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Abstract. A novel neural surface protein, Bravo, 
shows a pattern of topological restriction in the em- 
bryonic chick retinotectal system. Bravo is present on 
the developing optic fibers in the retina; however, reti- 
nal axons in the tectum do not display Bravo. The ap- 
pearance of Bravo in vitro is modulated by environ- 
mental cues. Axons growing out from retinal explants 
on retinal basal lamina, their natural substrate, express 
Bravo, whereas such axons growing on collagen do 
not. Retinal explants provide a valuable system to 
characterize the mechanism of Bravo restriction, as 

well as the cellular signals controlling it. Bravo was 
identified with monoclonal antibodies from a collec- 
tion generated against exposed molecules isolated by 
using a selective cell surface biotinylation procedure. 
The NH2-terminal sequence of Bravo shows similarity 
with L1, a neural surface molecule which is a member 
of the immunoglobulin superfamily. This possible rela- 
tionship to L1, together with its restricted appearance, 
suggests an involvement of Bravo in axonal growth and 
guidance. 

W 
'HEN neural networks are generated during embryo- 
genesis, axons migrate along defined routes to their 
targets. The guidance of the axons depends on their 

interaction with the environment. Molecules exposed on the 
axonal surface and on the growth cone are assumed to partic- 
ipate in this interplay, a precondition of axonal outgrowth, 
fasciculation, and pathfinding (for reviews see Edelman, 
1985; Jessell, 1988; Rathjen, 1988; Harris and Holt, 1990). 
An involvement of surface molecules in axonal outgrowth 
(Lagenaur and Lemmon, 1987; Bixby and Zhang, 1990; 
Chang et al., 1990; Furley et al., 1990), fasciculation (Rath- 
jen et al., 1987a,b), and guidance (Matsunaga et al., 1988) 
has indeed been demonstrated. Many of these surface glyco- 
proteins share structural features, such as the HNK-1 epitope 
(Pesheva et al., 1987; Gennarini et al., 1989) and immuno- 
globulin-like domains (Cunningham et al., 1987; Harrelson 
and Goodman, 1988; Moos et al. 1988; Ranscht, 1988; See- 
ger et al., 1988; Bieber et al., 1989; Briimmendorf et al., 
1989; Gennarini et al., 1989; Furley et al., 1990). These do- 
mains supposedly are involved in cell adhesion and are indi- 
cators of the evolutionary development of cell interactions 
(Edelman, 1984, 1985, 1987; McClay and Ettensohn, 1987; 
Rutishauser et al., 1988; Schachner et al., t988; Williams 
and Barclay, 1988). 
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Molecules involved in axonal guidance are expected to be 
expressed early in development, when neural connections 
are forming, under temporal or topological restriction 
(Raper et al., 1983a,b; Bastiani et al., 1984; Dodd and Jes- 
sell, 1988; Harrelson and Goodman, 1988). Indeed, fas- 
ciclins I and H in the grasshopper (Bastiani et al., 1987) and 
TAG-1 in the rat (Dodd et al., 1988) show a restricted pattern 
of expression. The mechanisms controlling such restricted 
expression are still not well understood. 

The retinotectal system of the chick embryo is especially 
suited for studies of axonal outgrowth and navigation. Whole 
organ preparations, as well as retinal explant cultures, allow 
manipulation of the axonal environment under conditions 
that maintain the natural recognition properties of the optic 
fibers (Halfter et al., 1981; Bonhoetfer and Huf, 1982; 
Walter et al., 1987a,b). 

This project was aimed at the identification and character- 
ization of molecules involved in the interactions between 
axons and their environment, using monoclonal antibodies 
specifically made for this purpose. Optic tecta of chick em- 
bryos at day 8 of development (E8) 1 were chosen as a 
source of antigen. At this stage, the optic fibers massively 
invade the optic tecmm but most have not reached their tar- 
gets (Crossland et al., 1975; Rager, 1980). Thus, both inter- 

1. Abbreviations used in this paper: E8, embryonic day 8 of development; 
RT, room temperature. 
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active partners of the retinotectal system, the optic fibers and 
their tectal targets, are found together in a single structure. 
Assuming that molecules participating directly in cell inter- 
actions are located on the cell surface or in the extracellular 
matrix, exposed molecules in the optic tecmm containing 
growing optic fibers were specifically biotinylated (Boxberg 
et al., 1990). The labeled molecules were isolated by avidin- 
affinity chromatography and further fractionated according 
to size by HPLC. mAbs were raised against each of the frac- 
tions, yielding a large collection of antibodies specific for 
surface molecules. A detailed description of the method will 
be presented (Kayyem, J. F., J. M. Roman, D. B. Teplow, 
E. J. de la Rosa, U. Schwarz, and W. J, Dreyer, manuscript 
in preparation). The molecules recognized by different mAbs 
were designated using the international phonetic alphabet 
(Alpha, Bravo, Charlie, etc.), since the Greek alphabet isal- 
ready heavily used in naming other proteins. 

