of gestation (Fig. 4 c), the stage at which villus 
primordia had developed, label was present and continuous 
at the basement membrane zone along the entire villi. HSPG 
was associated with some cellular and fibrillar structures 
within the lamina propria. In addition, the peripheral zone 
of the mesenchyme, which could be at this stage clearly 
identified as being the muscular layers, reacted with anti- 
HSPG antibody. 

As villi elongated until adult stage (Fig. 4, d-f), the label- 
ing still present along the whole crypt-villus axis became 
less regular and less continuous mainly in the upper part of 
the villi, while staining intensity remained unchanged. This 
phenomenon was particularly visible during the perinatal 
period (Fig. 4, e and f ) .  It should be noted that the epithelial 
cells of postnatal intestines often revealed a greenish back- 
ground. 

Cellular Origin of the Intestinal Basement Membrane 
HSPG 

The cellular origin of the HSPG located at the basement 
membrane has been analyzed by means of interspecies tissue 
recombinations. 

Screening of the HSPG Antibodies on Chick and Rat In- 
testinal Tissue. The monoclonal antibody raised against the 
HSPG of the chick species (mAb 4C,) has been checked for 
its species specificity on intestinal tissue cryosections. This 
antibody (1:20 dilution) applied to a 13-d embryonic chick 
intestine clearly delineated the basement membrane under- 
neath the epithelium; it also labeled-but  to a lesser extent-  
s o m e  cellular elements within the lamina propria as well as 
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Figure 3. Representative indirect immunofluorescence micmgraphs of HSPG molecules using polyclonal antibodies in sections of the whole 
rat intestinal wall (a); base of the villi and crypt zone (b and c); upper part of the villus (d); and muscular layers (e). (c) Transverse sections 
across b. e, epithelium; ml, muscular layers; lp, lamina propria; and sm, submucosa. The arrows point to the muscularis mucosae. Bar, 
30 #m. 

the muscular layers (Fig. 5 a). This antibody used at the 
same dilution did not stain sections of rat tissue (Fig. 5 b). 
The polyclonal antibody raised against the HSPG of the 
mouse species used efficiently at the 1:500 dilution on rat in- 
testine (Fig. 3) did not cross react with chick intestine (Fig. 
5 c). It has to be noted that, when applied at 1:50 dilution, 
a very faint staining occurred on chick intestinal segments 
accompanied by a greenish background (not illustrated). 

Interspecies Hybrid Intestines. Previous data have shown 
that interspecies tissue recombinants, grown as grafts in the 
chick embryo or as intrarenal grafts, develop into vascular- 
ized intestinal structures (20, 22); the endoderm gives rise 
to the epithelium, while the mesenchyme forms the lamina 
propria, the muscularis mucosae, as well as the muscular 
layers. 

The results of the immunolocalization of HSPG in such 
hybrid intestines using the species-specific antibodies are 
summarized in Table I. In Cm/Re recombinants, developed 
inside the coelomic cavity of chick embryos, the polyclonal 
anti-mouse HSPG antibodies strongly underlined the sub- 
epithelial basement membrane; some scattered punctuated 
fluorescence was found in the near underlying lamina propria 
(Fig. 6 a). The same type of associations grafted under the 
kidney capsule of nude mice revealed a closely similar stain- 
ing with the anti-mouse HSPG antibodies at the basal sur- 

face of the epithelial cells (Fig. 6, c and e). The basement 
membranes of the blood vessels, which have invaded the hy- 
brid intestines developed in the mouse host, were also clear- 
ly delineated with the anti-mouse HSPG antibodies. The 
muscular layers were always devoid of staining. 

Monoclonal anti-chick HSPG antibodies (mAb 4C0 ap- 
plied to Cm/Re recombinants revealed no basement mem- 
brane staining whatever the grafting conditions, while the 
muscular layers as well as the lamina propria were evenly 
stained (Fig. 6, b, d, and f ) ;  blood vessels were labeled only 
in the associations grafted in chick hosts. 

In Rm/Ce hybrid intestines, developed in the chick embryo 
or in the adult mouse host, anti-mouse HSPG antibodies 
stained obviously the lamina propria and the muscular layers 
(Fig, 7, a and d). However, basement membrane of Rm/Ce 
recombinants was stained only with anti-chick antibodies 
(Fig. 7, b and e). HSPG immunoreactivity was also observed 
around the invading blood vessels of the associations grafted 
into the chick embryo with anti-chick antibodies (Fig. 7, b 
and c) and vice versa of associations grafted in the mouse 
host with anti-mouse antibodies (Fig. 7 d). 

Discussion 

In this paper, we first describe the production of two antibod- 
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Figure 4. Representative indirect immunofluorescence micrographs of HSPG molecules using polyclonal antibodies in transverse sections 
of rat intestine at various developmental stages: 15- (a and b), 17- (c), and 18-d (d) fetal intestines or of intestines at birth (e) and 4 d 
after birth (f). e, endoderm or epithelium; m, mesenchyme; and ml, muscular layers. Bar, 30/~m. 

ies specific for rat and chick HSPGs, respectively. In the sec- 
ond part of the work, we have examined the immunolocaliza- 
tion of this extracellular matrix component as a function of 
rat intestinal morphogenesis as well as in experimental con- 
ditions allowing to explore the cellular source of HSPG of 
the basement membrane. These latter experiments involve 
the use of hybrid intestinal segments made up by enzymati- 
cally dissociated endoderm and mesenchyme and allow us to 
conclude that the HSPG at the intestinal epithelial-mesen- 
chymal interface has its origin in the epithelial cells. 

