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Abstract. The E3/19K protein of adenovirus type 2 is 
a resident of the ER. Immediately after synthesis it 
binds to human major histocompatibility complex 
class I antigens and prevents their departure from the 
ER compartment. The ER retention signal of the 
E3/19K protein is contained within the 15 amino acids 
that protrude on the cytoplasmic side at the carboxy 
terminus of the protein. To define the ER retention se- 
quence in more detail, we have generated 10 mutants 
of the E3/19K protein that differ only within this seg- 
ment. Analysis of the rate of intracellular transport 
and cell surface expression of HLA antigens as- 

sociated to these mutants, show that the sequences 
Ser-Phe-Ile, located in the middle of the 15-residue 
segment and Met-Pro, at the extreme carboxy termi- 
nus, are crucial for retention. Four charged residues, 
Asp-Glu-Lys-Lys, are located between these two reten- 
tion elements but are of little or no importance. The 
basic cluster of amino acids close to the membrane 
also has some effect on retention. Thus, the retention 
signal of the E3/19K protein is not a contiguous se- 
quence of amino acids but has a complex spatial ar- 
rangement. 

T 
HE human adenoviruses comprise a group of DNA 
viruses with more than 40 subtypes. Normally they 
cause a mild respiratory infection but can also induce 

a latent infection that persists for extended periods of time 
(Evans, 1958; Flint, 1980). The two best characterized sub- 
types are the adenovirus type 2 (Ad-2) and 5 (for reviews 
see Shenk and Williams, 1984; Ginsberg, 1984; Doerfler, 
1986). 

The infection cycle can be divided into an early and a late 
phase. One of the early regions of Ad-2, the E3 region, en- 
codes an abundant protein called E3/19K (Ross and Levine, 
1979; Persson et al., 1980b). The function of this protein is 
not known and the E3 region is dispensible for virus growth 
in cultured cells (Shenk and Williams, 1984). The E3/19K 
protein is synthesized on membrane-bound ribosomes and 
inserted into the membrane of the ER during or immediately 
after synthesis. It consists of 159 amino acids of which the 
17 most amino-terminal ones constitute a cleavable signal se- 
quence, leaving a mature protein of 142 residues (Persson et 
al., 1980a; Ahmed et al., 1982; Wold et al., 1985). About 
104 residues are present on the luminal side of the ER mem- 
brane, 23 amino acids span the membrane, and the remain- 
ing 15 are protruding into the cytoplasm. The protein is 
glycosylated at amino acids 12 and 61 (Kornfeld and Wold, 
1981). 

At least two different properties of the E9/19K protein 
make it interesting. First, several investigators have shown 
that the E3/19K protein associates with class I antigens of the 

major histocompatibility complex (MHC) t (Kvist et al., 
1978; Sign~is et al., 1982; K/impe et al., 1983; P~bo et al., 
1986). These antigens (termed HLA in man) are cell surface 
glycoproteins composed of a heavy chain (45,000 tool wt) 
noncovalenfly bound to B2-microglobulin (12,000 tool w0 
(for a review see Ploegh et al., 1981). The function of the 
HLA antigens is to present foreign viral peptides to cytolytic 
T lymphocyte precursors. These T cells develop into cytolyt- 
ic T cells with the ability to recognize and eliminate specif- 
ically the infected cells via the class I antigens (Klein, 1979; 
Zinkernagel and Doherty, 1979; Townsend et al., 1986; 
Braciale et al., 1987). We and others have shown that the as- 
sociation of the E3/19K protein to the HLA antigens prevents 
their cell surface expression (Burgert and Kvist, 1985; An- 
dersson et al., 1985). The association involves the ER lumi- 
nal part of the E3/19K protein and the od and or2 domains 
of the MHC antigens (Burgert and Kvist, 1987). Due to the 
decrease in density of cell surface MHC class I antigens, 
cytolytic T cells recognize cells expressing the E3/19K pro- 
tein considerably less efficiently (Burgert et al., 1987). 

The second interesting property of the E3/19K protein is 
its cellular location. We and others have demonstrated it to 
be a resident of the ER (Burgert and Kvist, 1985; P~bo et 
al., 1987). Truncation of the eight most carboxy-terminal 
amino acids allows the cell surface expression of the mutated 

1. Abbreviations used in this paper: endo H, endoglycosidase H; MHC, ma- 
jor histocompatibility complex. 
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E3/19K (P~i~ibo et al., 1987). Recently, Nilsson et al. (1989) 
showed by transplanting the E3/19K cytoplasmic tail onto 
the CD8 molecule that a short linear sequence at the car- 
boxy-terminus (DEKKMP) is responsible for ER retention 
of such a hybrid molecule. 