Bravo is one of the neural surface compounds found with 
those mAbs. Some biochemical and biological characteris- 
tics of this molecule will be described in this article. 

Materials and Methods 

Chick Embryos 

All the experiments were performed with White Leghorn embryos of the 
indicated ages, obtained by incubation of fertilized eggs at 38.7°C. 

Immunochemical Methods 

Purification of Antigen by Immunoa~inity Chromatography. Before its 
immobilization on a column, the antibody was purified from mouse ascites, 
either by HPLC on a TSK DEAE-5PW column (Bio-Rad Laboratories, 
Munich, Germany), according to Deschamps et al., 1985, or by chromatog- 
raphy on a CM Affi-Gel Blue column (Bio-Rad Laboratories), according 
to the manufacturer's instructions. 

The purified mAb (25 nag) was bound to 10 ml of Afil-Gel 10 (Bio-Rad 
Laboratories), as recommended by the manufacturer, packed in a column 
which, before use, was run once with the various buffers to be used for anti- 
gen purification (see below). 

An extract from PI chick whole brain was used as an antigen source. 
Brains were washed three times with 3 ml per brain of labeling buffer (140 
mM NaCI, 5 mM KCI, 5 mM glucose, 7 mM NaHCO3, 1.5 mM MgSO4, 
1.5 mM CaCI2, and 0.5 pl/ml aprotinin, 2 mg/ml iodoacetamide, 0.2 
mg/ml PMSE and 50/~g/ml soybean trypsin inhibitor as protease inhibi- 
tors) and homogenized in 3 rni per brain of Nicholson lysis buffer (10 mM 
Hepes, pH 7.5, 140 mM NaC1, 4 mM EDTA, 2.5% (wt/vol) NP-40 
(Calbiochem-Behring, Corp., Frankfurt am Main, Germany), 2.5% (wt/ 
vol) Zwittergent 3-14 (Calbiochem-Behring Corp.) (Updyke and Nichol- 
son, 1984) supplemented with azide and protease inhibitors (as above). Af- 
ter centrifugation (50,000 g for 30 rain) the supernatant from 100 brains 
was pumped onto the colulml with immobilized antibody at a flow rate of 
10 mi/h. The column was then washed at a flow rate of 50 mi/h with (a) 
100 ml of 20 mM Tris-HC1, pH 8.0, containing 140 mM NaCI, 0.5% 
(wt/vol) NP-40, and 0.5% (wt/vol) Zwittergent 3-14; (b) 50 ml of 50 mM 
Tris-HC1, pH 8.0, containing 0.5 M NaCI and 0.5% (wt/vol) NP-40; (c) 50 
ml of 50 mM Tris-HC1, pH 9.0, containing 0.5 M NaCI and 0.1% (wt/vol) 
NP-40. The antigen was finally eluted with 150 ml of 50 mM triethanola- 
mine, pH 11.5, containing 150 mM NaCI and 0.1% (wt/vol) NP-40. 1.6-ml 
fractions were collected in tubes containing 0.4 ml of 1 M Tris-HC1, pH 
6.7. The antigen in the fractions was identified by a dot blot assay (see be- 
low). The antigen peak was pooled and concentrated-dialyzed by six cycles 
of centrifngation 0,500 g for 30 rain) in Centriprep 30 (Amicon Corp., Wit- 
ten, Germany), with PBS containing 0.1% (wt/vol) NP-40. The antigen was 
concentrated by a factor of 15 and the elution buffer was diluted 103 times. 
In the case of Bravo, the final concentration of antigen was 30 #g/mi, as 
determined by silver staining of SDS gels in comparison with standards. 
The final yield was 250-300 #g of protein from 100 brains. The column 
was regenerated by washing with 200 mi of 20 mM Tris-HCl, pH 8.0, con- 
raining 140 mM NaC1, and 0.025% (wt/vol) azide. 

