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The effect of heat shock on Myxococcus xanthus was investigated during both glycerol- and starvation-
induced development. Cells heat shocked at 40°C for 1 h prior to a development-inducing signal displayed an
accelerated rate of myxospore formation at 30°C. Additionally, M. xanthus cells heat shocked prior to glycerol
induction formed a greater total number of myxospores when sporulation was complete than did control cells
maintained at 30°C. However, in starvation-induced fruiting cells the total number of myxospores in control
and heat-shocked populations was about equal when fruiting body and myxospore formation was complete.
When extended heat shock (3 h) was applied to cells prior to development, no acceleration of myxospore
formation was observed. Heat shock elicited the premature expression of many developmentally regulated
proteins. Cell fractionation and analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and
fluorography revealed the subcellular location and molecular weights of the 18 glycerol-induced and 9
starvation-induced developmental proteins. Comparison with previously identified M. xanthus heat shock
proteins showed that nine of the developmental proteins found in glycerol-induced cells and three of the
developmental proteins found in starvation-induced cells were heat shock proteins. Furthermore, heat shock
increased the activity of alkaline phosphatase, a developmentally regulated enzyme, in vegetative cells,
glycerol-induced cells, and starvation-induced cells.

All organisms respond to elevated temperatures by alter-
ing their pattern of growth and protein synthesis (16). Upon
exposure to elevated temperatures, cells rapidly cease
growth, repress the synthesis of most vegetative polypep-
tides, and coordinately synthesize a small number of dif-
ferent proteins (16). These heat shock proteins (HSPs) may
also be induced by other environmental stresses, such as
exposure to various alcohols, oxidants (16), and abnormal
proteins (1).

In many diverse organisms, such as Saccharomyces cere-
visiae (13), Drosophila melanogaster (22), and mice (12),
some heat shock genes are expressed during particular
stages of cellular development. The association of HSPs
with certain periods of cellular differentiation suggests that
these proteins may be involved in both normal developmen-
tal processes and stress responses.
Myxococcus xanthus is a gram-negative, rod-shaped, glid-

ing bacterium (9). Although it is a procaryote, it exhibits a
complex program of multicellular development. When sub-
jected to starvation on a solid surface, cells migrate inwards
towards localized aggregation centers to form raised mounds
of cells. Within these mounds, individual cells differentiate
to form round, environmentally resistant myxospores. These
mounds of cells and spores are termed fruiting bodies (15).
This process of fruiting body formation is cell density
dependent, includes the temporal expression of proteins
such as myxobacterial hemagglutinin (5) and proteins U (11)
and S (8), and extends over a 48- to 72-h period (6). M.
xanthus can also be induced to sporulate by the addition of
glycerol (6), dimethyl sulfoxide, or phenethyl alcohol (6, 23).
This developmental process differs from starvation-induced
development in that the formation of glycerol-induced
spores requires neither starvation nor a solid surface, is cell

* Corresponding author.
t Present address: Department of Microbiology and Molecular

Genetics, Harvard Medical School, Boston, MA 02115.

density independent, and lacks the expression of a variety of
developmental proteins, including myxobacterial hemagglu-
tinin and protein S (11), and glycerol-induced spores appear
within 3 h (6).
The M. xanthus heat shock response has been character-

ized in vegetative, starvation-induced, and glycerol-induced
cells (18). It is known that temperatures above 36°C elicit the
expression of HSPs in this organism. Although HSP expres-
sion may endow M. xanthus cells with thermotolerance (18),
it was not known whether HSPs had other functions. The
intent of this investigation was to examine the effect of heat
shock upon the development of M. xanthus. Hence, we
demonstrate that heat shock of vegetative M. xanthus cells
prior to the induction of either fruiting body and myxospore
formation by starvation or spore formation by the addition of
glycerol results in an acceleration of these developmental
processes. Further, we find that heat shock induces the
premature expression of both starvation- and glycerol-in-
duced developmental proteins. Finally, we show that heat
shock prematurely elevates the levels of alkaline phospha-
tase, a known developmental marker, during both glycerol-
and starvation-induced myxospore formation. These find-
ings suggest that heat shock and normal development are
related.