Concerning the specificity of our antibodies, the poly- 

clonal antibody against mouse EHS tumor HSPG was found 
to react specifically with HSPG (15, 19, 44), but did not react 
with laminin, nidogen-entactin, or type IV collagen purified 
from the same tumor. When applied at a 1:500 or 1:1,000 di- 
lution it clearly delineated the basement membranes of the 
intestine from the rat species, but did not stain chick base- 
ment membranes. In contrast, at higher dilutions (1:50), this 
antibody revealed a very faint staining of chick basement 
membranes. Although our antibody exhibits a weak cross- 
reaction with the chicken HSPG, confirmed by the immuno- 
precipitation data, it can be considered as species specific 
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Figure 5. Immunotiuorescence pattern of HSPG molecules in (a) 13-d chick embryonic intestine stained with anti-chick 4Cj antibodies; 
(b) adult rat intestine incubated with anti-chick 4C~ antibodies; and (c) 13-d chick embryonic intestine incubated with polycional anti- 
mouse antibodies against HSPG purified from the EHS tumor, e, epithelium; lp, lamina propria; and ml, muscular layers. Some unspecific 
yellowish fluorescence is found within the lamina propria of the rat intestine in b. Bar, 30/~m. 

when used at a 1:500 dilution, mAb 4C~ did not stain any 
rat or human (data not shown) basement membranes, indi- 
cating that the corresponding epitope can be only detected 
in chicken basement membranes. This antibody has been 
characterized as anti-HSPG and gives identical immunopre- 
cipitation data as the mAb 33 (anti-chicken HSPG, a gift of 
Dr. D. Fambrough; reference 1). 

Examination of the immunolocalization of the HSPG mol- 
ecules during intestinal development in the rat by using the 
polyclonal antibodies revealed that the antigens were found 
throughout life in the basement membrane lining the epithe- 
lium: at early stages, when the epithelium is still stratified 

Table 1. Comparative Localization of HSPG 
Immunostaining in Interspecies Recombinants by 
Species-specific Antibodies 

Lamina  
propr ia  

Hybr id  Basement  (cellular Muscu la r  Blood 
intestines Host  Ant ibodies  m e m b r a n e  e lements)  layers  vessels  

C h i c k  A n t i - H S P G *  + - §  - - 

C m / R e  m A b  4C~* - + + + 

M o u s e  A n t i - H S P G  + - - + 

m A b  4C~ - + + - 

C h i c k  A n t i - H S P G  - + + - 

R m / C e  m A b  4C~ + - - + 

M o u s e  A n t i - H S P G  - + + + 

m A b  4C~ + - - - 

* Polyclonal ant ibodies  against  H S P G  purified f r o m  the mouse  EHS tumor .  
~: Monoclonal  ant ibodies against  chicken H S P G .  
§ Punctuated fluorescent deposi t ion within the lamina  propr ia  can,  however ,  
be observed.  

and undifferentiated, as well as when the epithelium is re- 
stricted to a single layer of cells. Moreover, immunostaining 
was obvious around cellular elements present within the em- 
bryonic mesenchyme and later on within the lamina propria, 
in the basement membrane of blood and lymph vessels and 
of smooth muscle cells. When muscular layers are well 
differentiated, the antigen also delineated well-defined rings 
around each cell. 

The overall distribution of HSPG is similar to that de- 
scribed previously for other basement membrane compo- 
nents, such as laminin, nidogen, and type IV collagen (35). 
However, contrasting with the regular deposition of the latter 
components at all stages of development, changes in the 
staining pattern of HSPG are observed during intestinal mor- 
phogenesis. Indeed, in the developing intestine around birth, 
the labeling of the basement membrane became discontinu- 
ous and irregular, a phenomenon particularly obvious from 
the middle towards the tip of the villi. These data can be in- 
terpreted as focal disruptions in the basement membrane that 
could be correlated to the histological observation of gaps or 
fenestrations in the basal lamina during the perinatal period, 
allowing epithelial-mesenchymal cell contacts at strategic 
phases of intestinal development (6, 29) and towards the apex 
of the villi in the adult intestine (26). Similar transient micro- 
heterogeneities in the deposition of extracellular matrix mol- 
ecules have been described in other organs undergoing mor- 
phogenetic movements (for review see 3, 39). They suggest 
that basal lamina remodeling is involved in the regulation of 
cell behavior during morphogenesis. 