Protein Blots. For dot blots (Hawkes et al., 1982), 1-10 #1 of the sam- 

pie to be analyzed was spotted onto nitrocellulose and dried. To reduce 
background staining, the nitrocellulose was kept for at least 2 h at RT with 
5% (wt/vol) powdered skim milk and washed twice with PBS before immu- 
nostaining. Hybridoma culture supernatant (1:4 dilution), mouse ascites 
(1:2,000 dilution), or rabbit antiserum (1:25,000 dilution) were incubated 
with the blot for 1 h at RT. FOr all dilutions, and three washings between 
incubations, PBS containing 0.1% (vol/voi) Tween 20 was used. Finally, the 
blots were incubated for 1 h at RT with a 1:1,000 dilution of peroxidase- 
coupled second antibody and stained with 4-chloronapthol (0.5 mg/ml) and 
0.015% (vol/vol) of I-I202 in PBS. 

For Western blots, the samples were fractionated by electrophoresis 
(SDS-PAGE; 6% gel) and transferred to nitrocellulose in a semi-dry system 
as described by Kyhse-Andersen (1984). The Western-blots were treated as 
described above for the dot-blots. 

Protein Sequencing 

NH2-terminai protein sequence information was gathered using a protein 
sequenator (model 477A; Applied Biosystems, Foster City, CA) with on- 
line PTH analysis (model 120A; Applied Biosystems). Protein antigens 
(30-200 pmol), purified by affinity chromatography as described above, 
were electroblotted onto polyvinylide difluoride membrane after SDS- 
PAGE (Matsudaira, 1987). 

Immunohistochemicai Methods 

~ssue Sect/ons. Chick embryos were sectioned with a cryomicmtome after 
fixation of the tissue. For small embryos, up to ES, the standard fixation 
was by overnight immersion in 4% (wt/vol) paraformaldehyde in 0.1 M 
phosphate buffer, pH 7.0. Larger embryos were first perfused with fixative 
(as above); then tissue pieces were dissected and further fixed by overnight 
immersion in fixative. Alternatively, the tissues were fixed by overnight im- 
mersion in 2 % (wt/vol) "W_A. Routinely, the fixed tissue was infiltrated with 
30% (wt/vol) sucrose in PBS before sectioning. 

For staining with single antibodies, the sections were incubated sequen- 
tially with (a) 15% (vol/vol) normal goat serum in culture medium for 20 
rain at RT: (b) mAb, hybridoma culture supernatant (undiluted), or mouse 
asci~s (1:1,000 dilution) or rabbit polyclonal antiserum (1:20000) for 45 
min at RT: (c) biotinylated second antibody (anti-monse or anti-rabbit of 
1:200 dilution) for 30 min at RT: and (d) fluorescein-Streptavidin (1/200 di- 
lution) for 30 rain at RT. The washing steps between incubations, as well 
as thedilutions were with PBS containing 0.2% (wt/vol) BSA. The sections 
were mounted for epifluorescence microscopy. 

For double staining, mAb anti-G4/L1 purified by HPLC (Deschamps et 
al., 1985) was labeled with biotin, according to Clark and Todd (1982). Bio- 
tin X-NHS (Calbieehem-Behring Corp.) as a freshly prepared 20 mg/ml so- 
lution in DMSO was added to the antibody in PBS (biotin/mAb; 1:7; wt/wt) 
and incubated for 2 h at RT with vigorous sbakln£. Excess biotin was 
reacted with a 10-fold excess of glycine (30 rain at RT). The mixture was 
directly used for stainln~. Sections were double stained as follows: (a) 15% 
(vol/vol) normal goat serum for 20 min at RT; (b) mAb anti-Bravo (culture 
supernatant or a 1:1,000 dilution of mouse ascites) for 45 rain at RT; (c) 
fluorescein-labeled anti-mouse second antibody (1:80 dilution) for 30 rain 
at RT; (d) normal mouse serum (1 mg/ml) for 30 rain at RT; (e) biotinylated 
mAb anti-Ca4/Ll (5/~g/mi) for 45 min at RT; and (f) Texas red-Streptavidin 
(1/100 dilution) for 30 rain at RT. The stained sections were screened in an 
epifluorescence microscope, with either fluorescein or rhodamine filter. 

Whole Mounts. Retinas removed from chicken eyes were flattened out 
on a filter, with the basal lamina (inner part) up, as described by Halfter 
et ai. (1983). Tectal whole mounts were prepared by dissecting the tecta out 
of the rest of the brain and spreading the isolated tecta fiat on a filter, with 
the ventricular surface (inner part) down, similar to the retinal whole 
mounts (Krtgor and Schwarz, 1990). 