MATERIALS AND METHODS
Cells and growth conditions. M. xanthus FB(DZF1) de-

rived from DK101 (7) was used in all experiments. Vegeta-
tive cultures were grown in Casitone-yeast extract (CYE;
Difco Laboratories, Detroit, Mich.) broth and maintained on
CYE agar plates (3). For determination of the number of
CFU per milliliter, samples (0.1 ml) were withdrawn from
cultures and diluted aseptically into CYE broth, plated on
CYE agar plates, and incubated at 28°C for 5 days. Cells
grown to a density of 5 x 108/ml in CYE broth were prepared
for glycerol induction by either of two methods. Either
glycerol was added directly to the CYE broth to a final
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concentration of 0.5 M (6) or the cells were centrifuged
(10,000 x g, 5 min), washed, and suspended in CT to the
original density prior to the addition of 0.5 M glycerol (6).
Cells were prepared for starvation by being grown to a

density of 109/ml (300 Klett units, measured with a 560-nm
filter), concentrated 10-fold by centrifugation (10,000 x g, 5
min), and suspended in CF (clone-fruiting) broth. Such cells
were spotted onto CF agar to induce starvation (7).
Heat shock conditions. For glycerol experiments, exponen-

tially growing M. xanthus cells at a density of 5 x 108/ml
were heat shocked by transfer to 40°C for 1 h (18). For
starvation experiments, cells at a density of 4,500 Klett units
(560-nm filter) were heat shocked at 40°C for 1 h (18).

Determination of viable myxospores. Samples (1 ml) of the
developing cell culture were periodically withdrawn, incu-
bated at 53°C for 15 min, and pulse sonicated for 2 min. Both
processes kill all vegetative cells while myxospores survive
(19). Cell suspensions were diluted aseptically, spread plated
on CYE agar, and incubated at 28°C for 5 days to determine
the number of viable myxospores.

Isotope labeling conditions. Vegetative M. xanthus cells
were prepared for labeling with [35S]methionine by being
grown at 30°C in A-1 medium (2) to a density of about 1.5 x
108/ml. The cells were centrifuged (10,000 x g, 5 min, 4°C),
washed once with 10 mM Tris hydrochloride (pH 7.6)-8 mM
MgSO4 (TM buffer), and suspended to the same density in
A-1 medium lacking methionine (18). Cells were divided into
two aliquots. One culture was heat shocked, and the other
was maintained at 30°C before the addition of glycerol (final
concentration, 0.5 M). After incubation for 0, 30, 45, 60, or

90 min at 30°C in glycerol, the cells were labeled for 25 min
with [35S]methionine (10 ,uCi/ml; specific activity, 1.124 Ci/
mmol; New England Nuclear Corp., Boston, Mass.).

Cells were prepared for starvation-induced labeling as

follows. Vegetative M. xanthus cultures were concentrated
to 3,000 or 4,500 Klett units (560-nm filter) and incubated at
30°C or heat shocked, respectively. Since a 1-h heat shock
kills between one-third and one-half of the cell population,
viable cell densities were equal. Both cultures were then
spotted onto CF agar and incubated at 30°C to induce
starvation and fruiting. Cells were harvested at various times
and labeled for 20 min with [35S]methionine (10 p.Ci/ml;
specific activity, 1.017 Ci/mmol) as described previously
(18).

Cell fractionation procedures. The procedures described
by Nelson et al. (17) were used to obtain periplasmic,
membrane, and cytoplasmic fractions of M. xanthus cells.

Electrophoretic methods. Polyacrylamide gel electrophore-
sis (PAGE) was carried out on 0.8-mm-thick 11% polyacryl-
amide slab gels with the buffer system of Laemmli (14).
Protein samples for sodium dodecyl sulfate (SDS)-PAGE
were concentrated by precipitation in 10% trichloroacetic
acid. Equal amounts of radioactive material were loaded into
each sample well. Polyacrylamide gels were fixed in a

solution of 25% isopropanol and 10% acetic acid for 1 h
before preparation for fluorography. Gels were prepared for
fluorography by being soaked in Fluoro-Hance (Research
Products International Corp., Mount Prospect, Ill.) in accor-

dance with the instructions of the manufacturer.
Photomicroscopy. An Olympus C-35 camera mounted on

an Olympus phase-contrast microscope (model BH-2) was

used for photomicrographs. Pictures were taken with 35-mm
Kodak Plus-X film and developed on Kodak paper.
Measurement of alkaline phosphatase. The following pro-

cedures were used to determine the activity of alkaline
phosphatase during development. Cells (2 x 108/ml) induced