Several proteins have been classified as resident ER pro- 
teins and can be divided into two groups: (a) soluble proteins 
present in the lumen of the ER and (b) integral ER membrane 
proteins. The common feature of all soluble ER proteins is 
a short amino acid sequence Lys-Asp-Glu-Leu (KDEL) pres- 
ent at the extreme carboxy terminus (Munro and Pelham, 
1986; Lee et al., 1984; Edman et al., 1985). It has been 
shown that the KDEL sequence is crucial for the ER reten- 
tion of the immunoglobulin heavy chain binding protein 
(BiP) and, furthermore, after transfer to the chicken lyso- 
zyme, is sufficient to cause ER retention (Munro and Pel- 
ham, 1987). 

Members of the integral ER membrane protein-group in- 
clude NS28 and VP7 of rotavirus (Petrie et al., 1984; Whit- 
feld et al., 1987), the docking protein (Hortsch et al., 1988), 
the 3-hydroxy-3-methylglutaryl coenzyme A reductase (Chin 
et al., 1984), the microsomal cytochrome P-450 (Sakaguchi 
et al., 1987), and the ribophorins I and II (Crimaudo et al., 
1987). Only for the VP7 protein has the ER retention signal 
been localized to the luminal domain of the protein (Poru- 
chynsky and Atkinson, 1988; Stirzaker and Both, 1989). 
The structure(s) of the other proteins that localize them to 
the ER remains obscure. The E3/19K protein of Ad-2, which 
also belongs to this group, is unique with respect to its reten- 
tion signal being present within the 15 amino acids at the car- 
boxy terminus on the cytoplasmic side of the ER membrane. 

We have taken a different approach than that of Nilsson et 
al. (1989) and characterized the ER retention signal on 
E3/19K protein by using the property of E3/19K protein to 
bind to HLA. We have, by site-directed mutagenesis, gener- 
ated 10 mutants of the E3/19K protein which differ from each 
other only within the short cytoplasmic tail containing the 
retention signal. Our results show that a complex noncontig- 
uous structure, consisting of three blocks of amino acids, 
constitutes the retention signal of the E3/19K protein. 

Materials and Methods 

Oligonucleotide-directed Mutagenesis of the 
E3/19K Protein 
The coding sequence of the E3/19K gene is contained within a 1,259-bp Sau 
I fragment of the Eco RID fragment of Ad-2 (Left et al., 1984). This frag- 
ment was inserted into the Sma I site of the vector WB 2311 (Barnes, 1980). 
Before insertion of this fragment the Sau I ends were made blunt by poly- 
merization with the Klenow DNA polymerase. In this way the Sau I sites 
at both ends of the fragment were reconstituted and could be used for rein- 
sertion into the Eco RID fragment after mutagenesis. For oligonucleotide- 
directed mntagenesis we used the method described by Zoller and Smith 
(1983). Oligonucleotides were synthesized in a DNA synthesizer (model 
380 B; Applied Biosystems, Inc., Foster City, CA). 

Cell Culture and DNA Transfection of Cells 
We have used the cell line 293 for expression of the wild-type E3/19K and 
its mutants (Graham et al., 1977). The cells were grown in DME containing 
10% fetal calf serum, 20 mM Hepes, 2 mM glutamine, and antibiotics. 
Transfection of 293 cells with E3/19K mutant DNA was carried out as de- 
scribed previously (Arnold et al., 1984; Burgert and Kvist, 1985) with the 
neophosphotransferase gene as a selectable marker (Southern and Berg, 

1982). Selection of cell clones was done in 800 #g/ml of G418 (Sigma 
Chemical Co., St. Louis). 

Monoclonal Antibodies and Antisera 
The antibody W6/32 reacts with a framework determinant of HLA-A, B, 
and C antigens (Barnstable et al., 1978). The antiserum against E3/19K has 
been described previously (Persson et al., 1979). 

Cell Labeling, Pulse-Chase Experiments, 
Endoglycosidase H Treatment, Immunoprecipitation, 
and SDS-PAGE 
Cells were washed in MEM medium without methionine 1 h before labeling 
and labeled with 150 #Ci/ml of [35S]methionine for 15 min. For the pulse- 
chase experiments, cells were labeled 15 min and then chased with normal 
DME medium containing 10% FCS, 20 mM Hepes, 2 mM glutamine, and 
antibiotics. A separate petri dish was used for each time point. Immunopre- 
cipitation and SDS-PAGE were carded out as described (Kvist et al., 1982). 
In Fig. 4, after immunoprecipitation, the material was digested with 5 mU 
of endoglycosidase H (endo H) (Boehringer Mannheim Diagnostics, Mann- 
heim, Federal Republic of Germany) for 20 h at 37°C, before SDS-PAGE 
analysis. 