For EM, E6 retinal whole mounts were prefixed in 4% (wt/vol) parafor- 
maidehyde for 4 h at RT and stained as described for tissue sections, except 
that incubation and washing times were doubled and that, in the last step, 
the whole mounts were incubated with peroxidase-Streptavidin (1:100 dilu- 
tion) for 1 h at RT and reacted with diaminobenzidine (0.5 mg/ml) and 
H202 (0.02% vol/vol) in PBS with Co 2+ and Ni 2+ enhancement. The tissue 
was postfixed with 2.5% (vol/vol) glutaraldehyde for 1 h at RT and pro- 
cessed for EM. 

Tectal whole mounts were stained with mAbs as described for tissue sec- 
tions, but with doubled incubation times. FOr staining native tissue, the 
whole mounts were first incubated with the antibody, then fixed with 4% 
(wt/vol) paraformaldehyde for 2 h at RT, and then stained. 

Explant Cultures. Retinal explant cultures (see below) were stained as 
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Hgure I. Biochemical char- 
acterization of Bravo. Shown 
are Western blots of immuno- 
affinity-purified Bravo antigen 
stained with either gold (lane 
1 ), mAb anti-Bravo (lane 2), 
or mAb L2 (lane 3). In ex- 
tracts from E8 retina (lane 4), 
E8 whole brain (lane 5), and 
P1 whole brain (lane 6), Bravo 
was identified by Western blot 
and immunostaining with mAb 
anti-Bravo. The antigen-anti- 
body complexes were revealed 
using the peroxidase proce- 
dure. The marks at the left 
margin indicate the position of 
molecular mass standards of 
180, 116, 84, 58, and 48.5 kD. 

described for tissue sections. The tissue was fixed (30 min at RT with 4% 
paraformaldehyde (wt/vol) either before the incubation with the mAb, or 
after, when living exptants had been stained. 

Embryo Manipulations 
Tracing of the Optic Fibers. The optic fibers were traced from the eye to 
the rectum by injection of rhodamine into the eye (Thanos and Bonhoeffer, 
1983). A lateral window was opened in the shell of fertilized eggs after a 
5-d incubation. The embryonic membranes were opened to allow access to 
the right eye, into which 1 #1 of a freshly prepared rhodamina solution was 
injected (1 mg of rhodamine dissolved in 2 #1 of DMSO, diluted with 100 
#1 PBS and clarified by centrifugation) with a glass capillary. After the ma- 
nipulation, the window was covered with a petri dish (35 ram), sealed with 
silicone and further incubated for a minimum of 30 h before whole mount 
tecta (tectum contralateral of the injected eye) or tissue sections were pre- 
pared. 

Eye Enucleation. Both eyes were removed from E2 chick embryos 
(Thanos and Diitting, 1988). 2 ml of the egg white was extracted from the 
egg with a syringe and a lateral window was opened to give access to the 
embryo, which was contrasted by injecting India ink underneath it. The op- 
tic vesicles were removed with tungsten needles and the egg was sealed with 
a petri dish cover (35 nun) and silicone and allowed to further develop in 
the incubator. At the desired stage, embryos were prepared for tissue sec- 
tions. 

Explant Cultures 
Explant cultures from E6 retinae were prepared as described by Halfter et 
al. (1983). The retina, mounted fiat on a membrane filter, was cut in strips 

with a tissue chopper set at 0.275 mm and cultured either on collagen gel 
or on retinal basal lamina, in DME/F12 medium (Gibco-BRL, Eggenstein, 
Germany) with 10% heat-inactivated FCS, 2% chick serum, and 50 #g/nil 
gentamicin. After 2 d in culture, the explants were stained. The collagen 
gel substrate was prepared from rat tail collagen, as described (Halfter et 
al., 1983). The basal laminae used as growth substrate were prepared from 
E7 retinae as described by Halfter et al. (1987). The basal lamina was fixed 
on petriperm plates (Heraeus-Amersil, Inc., Osterode, Germany), exposing 
the part which, in the retina, contacts the optic fibers. Such preparations, 
as shown by Halfter et al. (1987) consist of the basal lamina and the endfeet 
of ventricular cells. 