TABLE 1. Myxospore formation enhanced by heat shock prior
to glycerol induction'

Time of No. of viable glycerol-induced spores Ratio of spores
developmentf SEM (103 CFU/ml)b in: in heat-shocked
development cells to spores

(h) Control cells Heat-shocked cells in control cells

0 0 0
1.5 0.01 ± 0.01 0.27 ± 0.06 21
2 0.21 ± 0.06 37 ± 8.6 174
3 37 12 260 113 7
4 61 10 710 212 12
5 890 13 4,600 733 5
10 1,400 ± 115 7,200 + 924 5

a Heat shock and glycerol-induced spore formation of M. xanthus cells
were performed as described in Materials and Methods.

b The number of viable myxospores was determiend as described in
Materials and Methods. Each time point represents the mean of five separate
experiments carried out in triplicate.

by glycerol were allowed to develop at 30°C in CYE-0.5 M
glycerol for 0, 1, 2, 3, 6, or 10 h. Samples (6 ml) were
periodically withdrawn from the developing cell culture,
concentrated threefold by centrifugation, and suspended in
10 mM Tris hydrochloride (pH 8.0). Cells were sonicated for
2 min with ice water cooling in the presence of a 0.5-ml
volume of glass beads (diameter, 75 to 150 ,um) to break cells
and myxospores (20). Myxospore breakage was monitored
by phase-contrast microscopy. Samples were then centri-
fuged at 5,000 x g for 5 min to remove debris from the cell
extract, and supernatants (0.3-ml samples) were assayed for
alkaline phosphatase (4). For determination of the alkaline
phosphatase activity during starvation-induced cell develop-
ment, exponential-phase cells were concentrated by centrif-
ugation, suspended in CF broth to 3,000 or 4,500 Klett units,
and incubated at 30°C or heat shocked, respectively. Cells
were spotted on CF agar and allowed to develop for 0, 12,
24, or 36 h. At each time point cells were harvested from two
CF agar plates, suspended in 1.5 ml of CF broth, sonicated
for 2 min in the presence of a 0.4-ml volume of glass beads,
and centrifuged and treated as described above to determine
levels of alkaline phosphatase.

RESULTS

Effect of heat shock on myxospore formation in glycerol-
induced M. xanthus. HSPs are expressed during normal
development in many organisms. We examined whether the
induction of HSPs by elevated temperatures affects sporu-
lation at normal temperatures. Exponentially growing cells
were divided into two aliquots. One culture was incubated at
30°C with 0.5 M glycerol. The other was heat shocked and
then incubated at 30°C with 0.5 M glycerol. Samples were
withdrawn from each aliquot after 0, 1.5, 2, 3, 4, 5, or 10 h of
glycerol-induced development, and the number of viable
myxospores was determined. The 1-h heat shock accelerated
myxospore formation in glycerol-induced M. xanthus cells
(Table 1). Despite the 50% decline in CFU that resulted from
heat shock (18), the surviving cells formed myxospores
sooner than did control cells. The acceleration of myxospore
formation was most pronounced at 2 h, when the heat-
shocked cell population had nearly 200-fold more myxo-
spores than did the control cell population. The ratio of
myxospores in the heat-shocked culture to myxospores in
the control culture progressively decreased with time. How-
ever, even by 10 h, when sporulation was essentially com-
plete, about five times more viable myxospores were found
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TABLE 2. Effect of extended heat shock on the rate of
glycerol-induced myxospore formationa

Time of No. of viable glycerol-induced spores Ratio of spores
deme of SEM (103 CFU/ml)b in: in heat-shocked
(em cells to spores
"") Control cells Heat-shocked cells in control cells

0 0 0
1.5 0.09 ± 0.02 0.07 ± 0.02 0.78
2 0.36 ± 0.18 0.33 ± 0.15 0.92
3 53 ± 17 30 ± 20 0.57

a Heat shock and glycerol-induced spore formation of M. xanthus cells
were performed as described in Materials and Methods except that cells were
heat shocked at 40'C for 3 h instead of 1 h.

b See Table 1, footnote b.