Immunoprecipitation of CeU Surface HLA Antigens 
Ceils were pulse labeled for 15 min with [35S]methionine and chased in 
medium containing an excess of cold methionine. At each time point, cells 
were split into two equal parts and washed twice with ice-cold medium. The 
cells were kept on ice. One aliquot was treated with mAb W6/32 for 30 min 
and was then washed three times with medium. The cells were lysed with 
solubilization buffer containing five times excess of cold cell lysate. Unla- 
beled HLA antigen in this lysate can then bind to any residual free antibody 
which might otherwise bind to radioactive intracellular HLA antigens ex- 
posed after lysis. After centrifugation, the immune complexes were recov- 
ered by using protein A-Sepharose and analyzed by SDS-PAGE. The second 
half of the ceils were lysed in normal solubilization buffer and total HLA 
antigens were immunoprecipitated and analyzed by SDS-PAGE. 

Flow Cytometry Analysis 
To determine the cell surface expression of HLA antigens, we used fluores- 
cence-activated cell sorter analysis. After washing in DME containing 20 
mM Hepes, 20 mM azide, and 5 % BSA, the cells were reacted with the 
W6/32 anti-HLA monoclonal antibody at4°C for 1 h and then washed three 
times with medium. The cells were stained with FITC-conjugated goat 
anti-mouse immunoglobulin serum (Sigma Chemical Co.). After 1 h of in- 
cubation, the cells were washed twice in medium and twice in PBS, the cells 
were then fixed in 1.5% paraformaidehyde for 20 min at 4°C. After two 
washes in PBS, the ceils were kept in PBS at 4°C and in darkness until ana- 
lyzed. The fluorescence profiles were obtained by analyzing •104 cells on 
a semilogarithmic plot in a fluorescence-activated cell sorter IV. In Fig. 6, 
we report the mean fluorescence obtained in a representative experiment 
out of a total of five separate experiments done with all 12 cell lines. Nega- 
tive control was without first antibody. 

Other Reagents 
Protein A-Sepharose was from Pharmacia (Uppsaia, Sweden). [35S]Methi- 
onine (>800 Ci/mmol) was from Amersham International, Amersham, 
England). 

Results 

Experimental Strategy 
The ER retention signal of the E3/19K protein has been 
claimed to be contained within the eight most carboxy- 
terminal amino acids on the cytoplasmic side of the ER 
membrane (P~i~ibo et al., 1987). Our preliminary results, 
however, showed that also the basic cluster of amino acids 
close to the membrane influence retention (Gabathuler, R., 
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Figure 1. Schematic representation of the carboxy-terminal portion 
of the E3/19K protein and its mutants. The amino acid sequence 
of the wild-type E3/19K is shown on the top. The names of the 
different mutants are indicated to the left in the figure. The hatched 
area denotes the ER membrane and only two amino acids (YL) of 
the trans-membrane segment are shown. Dashes in the amino acid 
sequence indicate deleted residues. The one-letter code for amino 
acids is used. 

and S. Kvist, unpublished results). Thus, all 15 residues of 
the cytoplasmic tail of the E3/19K protein might be impor- 
tant for retention. Our approach was to change these 15 
amino acids in such a way that the E3/19K protein would be 
released from the ER compartment and transported towards 
the cell surface. However, not only did we want to disturb 
the retention signal but also to identify the amino acids cru- 
cial for ER retention. Even the limited number of 15 gives 
a very high number of different combinations of amino acids. 
We divided the cytoplasmic tail into two parts: (a) the basic 
cluster of residues closest to the membrane (six residues) 
and (b) the remaining carboxy-terminal nine amino acids. 
This was done by replacing the codon for the serine residue 
at position 7 with a termination codon (Fig. 1). The nine last 
carboxy-terminal amino acids were then further changed. 
We changed these amino acids in block deletions (at least 
two residues). 