Results 

Biochemical Characterization of Bravo Antigen 
Bravo antigen was purified by immunoaflinity chromatogra-  
phy. Two components of  130 and 140 kD on SDS-PAGE 
(Fig. 1) were isolated from a 1-d-old chick (P1) brain extract 
on a column with immobil ized anti-Bravo antibody. On 
Western blots of  retina and brain extracts, mAb anti-Bravo 
again stains two components of 130 and 140 kD. The amount 
of  both components of  the Bravo antigen (relative to wet 
weight of  tissue) increases with the time of  embryonic devel- 
opment (Fig. 1). Both the 130- and 140-kD components 
cross-react with the mAb L2, specific for the HNK-1 epitope 
found in other molecules involved in cell interactions 
(Schachner et al . ,  1988). The 130- and 140-kD molecules 
have the same NH2-terminal sequence (Fig. 2), showing 
remarkable similarity to the L1 molecule, a member  of  a 
group of neural surface proteins that belongs to the immuno- 
globulin superfamily and contains fibronectin type HI do- 
mains (Moos et al . ,  1988). 

Bravo does not show immune cross-reactivity with the 
molecules G4, FI1, or neurofascin (Rathjen et al . ,  1987a,b; 
Br / immendorfe t  al . ,  1989) (data not shown). This, together 
with the partial  protein sequence data (Fig. 2), excludes 
identity between Bravo and other known molecules found in 
fiber-rich regions of  the developing chick embryo. 

Immunohistochemical Localization of Bravo in the 
Developing Chick Retinotectal System 
mAb anti-Bravo stains all the fiber layers of the retina and 
the optic tectum as soon as they are morphological ly 
identifiable. Bravo appears in parallel  with G4, an early ax- 
onal marker  which is considered to be the chick homologue 
of  L1 (this molecule will  be referred to here as G4/L1) (Rath- 
jen et al . ,  1987b; Layer et al . ,  1988). Fig. 3 illustrates the 
simultaneous presence of  both antigens at embryonic day 6 
(E6), when the optic fiber fascicles in the retina (Fig. 3, A 
and B) and the circumferential fiber fascicles in the rectum 
(Fig. 3, C and D) are already well formed (LaVail and Cow- 
an, 1971; Crossland et al . ,  1975; Puelles and Bendala, 1978; 
Rager, 1980). A coincident appearance of  G4/L1 and Bravo 

~ ~ V  ~ D ~ G ~ H V ~ ~ ~ V __ Figure 2. Comparison of ThesequencesofL1 L 1 : NH2- r ] - I  NH2-terminal sequences of the 
G4: NH2- P A D F D ? axonal surface proteins L1, G4, 

NH2- L L D S L ? E ? S ? ~]~ BRAVO: 
and C~ have been taken from 

Moos et al. (1988) and Rathjen et al. (1987b), respectively. The sequence of Bravo was determined as described in Materials and Methods. 
Identical residues are squared. Note also that several nonidentical residues are functionally similar and suggest relatedness (e.g., isoleu- 
cine/leucine, glutamate/aspartate). 
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Figure 3. Parallel appearance of Bravo and G4/L1 in the developing chick retinotectal system. Shown are double-stained tissue sections 
of E6 chick embryo retina (A and B, same section) and tectum (Cand D, same section). The axons are labeled either with mAb anti-G4/Ll 
(.4 and C) or with mAb anti-Bravo (B and D). Both the Bravo and the G4/LI molecule appear in the first fibers originating in the retina, 
the optic fibers (OF) in A and B, and also in the first fibers that develop in the tectum, the circumferential fibers (CF) in C and D. Bar, 
100 ~m. 

can be observed in the first emerging fibers along the whole 
neural tube and in cephalic vesicles at earlier stages of devel- 
opment (data not shown). 

Since mAb anti-Bravo was raised against an antigen prepa- 
ration enriched in surface molecules, we expected Bravo to 
be located on the cell surface or in the extracellular matrix. 
To investigate the precise location of this molecule, Bravo 
was also visualized in the retina by immunohistochemistry 
combined with EM. At E6, Bravo is clearly associated with 
the surface of the optic fibers in fascicles in the retina (Fig. 
4). Furthermore, retinal explant cultures (see below) showed 
definitively that Bravo is exposed as an axonal surface mol- 
ecule. 