in the heat-shocked culture than in the control culture. Thus,
heat shock not only accelerated but also enhanced myxo-
spore formation in glycerol-induced cells. The rate of myxo-
spore formation and the rate at which cell shortening oc-
curred were similarly accelerated by the 1-h heat shock (Fig.
1). The undifferentiated rods present in panels 2c and 2d are
thought to be cells which died from the initial heat shock and
did not sporulate. It should be pointed out that by 5 h, direct
counts of phase-bright spores indicated that greater than
80% of the viable cells had sporulated in both heat-shocked
and control cultures (data not shown). Thus, our data are in
agreement with the results reported by Dworkin and Gibson
(6). However, the data in Table 1 report the number of viable
myxospores after treatments with heat and sonication to kill
vegetative cells, and these data suggest that heat shock
accelerates and enhances the entire sporulation process,
including spore maturation, resulting in a consistently
greater number of viable myxospores.

Since Dworkin and Gibson (6) had previously reported on
the rate of glycerol-induced sporulation by M. xanthus in CT
medium, we wanted to determine whether the acceleration
of myxospore formation by prior heat shock also occurred in
CT-glycerol. Cells were either incubated at 30°C or heat
shocked prior to the addition of glycerol, and the number of
viable myxospores was determined after 0, 1.5, 2, or 3 h of
development in glycerol at 30°C. Prior heat shock acceler-
ated the rate of myxospore formation in CT-glycerol to about
the same extent as that reported above for cells in CYE-
glycerol (data not shown).

In Escherichia coli it is known that the heat shock re-
sponse wanes with prolonged exposure to elevated temper-
atures (16). If the active expression of HSP genes was
responsible for the accelerated rate of myxospore formation
observed above, then it can be predicted that the decreased
expression of HSP genes resulting from an extended heat
shock should cause no acceleration in the rate of myxospore
formation. To test this prediction, we heat shocked M.
xanthus cells at 409C for 3 h prior to the addition of glycerol.
Although heat shock for either 1 h or 3 h reduced the CFU by
about 50% (18), extended heat shock did not accelerate the
rate of myxospore formation (Table 2). In fact, at each of the
time intervals tested, the control cell population had more
myxospores than did the heat-shocked cell population.

TABLE 3. Acceleration of starvation-induced myxospore
formation by prior heat shock'

Time of No. of viable myxospores ± SEM Ratio of spores
development (103 CFU/plate)b in: in heat-shocked

_________h______________________ cells to spores
(h) Control cells Heat-shocked cells in control cells

0 0 0
18 4.8 ± 0.93 29 ± 8.7 6.0
24 98 36 300 176 3.1
30 270 ± 120 430 + 133 1.6
36 600 115 600 57 1.0

a Heat shock and starvation-induced myxospore formation of M. xanthus
cells were performed as described in Materials and Methods.

b See Table 1, footnote b.

Effect of heat shock on myxospore formation in starvation-
induced M. xanthus. Since heat shock accelerated the rate of
myxospore formation in glycerol-induced cells, we were
interested in whether heat shock had the same effect on the
rate of myxospore formation in starvation-induced fruiting
cells. Preincubation at 40°C for 1 h accelerated the normal
rate of myxospore formation in starvation-induced M. xan-
thus cells (Table 3). After 18 h of development on CF agar,
the previously heat-shocked cells had sixfold more myxo-
spores than did the control cells. However, as fruiting body
formation proceeded, the differences between the numbers
of myxospores in each population of cells grew progressively
fewer. By 36 h of development on CF agar, there was an
equal number of myxospores in the heat-shocked and con-
trol cell populations.
Premature expression of developmental proteins induced by

heat shock in M. xanthus. The data presented above indicat-
ing that heat shock accelerated myxospore formation in both
starvation- and glycerol-induced cells suggested the possi-
bility that some HSPs of M. xanthus also possess develop-
mental functions. That is, the preinduction by elevated
temperatures of heat shock-developmental proteins could
facilitate the rapid conversion of vegetative cells to myxo-
spores. If so, heat shock would be expected to induce the
premature expression of developmental proteins. The fol-
lowing experiment was performed to test this hypothesis. M.
xanthus cells were divided into two aliquots. One culture
was heat shocked, and the other was incubated at 30°C. Both
cultures were then incubated at 30°C following the addition
of 0.5 M glycerol. At 0, 30, 60, 90, or 120 min after the
addition of glycerol, 1-ml samples were withdrawn from
each aliquot and labeled with [35S]methionine for 25 min.
The cells were harvested and fractionated to yield periplas-
mic, membrane, and cytoplasmic fractions. The proteins in
each fraction were analyzed by SDS-PAGE and fluorog-
raphy. The fluorograms presented in Fig. 2 show the prema-
ture expression of glycerol-induced developmental proteins
caused by heat shock. There was a marked difference in
protein synthesis profiles at the onset of development. In
general, proteins detected in the 0-min samples from the
heat-shocked cells more closely resembled control cell pro-
teins after 30 or 60 min of development than 0-min control
cell proteins. This is not surprising, since development is