Immediately after synthesis, the E3/19K protein, or maybe 
the nascent chain, is found bound to HLA antigens (Burgert 
and Kvist, 1985). All our cell lines transfected with the 
E3/19K gene express an excess of the viral protein compared 
to HLA antigens. We have taken advantage of its firm inter- 
action with HLA antigens, and rather than analyzing the cel- 
lular location of the E3/19K protein itself, we have followed 
the rate of transport of HLA class I antigens. In favor of our 
approach are the following facts. (a) Little or no carbohy- 
drate processing can be observed for the E3/19K protein 
and its mutants. In pulse-chase experiments it is therefore 
difficult to follow transport by this method. In contrast, HLA 
antigens are well-characterized molecules that undergo car- 
bohydrate processing, which can readily be detected and fol- 
lowed during intracellular transport. (b) There is no good an- 
tiserum or antibody available against the E3/19K protein. 
Our rabbit anti-E3/19K serum also detects two other cellular 

proteins that interfere with similar molecular weights when 
analyzed by SDS-PAGE. Excellent antibodies exist for HLA 
class I antigens that precipitate all three subunits: HLA, B2- 
microglobulin, and the E3/19K protein. (c) By analyzing the 
HLA antigens, associated with the E3/19K protein, we have 
an internal control that our modifications of the E3/19K pro- 
tein do not grossly alter its conformation on the luminal side 
of the ER membrane. Such changes might otherwise by 
themselves contribute to loss of retention. 

Taken together, we preferred to analyze HLA class I anti- 
gens associated with the E3/19K protein rather than the 
E3/19K protein itself or the 15 amino acids containing the 
retention signal transferred to another protein of unknown 
behavior. However, our approach has two requirements that 
must be fulfilled. First, the E3/19K protein and its mutants 
must be expressed in excess compared to HLA antigens, i.e., 
all HLA class I molecules must be associated with E3/19K. 
Secondly, no mutant of the E3/19K protein should have 
suffered conformational alterations in such a way that associ- 
ation to HLA antigens would be disturbed, i.e., the ratio be- 
tween HLA antigens and the E3/19K protein should be con- 
stant. Both these requirements were fulfilled for all our 
mutants. 

Site-directed Mutagenesis and Expression of the 
E3/19K Mutants in 293 Cells 

By using oligonucleotide site-directed mutagenesis we have 
generated 10 mutants of the E3/19K protein that all differ in 
the 15 most carboxy-terminal amino acids (Fig. 1; see Mate- 
rials and Methods for details). Plasmid DNAs for the mu- 
tants were used to transfect 293 cells, an epithelium em- 
bryonic kidney cell line (Graham et al., 1977; Burgert and 
Kvist, 1985). Stable transformants were selected as clones, 

Figure 2. Expression of E3/19K and its mutants in transfected 293 
cells. Cells were labeled for 15 min with [35S]methionine, lysed, 
immunoprecipitated with a rabbit anti-E3/19K serum, and ana- 
lyzed by SDS-PAGE. The parental cell line 293 was used as a con- 
trol. The cell lines expressing the wild-type E3/19K (293.12) and 
the E3/19K mutants are indicated at the top of the figure. The shift 
in apparent molecular weight for the E3fI9K mutants correlate ap- 
proximately to the number of amino acids deleted. All mutants are 
expressed at a higher level (2-10-fold) than the wild type. The faint 
band below the major band corresponds to a partially glycosylated 
form of the protein. See text for further details. 
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Table L Association of Wild-Type and Mutant E3/19K 
Proteins to HLA Molecules 

Mutant Ratio E3/19K:HLA 
proteins (mean values) 

Wild type 1.00 
M621 1.33 + 0.30 
M121 1.07 + 0.47 
M123 1.69 + 0.75 
M125 1.32 + 0.58 
M129 1.00 + 0.39 
M131 1.49 + 0.44 
M133 1.19 + 0.52 
M135 1.72 + 0.51 
M137 1.59 + 0.83 
M139 1.36 + 0.86 

Cells were labeled for 15 rain with [35S]methionine, lysed, and immunopre- 
cipitated by W6/32. This material was analyzed by SDS-PAGE. The exposed 
x-ray films were scanned by a laser densitometer (LKB Instruments Inc., 
Bromma, Sweden). The densities between HLA and E3/19K related bands 
were compared for the same immunoprecipitation. The ratio between E3/19K 
wild-typo protein and HLA bands was fixed arbitrarily to one for each individu- 
al experiment. The mean ratios for five independent experiments are reported 
in the table with the standard deviations. 