While the optic fibers in the retina carry Bravo, this mole- 
cule was not detected on retinal axons in the tectum. Optic 
fibers projecting to the tectum were traced by injection of 
rhodamine into the eye. The rhodamine-labeled fibers are 
visible when entering the tectum at the rostral pole of E6 
whole mount tecta (Fig. 5, A and C). These fibers are not 
stained with mAb anti-Bravo (Fig. 5 B), but are stained with 
mAb anti-G4/L1 (Fig. 5 D). Circumferential fibers originat- 
ing in the tectum, however, are stained by both mAbs (anti- 
G4/L1 and anti-Bravo), as shown by confocal microscopy of 

E6.5 tectal whole mounts (Fig. 6). By optical sectioning, the 
staining by mAbs anti-G4/L1 and anti-Bravo was analyzed 
throughout the depth of the tissue. Circumferential fibers in 
deeper layers carry G4/L1 as well as Bravo, in marked con- 
trast to the optic fibers present in upper levels, only stained 
by mAb anti-G4/L1. Computer image processing of the pic- 
tures did not reveal, at any amplification of the signal, fiber 
structures in the top levels of the tectum stained with mAb 
anti-Bravo. In contrast, E6.5 whole mount retinas show clear 
staining of the optic fascicles with mAbs anti-Bravo as well 
as anti-G4/L1 (data not shown). Neither the optic fibers in 
the whole mount retinas nor the circumferential fibers in the 
whole mount tecta show regional differences in the level of 
Bravo. When considered together, all observations indicate 
that, while G4/L1 is present uniformly along the optic fibers, 
Bravo is detected differently in 'the retina than in the optic 
tectum. A polyclonal antiserum generated against Bravo 
yielded identical results (data not shown). 

At E8, most of the optic fibers have already reached the 
tectum and are forming the Stratum opticum (Crossland et 
al., 1975; Rager, 1980). Again, the optic fibers were not 
stained with mAb anti-Bravo, neither in E8 whole mount 
tecta nor in E8 tectal sections (data not shown), which sup- 
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Figure 4. LocalizatiOn of the Bravo molecule in the optic fibers in 
the retina. The electron micrograph shows an optic fiber fascicle 
(OFF) transversaUy sectioned in the central region of an E6 retina. 
Bravo surrounds the axons as revealed by iramunostaining. The ret- 
ina was stained as a whole mount with mAb anti-Bravo (peroxidase 
procedure) before being processed for EM. The inset shows the po- 
sition of axon fascicles in an equivalent section, fluorescence- 
labeled with mAb anti-Bravo, in the light microscope. VS indicates 
the vitreal (inner) surface of the retina. Bars, 2.5/~m. 

ports the observations made at earlier stages. On the con- 
trary, the optic fibers were brightly stained by mAb anti- 
G4/L1 (data not shown). Consequently, the lack of staining 
by mAb anti-Bravo of the optic fibers in the tectum cannot 
result from a delayed expression of Bravo in comparison with 
G4/L1. 

Bravo appears in the tectum in the same regions as the op- 
tic fibers, although these axons themselves are devoid of the 
Bravo molecule. To demonstrate that the appearance of 
Bravo in those optic regions is independent of the presence 
of optic fibers, tecta deprived of these fibers were studied. 
Fig. 7 shows sections of E8 tectum from embryos in which 
both eye vesicles had been removed at E2. These embryos 
lack the forming Stratum opticum. In contrast to the differ- 
ences between normal and eyeless embryos stained for 
G4/L1 (Fig. 7, ,4 and C), the general Bravo staining in the 
region of the forming Stratum opticum was not altered by the 
deprivation of fibers (Fig. 7, B and D). This suggests that tec- 

tal structures, other than optic fibers, react with the mAb 
anti-Bravo. Ventricular cell processes and end-feet present in 
that region are possible candidates. In support of this, prepa- 
rations of pial and tectal-limiting membrane (Kr6ger and 
Schwarz, 1990), including ventricular cell end-feet but free 
of fibers, show a strong Bravo reactivity (data not shown). 

Expression of  Bravo on Axons of  Retinal Explants 

A topologically restricted appearance of Bravo in the optic 
fibers has been clearly shown. However, the morphological 
data do not give precise information about the molecular 
mechanisms underlying this phenomenon or the signals con- 
trolling it. A simple experimentally modifiable system was 
chosen for experiments to prove or disprove possible mecha- 
nisms and signals. Some of the early steps of neural develop- 
ment of the chick retinotectal system can be reproduced in 
explant cultures of embryonic retina (Halfter et al., 1981; 
Bonhoeffer and Huf, 1982; Halfter et al., 1983; Walter et al., 
1987a,b). Therefore, this system was used to study the ap- 
pearance of Bravo on axons growing on different substrates. 