FIG. 1. Photomicrographs showing the effect of heat shock on glycerol-induced M. xanthus. Logarithmically growing cells were divided
into two aliquots. One aliquot was incubated at 30°C for 1 h (control), and the other was incubated at 40°C for 1 h (heat shocked). Both aliquots
were incubated at 30°C with 0.5 M glycerol to induce myxospore formation. Panels la to le show control cells at 0, 30, 60, 90, and 180 min,
respectively, after the addition of glycerol. Panels 2a to 2e show heat-shocked cells at 0, 30, 60, 90, and 180 min, respectively, after the
addition of glycerol. Bars, 5 ,um.
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FIG. 2. Autoradiograms of developmental proteins induced prematurely by heat shock in glycerol-induced M. xanthus cells. M. xanthus
cells were divided into two aliquots. The control aliquot (lanes C) was incubated at 30°C for 1 h, and the other aliquot was heat shocked at
40°C for 1 h (lanes H). Both aliquots were shifted to 30°C, and 0.5 M glycerol was added to induce myxospore formation. Samples (1 ml) were

withdrawn from each aliquot at 0, 30, 60, 90, or 120 min (numbers above lanes) after the addition of glycerol and labeled with [35S]methionine
for 25 min. The labeled cells were treated to yield periplasmic, membrane, and cytoplasmic fractions, and the proteins in each fraction were

analyzed by SDS-PAGE and fluorography. Lines to the right of each fluorogram represent prematurely induced HSPs.

accelerated by prior heat shock. Collectively, 18 proteins
were found to be prematurely induced by heat shock in the
three cell fractions. The periplasm and cytoplasm each
contained 2 prematurely induced proteins and the membrane
fraction contained 14 such proteins ranging in molecular
mass from 14.5 to 130 kilodaltons (kDa).
The prematurely induced developmental proteins are

characterized in Table 4. Half of these developmental pro-
teins were previously detected in heat-shocked vegetative or

heat-shocked glycerol-induced cells (18). Five of the prema-

turely induced developmental proteins corresponded in both
molecular mass and subcellular fraction to HSPs identified
previously in both heat-shocked vegetative and heat-
shocked glycerol-induced M. xanthus cells (18). Two other
proteins found in the membrane fraction (36 and 14.5 kDa)
were previously found to be vegetative HSPs (18). Another
two proteins located in the periplasm (63 and 18 kDa) were

previously identified as HSPs in glycerol-induced cells (18).
A control experiment was performed to determine

whether any of the proteins detected in the above experi-
ment (Fig. 2 and Table 4) could be detected in heat-shocked
cells returned to 30°C without the addition of glycerol. In all
cases, the expression of these proteins ceased within 15 min
of the return to 30°C (data not shown).

Since heat shock prior to glycerol induction of develop-
ment induced the premature expression of several develop-
mental proteins (including several that were also HSPs), the
following experiment was carried out to determine whether
heat shock prior to starvation-induced fruiting would also
have similar effects. M. xanthus cells were incubated at 30°C
or heat shocked prior to starvation. Both cell suspensions
were spotted onto CF agar and incubated at 30°C to initiate
development. Cells were harvested after 0.5, 1, or 2 h,
labeled with [35S]methionine in CF broth, and fractionated
as described above. The proteins in each subcellular fraction
were analyzed by SDS-PAGE and fluorography. Nine devel-
opmental proteins were either prematurely induced or ex-

pressed at higher levels in response to heat shock within the

first 2 h of starvation-induced development (Fig. 3). Further,
three of these proteins induced prematurely by heat shock in
starvation-induced M. xanthus cells were previously identi-
fied as HSPs (Table 5).