class I antigens of these two mutant cell lines were compared 
with those of 293 cells (absence of E3/19K) and 293.12 cells 
(wild-type E3/19K). Cells were labeled with [35S]methio- 
nine for 15 min and then chased in an excess of cold methio- 
nine. Analysis was as described above at the times indicated 
in Fig. 3, HLA antigens from 293 cells and M129 cells have 
undergone complete carbohydrate processing already after 
40 min of chase (Fig. 3, lanes 1-3). In contrast, class I anti- 
gens from 293.12 cells are not processed at all during the 2-h 
chase (Fig. 3, lanes 1-5). HLA antigens from M621 cells 
show partial processing at 2 h of chase. The majority of  the 
radioactivity is found in the lower band at early time points 
(Fig. 3, lanes 1 and 2), equal amounts are found at 40 and 
60 min of  chase (lanes 3 and 4) whereas at 2 h the great 
majority is found in the two upper bands (lane 5). As HLA 
antigens from 293 and M129 cells are fully processed at 40 
rain of chase, we conclude that a certain influence is exerted 
by the first six amino acids (the basic cluster). We are 

labeled with [35S]methionine, immunoprecipitated with a 
rabbit anti-E3/19K serum, and finally analyzed by SDS- 
PAGE. Clones expressing high amounts of the E3/19K pro- 
tein were chosen for further experiments and were compared 
with the cell line 293.12, which expresses the wild-type 
E3/19K protein (Fig. 2). All mutants selected expressed at 
least a twofold excess of the E3/19K protein compared to the 
wild-type (Fig. 2, compare lanes 3-12 with lane 2). We have 
previously shown that the wild-type E3/19K protein ex- 
pressed in 293.12 cells causes an almost complete inhibition 
of  cell surface expression of HLA class I antigens (Burgert 
and Kvist, 1985). As the cell lines analyzed in Fig. 2 express 
considerably more of the E3/19K mutant proteins (2-10 fold) 
than the 293.12 cells, one would expect also these to cause 
an almost complete block in HLA expression, provided the 
retention signal is intact. 

We next analyzed whether or not all the mutants of  the 
E3/19K protein associate to HLA class I antigens to a similar 
degree. Cells were labeled with [35S]methionine, lysed, and 
reacted with the W6/32 (monoclonal anti-HLA), and ana- 
lyzed by SDS-PAGE. In addition to HLA heavy chains and 
~2-microglobulin a protein band of  ~ 24,000 mol wt, rep- 
resenting the E3/19K mutant, was seen for all the mutant cell 
lines (data not shown). Table I is a compilation of five in- 
dividual experiments and shows that all mutant E3/19K bind 
to HLA antigens approximately with the same efficiency as 
the wild-type E3/19K protein. We conclude that changes in 
the cytoplasmic tail do not disturb binding of the mutant pro- 
teins to the HLA antigens (Table I). As mentioned above this 
was a requirement that had to be fulfilled in order to study 
carbohydrate processing of  HLA antigens as a measurement 
for loss of retention. 

Role of the Basic Cluster in ER Retention of  the 
E3/19K Protein 

We started to analyze mutants M129 and M621 as these two 
mutants have lost the entire and about half, respectively, of 
the 15 amino acids in the cytoplasmic tail (see Fig. 1). HLA 

Figure 3. Carbohydrate processing of HLA antigens in cells ex- 
pressing E3/19K and two of its mutants. Cells were labeled for 15 
min with [35S]methionine and chased in an excess of cold methio- 
nine for the times (minutes) indicated at the top of the figure. Solu- 
bilized antigens were immunoprecipitated with the W6/32 antibody 
and analyzed by SDS-PAGE. The arrows on the left hand side indi- 
cate the positions for core glycosylation of HLA antigens immedi- 
ately after the pulse. The starred arrows on the right hand side indi- 
cate the positions for complex type sugars attached to the antigens. 
Note that the upper band of core glycosylation (293, lane 1 ) coin- 
cide with the lower band for complex type sugars (293, lanes 3-5). 
No carbohydrate processing is observed for 293.12 cells (express- 
ing wild-type E3/19K). See text for further details. 
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confident that M129 is membrane integrated as we cannot 
detect it in the cell medium, whereas another mutant (M392) 
truncated six residues towards the NH2 terminus (compared 
to M129) is readily secreted and does not associate to HLA 
antigens in cells (Gabathuler et al., 1990). 

The ER Retention Signal of the E3/19K Protein Is Not 
a Contiguous Sequence of Amino Acids 

The mutants M121 through M139 were analyzed in an identi- 
cal way as described for M129 and M621. As we have exam- 
ined the entire labeled pool of HLA antigens in these experi- 
ments, and the core glycosylated and complex-type sugar 
forms are close together on the gel, we did not consider the 
results of these experiments clear enough to make firm con- 
clusions. Therefore, we decided to analyze the HLA antigens 
further by digesting the immunoprecipitates with endo H. 
This treatment removes most of the core sugars leaving a sin- 
gle N-acetyl-glucosamine attached to the asparagine. HLA 
antigens with complex-type sugars are resistant to digestion. 
Thus, the resolution of HLA antigens with different carbohy- 
drates, core, or complex-type sugars, is increased considera- 
bly when analyzed by SDS-PAGE. 