The basal lamina from the embryonic retina can be iso- 
lated, flattened out, and used as a substrate for outgrowing 
axons. This preparation consists of the inner basement mem- 
brane carrying the end feet of the ventricular cells (Halfter 
et al., 1987) and is very close to the natural substrate of optic 
fibers. Fibers grown on basal lamina indeed carry the Bravo 
molecule, as is the case in the embryonic retina (Fig. 8 B). 
The basal lamina preparation by itself does not show Bravo 
immunostaining. Intact living fibers are stained as well as 
fixed ones (data not shown), demonstrating the expected sur- 
face location of the Bravo molecule. This result was also 
reproduced with a polyclonal antiserum anti-Bravo (data not 
shown). 

Most interestingly, however, the presence of Bravo on out- 
growing retinal fibers was found to depend upon their envi- 
ronment. Very clearly, the fibers grown on collagen gel, 
which is a major structural component of the extracellular 
matrix but, in this case, not a natural substrate, carry very 
little, if any, Bravo (Fig. 8 D). Only close to the retina stripe, 
where some fibers fasciculate, a weak positive staining was 
detectable (data not shown). The lack of Bravo staining on 
fibers grown on collagen cannot result from an inaccessibil- 
ity of the antibody to the fibers in the culture dish, since the 
mAb anti-G4/L1 stains them brightly (Fig. 8, A and C). 

This result suggests that the appearance of Bravo on the 
surface of the optic fibers can be controlled by a signal as- 
sociated with the retinal basal lamina, the natural substrate 
of these axons. The in vitro results are consistent with the 
in vivo situation, in which the optic fibers grow close to the 
basal lamina and display the Bravo molecule. 

Discussion 

Increasing evidence is emerging that indicates that some of 
the molecules involved in the interaction of the axon with its 
environment during axonal navigation are subject to change 
and modulation during embryogenesis. Patterns of expres- 
sion of such molecules define particular regions of an axonal 
pathway. In the grasshopper, for example, fasciclins are 
differentially expressed on subsets of axon fascicles (Basfianl 
et al., 1987). Fasciclin I is exposed in particular commis- 
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Figure 5. Absence of Bravo in the optic fibers when entering ~e  tectum. Whole mount tecta showing rhodamine-labeled optic fibers (OF) 
in A and C, which are counterstained with mAb anti-Bravo (B), or with mAb anti-G4/L1 (D). Rhodamine was injected into the eye of 
E5 embryos. The subsequent staining with mAb anti-G4/L1 reveals a carpet of axons entering the tectum (D, same preparation as in 
C), which however is not detected with mAb anti-Bravo (B, same preparation as in A). Some tectal circumferential fibers in a deeper 
focal plane (CF) in B are stained with mAb anti-Bravo. The rostral poles of the tecta are indicated by stars. Bar, 100 ~tm. 

sural pathways, whereas fasciclin I is replaced by fasciclin 
II in longitudinal axon bundles. Quite similarly, in the rat 
embryo the glycoprotein TAG-I appears transiently on sub- 
sets of spinal cord axons in commissural processes, whereas 
longitudinal fascicles express the molecule L1 (identical or 
closely related to Ng-CAM, NILE, G4/L1, and 8D9) (Dodd 
et al., 1988; Rathjen, 1988). The replacement of fasciclin I 
by fasciclin II, and of TAG-1 by L1, occurs in a single axon 
that expresses different proteins in defined regions of its 
pathway. 

In addition to axonal surface protein shifts, the posttrans- 
lational modification of a single protein along axonal path- 
ways has been observed. In the chick embryo, between days 
E5 and El0, the embryonic form of N-CAM, which is highly 
sialylated and weakly adhesive, as well as its adult form, less 
sialylated and highly adhesive, appear in parallel on different 
stretches along the trajectory of optic fibers (Schlosshauer 
et al., 1984). Whereas the perikaryon and intraretinal axons 