The discontinuous and irregular deposition of HSPG mol- 
ecules at the basement membrane level could also result 
from variations in the turnover of these molecules, affecting 
their biosynthesis and/or degradation. Indeed, in various or- 
gans, expression of HSPG was lost as the epithelial cells ap- 

S i m o n - A s s m a n n  et al. Origin and Deposition of  HSPG in the Intestine 1843 



Figure 6. Immunodetection of HSPG molecules with anti-mouse (a, c and e) and anti-chick (b, d, and f )  antibodies on Cm/Re hybrid 
intestines developed in the coelomic cavity of chick embryos (a and b) or under the kidney capsule of nude mice (c-f).  e and fare sections 
across the base of the villi of hybrid intestines depicted, respectively, in c and d. e, epithelium; lp, lamina propria; and ml, muscular layers. 
The arrows show invading vessels of the mouse host revealed by the anti-mouse antibodies. Bar, 30 #m. 
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Figure 7. Immunodetection of HSPG molecules with anti-mouse (a and d) and anti-chick (b, c, and e) antibodies on Rm/Ce hybrid intestines 
developed in the coelomic cavity of chick embryos (a-c) or under the kidney capsule of nude mice (d and e). (c) Detail of the blood vessels 
of the chick embryo host invading the muscular layers of the hybrid intestine. (e) Transverse sections across a villus, e, epithelium; lp, 
lamina propria; and ml, muscular layers. Arrows show invading vessels. Bar, 30/zm. 

proached terminal differentiation (17, 38). In the mature in- 
testine, the undifferentiated dividing crypt cells migrate and 
differentiate towards the top of the villi. One could postulate 
that HSPG is preferentially synthesized by the undifferenti- 
ated crypt cells, the discontinuous labeling of the upper part 
of the villi from birth onwards being in this case linked to 

temporal changes in the degradation rate of these molecules. 
Furthermore, the difference between the transient fragmented 
deposition of HSPG and the continued and regular one of the 
other basement membrane components strengthen the con- 
cept of variations in turnover among the basement membrane 
components; such differences in the accumulation and deg- 
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Figure 8. Experiments showing the dual 
epithelial-mesenchymal origin of the intes- 
tinal basement membrane. Consecutive 
cryosections of a Cm/Re hybrid intestine 
developed under the kidney capsule of a 
nude mouse were stained in parallel with 
species-specific antibodies recognizing ro- 
dent (a) and chick (b) type IV collagen as 
described previously (36) or rodent (c) and 
chick (d) HSPG. e, epithelium; lp, lamina 
propria; and nd, muscular layers. Arrows 
show basement membrane labeled with 
anti-chick antibodies in the case of type IV 
collagen (b) and with anti-rodent antibod- 
ies in the case of HSPG (c), indicating, 
respectively, their mesenchymal and epithe- 
lial origin. Bar, 30 t~m. 

radation steady state between extracellular matrix molecules 
have been already postulated (30). 

In a consecutive step, we have analyzed the cellular origin 
of HSPG in the basement membrane zone of developing in- 
testine. The combined use of interspecies associations of rat 
and chick embryonic tissue anlagen and of species-specific 
antibodies enabled us to definitely conclude that, in the intes- 
tine, the epithelial cells are the cellular source of basement 
membrane HSPG molecules. Moreover, the fact that, in the 
hybrid intestines (Cm/Re), scattered fluorescent granules were 
revealed with the anti-mouse antibody in the mesenchyme 
underlying the epithelium clearly emphasizes the essential 
role of the mesenchyme for degradation of this basement 
membrane component, a phenomenon already demonstrated 
during morphogenesis of submandibular salivary (2, 37) and 
mammary glands (34). 

It has been shown that a variety of cell types synthesize 
HSPG molecules in culture (for review see 18); yet to our 
knowledge there was no clear-cut demonstration of the epi- 
thelial origin of these molecules located at the epithe- 
lial-mesenchymal interface. However from the comparison 
of the present data with preceding experiments, it appears 
that the epithelial origin of the basement membrane compo- 
nents cannot be considered as a general phenomenon. In- 
deed, using a similar technology, we could show previously 
that basement membrane type IV collagen was produced by 
the intestinal mesenchyme (reference 36 and Fig. 8); this last 
result is further strengthened by current data showing, by in 
situ hybridization, that mRNA for type IV collagen accumu- 
late in the mesenchyme (Simon-Assmann, R., E Bouziges, 
J. N. Freund, E Perrire-Schmitt, and M. Kedinger, manu- 
script submitted for publication). In relation to this conclu- 
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sion, laminin mRNA expression has been shown to be con- 
fined to the muscularis externa and the lamina propria in the 
gut during embryogenesis (33). 

Taken together, these data demonstrate the dual epithe- 
lial-fibroblastic origin of the intestinal basement membrane. 
This notion is reinforced by coculture experiments in which 
epithelial and fibroblastic cell contacts have been shown to 
be a prerequisite for the structural organization of the base- 
ment membrane (24, 36). Although the precise mechanism 
involved in the assembly of the basement membrane is not 
yet known, its strategic position at the epithelial-fibroblastic 
interface is believed to constitute the recognition system that 
delivers, via receptors, much of the information needed for 
cell differentiation. It is of interest to note that, among these 
receptors, HSPG appears to be closely involved in a trans- 
membrane cytoskeletal-matrix interaction (8, 45). 
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