Cells were pulsed for 15 min with [35S]methionine and 
chased for various times indicated in Fig. 4. Before loaded 
onto the gel, the immunoprecipitates were digested with 
endo H as described in Materials and Methods. HLA anti- 
gens from 293 cells are almost completely resistant to endo 
H already after 40 min of chase (Fig. 4, lane 3). In contrast, 
HLA antigens from 293.12 cells stay endo H sensitive 
throughout the chase period (Fig. 4, lanes 5-8). Again, we 
find that HLA antigens from M129 cells are fully processed 
at 40-60 min after the pulse whereas approximately half the 
amount of the HLA antigens from M621 cells remain endo 
H sensitive 60 min after the pulse (Fig. 4, lanes 1-4 and 5-8, 
respectively). Deletion of Met-Pro of the E3/19K protein 
(M121) causes a loss of retention so that ~70% of the HLA 
antigens reach an endo H-resistant form within 60 min (Fig. 
4, M121, lanes 1-4). In contrast, deletion of Ser-Phe-II.e in 
the middle of the 15 amino acid long tail of E3/19K, slows 
down the acquisition of endo H resistance of the HLA anti- 
gens (Fig. 4, M131, lanes 5-8). However, when placed at the 
extreme carboxy terminus the Ser-Phe-Ile sequence causes 
complete retention (Fig. 4, M125, lanes 1-4). Also, both seg- 
ments together, Ser-Phe-Ile and Met-Pro, cause complete 
retention (Fig. 4, M123, lanes 1-4) whereas deletion of both 
segments leads to complete loss of retention (M133, lanes 
5-8). The importance of Met-Pro for retention is further 
demonstrated by M135 (Fig. 4, lanes 5-8). Finally, the last 
two mutants, M137 and M139, show that Ser-Phe-Ile can be 
followed by Asp-GIu and still cause retention (Fig. 4, M/37, 
lanes 1-4) whereas Met-Pro does not cause retention when 
preceded by Lys-Lys (M139, lanes 5-8). We conclude that 
the two segments (or parts of) Ser-Phe-Ile and Met-Pro are 
crucial for retention and that Asp-Glu-Lys-Lys (DEKK) are 
not necessary for retention of the E3/19K protein. 

To confirm further the importance of the SFI and MP seg- 
ments for retention of the E3/19K protein, we studied the rate 
of appearance of HLA antigens at the cell surface after a 
short pulse of the cells with [35S]methionine. 

Cells were pulsed for 15 min and chased for the various 
times indicated in Fig. 5. The cell sample withdrawn at each 

time point was divided into two equal parts. One part was 
lysed in solubilization buffer whereas the other part was in- 
cubated with antibody (W6/32) for 30 min, washed, and 
lysed in an excess of unlabeled cell lysate to prevent ex- 
change of the antibody between cell surface and intracellular 
HLA antigens. HLA antigens of the 293 cells start to appear 
at the cell surface after 20--40 min. In contrast, in 293.12 
cells (E3/19K wild type) we were unable to detect HLA anti- 
gens at the cell surface (Fig. 5, lanes 6--8 and 14-16). The 
total amount of HLA antigens is shown in Fig. 5, lanes 1-4 
and 9-12. The mutants M123 and M125 express little or no 
HLA antigens at their surface, confirming the importance of 
SFI and MP segments. M133 expresses high amounts of 
HLA at the cell surface whereas M131 expresses moderate 
amounts. In general, these results are in agreement with 
those of Fig. 4. 

Steady-State Levels at the Cell Surface of 
HLA Antigens in Cells Expressing Mutants of the 
E3/19K Protein 

In the previous paragraph we examined the rate of transport 
of HLA class I antigens from the site of synthesis (ER) to 
the cell surface. We next analyzed whether or not a correla- 
tion exists between slow transport of HLA antigens, due to 
their association with the E3/19K protein or its mutants, and 
their cell surface expression under steady-state circum- 
stances. This was done by analyzing the E3/19K mutant cells 
by flow cytometry (see Materials and Methods). The fluores- 
cence curves for the different mutants were converted into 
a histogram that is shown in Fig. 6. 