Figure 6. Presence of Bravo and G4/L1 in the developing optic tec- 
tuna. Whole mount tecta are shown, "optically sectioned" with a 
confocal microscope (system of Bio-Rad Laboratories, coupled 
with a Zeiss inverted microscope). The tecta (E6.5), labeled with 
mAb anti-G4/L1 (A) or with mAb anti-Bravo (B), were scanned 
(every 3 am) from the bottom (section 1) to the top (section 8). 
The circumferential fascicles (CF) in deeper layers (1-4) are 
stained with both antibodies whereas the optic fibers (OF) in the 
upper layers (5-8), readily stained with mAb anti-G4/L1, are not 
detected by mAb anti-Bravo staining. Bar, 100 ~tm. 
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Figure 7. Presence of the Bravo molecule in the tectum deprived of optic fibers. Tectal sections are shown of a normal E8 embryo (A and 
B, same section), compared with those of an eyeless E8 embryo (C and D, same section), from which both optic vesicles had been removed 
at E2. The sections were stained with mAb anti-G4/L1 (A and C), which demonstrates the complete absence of optic fibers (OF in A) 
in the eyeless embryo (C). mAb anti-Bravo (B and D) reveals the presence of the Bravo molecule also in tecta devoid of optic fibers (D), 
indicating that Bravo is present in structures other than the optic fibers. A slight difference observed between normal and optic 
fiber-deprived tecta is due to the lag in development as a consequence of the manipulation during enucleation. The arrows indicate the 
position of the forming Stratum opticum in A and B and the corresponding position in C and D. Bar, 100 #In. 

carry the low sialic acid derivative, extraretinal axons expose 
the embryonic form rich in sialic acid. 

As described here, another case of spatial restriction of 
surface compounds along axonal pathways is reflected by the 
appearance of the Bravo molecule along the retinotectal 
projection. Bravo appears as a surface protein early in devel- 
opment, at about the time when axons start to emerge from 
neuronal cells. Optic fibers within the retina expose the 
Bravo molecule (Figs. 3 B and 4), whereas, at the same stage 
of development, when entering the tectum, these axons are 

devoid of Bravo or carry it in an undetectable form (Figs. 5 
and 6). As opposed to G4/L1, whose distribution is relatively 
uniform along the optic fibers, Bravo shows a topologically 
restricted location in the chick retinotectal projection. 

The mechanisms underlying the topologically restricted 
expression of molecules are not yet well characterized. The 
expression of TAG-l/L1 and of fasciclins I and H may be con- 
trolled either by an autonomous program of the neuron or 
by signals from the axonal environment. In the case of Bravo, 
the appearance of the molecule on the axonal surface de- 
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Figure 8. Substrata-dependent appearance of Bravo on fibers in retinal explant cultures. Shown are retinal explants grown for 2 d on retinal 
basal lamina (A and B) or on collagen gel (C and D). The explants were stained with mAb anti-G4/L1 (A and C) or with mAb anti-Bravo 
(B and D). The staining with mAb anti-G4/L1 is intense on fibers grown on either substrates (A and C). On the contrary, fibers grown 
only on retinal basal lamina are intensively stained with mAb anti-Bravo (B), in contrast to fibers grown on collagen (D). The explanted 
retina stripes are at the bottom of the pictures. The preparations of each mAb were photographed and printed under identical exposure 
conditions. Bar, 100 #m. 

pends, at least in vitro, on environmental cues. Axons grown 
on retinal basal lamina carry Bravo, in contrast to axons 
grown on collagen gel (Fig. 8). The precise nature of the en- 
vironmental signals, of their topological control, and of the 
cellular response remains to be elucidated. 

Many mechanisms could account for such a pattern of 
topological restriction. Differential synthesis and turnover, 
selective membrane insertion and stabilization by interaction 
with cytoskeletal or extracellular components, and differen- 
tial release from the membrane are, in principle, equally 
plausible. The simplicity of the retinal explant culture sys- 
tem, as described in this paper, allows manipulations of the 
fiber environment and observation of its consequences on the 
expression of the Bravo molecule. The availability of such a 

system is a prerequisite to analyze the cellular and molecular 
mechanisms involved in topological restriction. In addition, 
confocal microscopy together with image processing and 
analysis should allow a precise quantification of the amounts 
of Bravo. 

The Bravo molecule is also found in neural tracts other 
than the optic fibers. This implies a role of the molecule be- 
yond the retinotectal system. At present, a discussion of the 
function of Bravo has to remain speculative. The restricted 
pattern of expression during the formation of the retinotectal 
projection suggests a role in axonal navigation. Also the pos- 
sible relationship of Bravo with L1 and with other members 
of the immunoglobulin superfamily, signals its involvement 
in cell-cell and/or fiber-fiber contacts. The possibility that 
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Bravo functions through a specific binding interaction with 
itself, with G4/L1, or with other molecules needs to be inves- 
tigated. 
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