Expression of alkaline phosphatase in developmental M.
xanthus. Recently, R. A. Weinberg and D. R. Zusman (per-
sonal communication) found that alkaline phosphatase activ-
ity increases during both glycerol- and starvation-induced

TABLE 4. Glycerol-induced developmental proteins expressed
prematurely by prior heat shocka

Cell fractionb Mol mass Expression detected in heat-shocked
(kDa)c Vegetative cellsd Glycerol-induced cellsd

Periplasm 63 - +
18.5 - +

Membrane 130 -

97 -
92 + +
85 + +
75 + +
69 - -

55 - -

48 -
38 - -

36 + -

27 _
20 -
18 -
14.5 +

Cytoplasm 75 + +
16 +

a The experimental protocol was as described in the legend to Fig. 2.
b Periplasmic, membrane, and cytoplasmic fractions of M. xanthus cells

were obtained as previously described (17).
c Molecular masses of proteins were estimated by comparison to molecular

mass standards separated on the same gel.
d HSPs previously identified by Nelson and Killeen (18).

J. BACTERIOL.
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FIG. 3. Autoradiograms of developmental proteins induced prematurely by heat shock in starvation-induced M. xanthus cells. M. xanthus

cells were incubated at 30°C (lanes C) or 40°C (lanes H) for 1 h and then spotted onto CF agar to induce starvation. Both cultures were allowed
to develop for 0, 30, 60, or 120 min (numbers above lanes) at 30°C, harvested, and labeled with [35S]methionine for 15 min. The labeled cells
were treated to yield periplasmic, membrane, or cytoplasmic fractions, and the proteins in each fraction were analyzed by SDS-PAGE and
fluorography. Lines to the right of each fluorogram represent prematurely induced HSPs.

development of M. xanthus and that it is a biochemical
marker for myxospore formation. Since heat shock had
induced the premature expression of some developmental
proteins and had accelerated myxospore formation, we were
interested in whether heat shock would affect the expression
of alkaline phosphatase in the same manner.

Experiments were performed to compare alkaline phos-
phatase levels in developing M. xanthus cells. Glycerol-
induced cells, with or without prior heat shock, were al-
lowed to develop for 0, 1, 2, 3, 6, or 10 h before alkaline
phosphatase levels were measured (Fig. 4). Despite an
approximate 50% decline in viable cell numbers, the previ-
ously heat-shocked cells exhibited greater alkaline phospha-
tase activity than did the control cells at all times tested. The
accelerated appearance of alkaline phosphatase activity was
most evident after 1 h of glycerol induction, during the cell
shortening period of cellular development. There was about
threefold more enzyme activity in the previously heat-
shocked cells than in the control cells. The ratio of alkaline

TABLE 5. Starvation-induced developmental proteins expressed
prematurely by prior heat shocka

b Mol mass Expression detected in heat-shocked
Celfrcb(ka) Vegetatie cellsd Starvation-induced cells'

Periplasm 94 -
85 -

Membrane 95
Cytoplasm 69 + +

24 _
23 - +
19 -
16 +
14 _

a The experimental protocol was as described in the legend to Fig. 3.
b See Table 4, footnote b.
c See Table 4, footnote c.
d See Table 4, footnote d.

phosphatase activity between the heat-shocked and control
cells declined over the next 2 h and then increased from 6 to
10 h during mature myxospore formation.

Starvation-induced fruiting cells (with or without prior
heat shock) were allowed to develop on CF agar at 30°C for
0, 12, 24, or 36 h before being harvested and before alkaline
phosphatase levels were determined. The enzyme activity in
the heat-shocked cells was higher than that in the control
cells at all times of development (Fig. 5). As in glycerol-
induced cells, the difference between the two levels of
alkaline phosphatase activity was greatest at early times of
development. From 0 to 24 h, there was about fivefold more
alkaline phosphatase in the previously heat-shocked cells
than in the control cells. By 36 h, this ratio had decreased to
about twofold.

a-) 0

U 7,)

CL °00 >

=0
)-

0 1 2 3 4 5 6 7 8 9 10
Time (hours)