HLA antigens from 293, M621, M129, M121, M131, M133, 
and M139 cells are expressed at high levels at the cell sur- 
face. In contrast, the mutants M123, M125, and M137 dis- 
play very low levels of HLA antigens as does the control 
293.12 cells. Cells of the mutant M135 display higher levels 
than one would expect from Figs. 4 and 5. Also, the high lev- 
els of HLA antigens at the cell surface of M131 were unex- 
pected. In Figs. 4 and 5 we have studied the rate of transport 
from the ER to the cell surface. In Fig. 6 we look at the 
steady-state levels of HLA class I antigens. It is possible that 
the half-life of HLA antigens at the cell surface is changed 
(increased) in M131 and M135 cells. Another plausible ex- 
planation might be that some of our transfected cell lines be- 
come more fragile after transfection and partially disrupted 
cells sometimes show very high levels of fluorescence due 
to the accumulation of HLA antigens intracellularly. For 
most of the mutants however, slow transport of HLA class 
I antigens is also reflected in low cell surface expression, and 
shows that correlation exists between the rate of transport 
and steady-state levels at the cell surface. Again, the impor- 
tance of the Ser-Phe-Ile and Met-Pro sequences for retention 
of the E3/19K protein and HLA antigens is confirmed. 

Discussion 

Human MHC class I antigens (HLA) are retained in the ER 
compartment in cells expressing the E3/19K protein of Ad-2 
(Burgert and Kvist, 1985; P~/ibo et al., 1987). The E3/19K 
protein is an ER resident and forms a ternary complex with 
HLA-/~2-microglobulin. The structure of the E3/19K pro- 
tein that causes the ER retention has been localized to the 
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Figure 4. Pulse-chase analysis of HLA class I antigens digested 
with endo H. Cells were pulsed for 15 min with [35S]methionine, 
chased for the various times indicated (minutes indicated at top of 
figure), lysed, and subjected to immunoprecipitation with the 
monoclonal antibody W6/32 (anti-HLA). Precipitates were di- 
gested with endo H, as described in Materials and Methods, before 
analyzed by SDS-PAGE. Endo H-sensitive (S) and -resistant (R) 
forms of the HLA antigens are indicated. See text for further de- 
tails. 

15 amino acids at the carboxy terminus of the protein, pro- 
truding on the cytoplasmic side of the ER membrane (P~i~ibo 
et al., 1987; Gabathuler, R., and S. Kvist, unpublished re- 
suits). In this paper we have undertaken a detailed study of 
the 15 residues cytoplasmic tail of the E3/19K protein, with 
the aim to elucidate more precisely which amino acids are 
crucial for retention. Our approach has been to generate mu- 
tants of the E3/19K protein that differ only within these 15 
residues. These mutants were introduced into cells, the gene 
products were complexed to HLA antigens which were then 
examined for carbohydrate processing during their intracel- 
lular transport and cell surface expression. The reasons for 
analyzing the HLA antigens rather than the E3/19K protein 
itself are discussed in the paragraph Experimental Strategy 
(see above). 

We have examined the rate of transport of the HLA anti- 
gens (bound to the E3/19K protein) from the ER to the cell 
surface in pulse-chase experiments. In one series of experi- 
ments we analyzed in detail the total cellular content of HLA 

antigens (data not shown) and in another series total HLA 
antigens digested with endo H. By binding antibodies to cell 
surface HLA antigens on intact cells in a pulse-chase experi- 
ment we could also directly follow the appearance of these 
antigens at the cell surface (Fig. 5). Furthermore, we also 
analyzed the steady-state level of HLA antigens at the cell 
surface by flow cytometry. From these results we draw the 
following conclusions. (a) The sequences Ser-Phe-Ile and 
Met-Pro are of crucial importance for retention. Deletion of 
these amino acids causes loss of retention (Figs. 4-6). The 
sequence Ser-Phe-Ile is located in the middle of the 15 resi- 
dues but causes retention also when placed at the extreme 
carboxy terminus (M125). (b) The two amino acids Met-Pro, 
at the carboxy terminus in the wild type, can themselves ex- 
ert a limited effect to retain the E3/19K protein (M131, 
M135) and enhance the effect of the Ser-Phe-Ile (M123). De- 
letion of Met-Pro causes loss of retention (M121) but this can 
possibly be an effect of disturbing the Ser-Phe-Ile structure, 
by ending the protein with Asp-Glu-Lys-Lys. (c) The charged 
cluster Asp-Glu-Lys-Lys is of little or no importance for 
retention (M123). (d) The charged cluster closest to the 
membrane plays a certain role as HLA antigens are pro- 
cessed considerably faster in M129 cells than in M621 cells. 
Finally, these conclusions lead to the major conclusion name- 
ly that (e) the retention signal of the E3/19K protein is not 
a contiguous sequence of amino acids but consists of a com- 
plex three-dimensional structure. All or most of the cytoplas- 
mic tail of E3/19K protein contribute to the ER retention. 