FIG. 4. Acceleration of alkaline phosphatase expression by heat
shock in glycerol-induced M. xanthus cells. Vegetative M. xanthus
cells were incubated at 30°C (0) or 40°C (0) for 1 h prior to the
addition of 0.5 M glycerol. Both cultures were then incubated at
30°C and harvested at 0, 1, 2, 3, 6, or 10 h after the addition of
glycerol. Cells were sonicated to yield cell extracts and assayed for
alkaline phosphatase (units per 1010 viable cells) as described in
Materials and Methods.
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FIG. 5. Acceleration of alkaline phosphatase expression by heat
shock in starvation-induced M. xanthus cells. Vegetative M. xan-

thus cells were incubated at 30°C (0) or 40°C (0) for 1 h prior to
starvation on CF agar at 30°C. Cells were harvested after 0, 12, 24,
or 36 h of development and assayed for alkaline phosphatase (units
per 1012 viable cells) as described in Materials and Methods.

DISCUSSION

In a previous report (18), we characterized the heat-shock
response of M. xanthus and demonstrated that the HSPs
produced by vegetative and developmental cells were not
completely identical. Some HSPs were unique to vegetative
cells, and some were unique to developmental cells. This
observation led us to question whether heat shock had any
effect upon the developmental processes of M. xanthus.
Here, we demonstrate that a 1-h heat shock applied to cells
immediately prior to a development-inducing signal results
in the acceleration of the rate of myxospore formation in
both glycerol- and starvation-induced M. xanthus cells. Why
does heat shock accelerate development in M. xanthus?
We hypothesized that there may be a common subset of

proteins that are shared between the heat shock response
and the developmental processes of M. xanthus. A compar-
ison between the proteins produced by cells heat shocked
prior to development and control cells (Fig. 2 and 3) revealed
that some proteins are induced prematurely by prior heat
shock. Half of the developmental proteins expressed prema-
turely during glycerol-induced myxospore formation were
detected previously in either heat-shocked vegetative or
heat-shocked glycerol-induced cells (Table 4). It is interest-
ing to speculate that the mechanism behind glycerol-induced
spore formation may be stress related. Perhaps osmotic
stress is involved in this process. Similarly, three proteins
expressed prematurely by starvation-induced fruiting cells
were also detected previously in either heat-shocked vege-
tative or heat-shocked fruiting cells (Table 5).

Additionally, when we tested the effects of prior heat
shock upon the expression of a development-specific en-
zyme activity, alkaline phosphatase, we found not only that
the rate of expression was accelerated but also that alkaline
phosphatase activity was induced by heat shock (Fig. 4 and
5). Thus, the effects of heat shock upon development in M.
xanthus may be correlated at both the physiological level
(myxospore formation) and the biochemical level (HSP
expression and alkaline phosphatase activity). These obser-
vations allow us to predict that the relationships between
heat shock and development in M. xanthus should extend to
the genetic level. That is, it should be possible to select for
heat shock mutants that are defective in development and,

conversely, developmental mutants that are defective in heat
shock responses.
The expression of HSPs during developmental processes

is not unique to M. xanthus. For example, the expression of
HSPs during development has been observed during asco-
spore formation in S. cerevisiae (13), oogenesis and pupation
in D. melanogaster (22), and embryogenesis in mice (12).
Additionally, heat shock has been observed to initiate some
developmental processes, such as the production of the
sexual inducer molecule in Volvox carteri (10) and the
change from insect-adapted to mammal-adapted forms in the
parasitic protozoans Trypanosoma brucei and Leishmania
major (21). These reports and others have suggested the
hypothesis that the heat shock response is an ancient re-
sponse to stress from which many organisms have evolved
developmental pathways (13). We suggest that those devel-
opmental pathways that are induced in response to stress
provide the strongest evidence for this hypothesized evolu-
tionary relationship between stress and development. Thus,
our demonstration that in M. xanthus both the relatively
complex, multicellular process of fruiting body formation
and the simpler process of glycerol-induced spore formation
are accelerated by heat shock and involve the expression of
HSPs supports this hypothesis.

It will be most interesting to observe the regulatory
processes that are shared by the heat shock response and
development in M. xanthus. The observations reported here
indicate that while heat shock can accelerate development,
the initiation of development requires a specific signal. It is
our eventual goal to learn how development is initiated in M.
xanthus and how it is regulated. We believe that this study
and future studies on the relationship between heat shock
and development will provide a new paradigm for our
understanding of developmental processes.
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