Several soluble ER proteins have been characterized of 
which the BiP is the best known (Munro and Pelham, 1986). 
In common for this group of proteins is the short sequence 
Lys-Asp-Glu-Leu (KDEL) present at the extreme carboxy 
terminus. Our first results of the mutants of the E3/19K pro- 
tein suggested that Met-Pro at the carboxy terminus would 
have a similar effect. However, careful examination of all the 
mutants described in this paper clearly identifies also the 
Ser-Phe-Ile tripeptide as crucial for retention. 

Recently, the four most carboxy-terminal amino acids 
(Lys-Lys-Met-Pro) of the E3/19K protein were suggested to 
constitute the ER retention signal (Nilsson et al., 1989). This 
short linear sequence was identified by sequential deletion of 
amino acids from the carboxy terminus and transfer of this 
part of the cytoplasmic tail onto the CD8 molecule. These 
data are not necessarily in conflict with ours as the fused cy- 
toplasmic tail of CD8-E3/19K shows similarities to the wild- 
type E3/19K protein cytoplasmic tail. Thus, the amino acids 
involved in the retention signal in two of the blocks identified 
here (charged cluster and Ser-Phe-Ile) might be mimicked by 
residues in the cytoplasmic tail of the CD8 molecule (Val- 
Val-Lys and Ser-Gly-Asp). The fact that this signal is more 
complicated than the luminal KDEL signal for soluble pro- 
teins might indicate a more complex mechanism for reten- 
tion of integral ER membrane proteins. It is also possible 
that a large variety of different retention mechanisms exists 
for this group of proteins. Our approach to delete blocks of 
amino acids to identify the retention signal might not neces- 
sarily have identified the shortest sequence. Thus, we do not 
know whether or not all of the residues in these sequences 
(Ser-Phe-Ile, Met-Pro) are necessary but since optimal re- 
tention is obtained in cooperation between Ser-Phe-Ile and 
Met-Pro, we find it likely that approximately three to five 
amino acids constitute the core of the retention signal. 
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Figure 5. Cell surface appear- 
ance of HLA class I antigens 
in ceils expressing E3/19K and 
its mutants. Cells were pulsed 
for 15 min with [35Slmethio- 
nine, and chased for various 
times indicated on the figure 
(minutes indicated at top). At 
each time point, cells were split 
into two equal parts. One ali- 
quot was treated with Abs 
(W6/32) for 30 min, allowing 
only cell surface HLA class I 
antigens to bind. These cells 
were then lysed in presence of 
an excess of cold HLA class I 
antigens. The immune com- 
plexes were precipitated with 
protein A-Sepharose and ana- 
lyzed by SDS-PAGE (lanes 5-8 
and 13-16). The other cell ali- 
quot was lysed in normal solu- 
bilization buffer, HLA class I 
antigens were immunoprecip- 
itated with W6/32 and analyzed 
identically (lanes 1-4 and 
9-12). 

Studies aimed at identifying the minimal requirements for 
retention are currently under way. 

HLA antigens in cells expressing M129 are more rapidly 
processed than for instance HLA antigens in M621 cells 
(Figs. 4 and 5). This mutant protein is membrane integrated 
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Figure 6. Cell surface expression of HLA class I antigens in cells 
expressing E3/19K and its mutants. The histogram shows the mean 
fluorescence values for the cell lines indicated below each column. 
The column to the very left ( - )  shows the fluorescence value when 
no specific antibody was used. The specific antibody used was 
W6/32. The figure shows one representative experiment out of five. 
See Materials and Methods for further details. 

as we cannot find it secreted in the medium but is present 
at the cell surface. 

In conclusion, our results on H L A  transport in the cell 
(processing, acquisition of endo H resistance in the medial 
Golgi and appearance at the cell surface) and steady-state 
level expression of HLA antigens on transfected cells (flow 
cytometric measurements) show that the ER retention signal 
of the E3/19K protein is not a linear sequence but a more 
complicated structure involving the majority of  the cytoplas- 
mic tail, where four amino acids (Asp-Glu-Lys-Lys, DEKK) 
are of  less importance. Therefore, we find it likely that also 
the charged cluster closest to the membrane  in the cytoplas- 
mic tail of  the E3/19K protein participate in the retention and 
together with Ser-Phe-Ile and Met-Pro constitute a complex 
structure necessary for ER retention of the protein. 
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