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Abstract
When faced with a variable environment, organisms may switch between different strategies
according to some probabilistic rule. In an infinite population, evolution is expected to favor the rule
that maximizes geometric mean fitness. If some environments are encountered only rarely, selection
may not be strong enough for optimal switching probabilities to evolve. Here we calculate the
evolution of switching probabilities in a finite population by analyzing fixation probabilities of alleles
specifying switching rules. We calculate the conditions required for the evolution of phenotypic
switching as a form of bet-hedging as a function of the population size N, the rateθ at which a rare
environment is encountered, and the selective advantage s associated with switching in the rare
environment. We consider a simplified model in which environmental switching and phenotypic
switching are one-way processes, and mutation is symmetric and rare with respect to the timescale
of fixation events. In this case, the approximate requirements for bet-hedging to be favored by a ratio
of at least R are that sN > log(R) and θN > R.
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Bet-hedging organisms decrease their risk in an unpredictable environment by producing
offspring of different phenotypes according to some probabilistic rule (Seger and Brockman,
1987). Bet-hedging theory was originally developed to describe an annual plant’s tradeoff
between germinating seeds immediately versus germinating them over a larger number of years
(Cohen, 1966). When only two different environments are encountered, one good and one bad,
and the number of seeds produced is large, the predicted optimal strategy is to germinate a
proportion of seeds each year approximately equal to the probability that a seed will encounter
a good environment that year (Cohen, 1966).

Bet-hedging theory has been applied in many traditional ecological settings, including the
resistance of weeds to eradication (Roberts and Feast, 1972; Swanton and Weise, 1991),
invertebrate silk ballooning dispersal (Bell et al., 2005), the perennial life cycle of plants
(Tuljapurkar, 1990), variable diapause in such diverse animals as crustaceans (Hairston and
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Munns, 1984), mosquitoes (Andreadis, 1990), sponges (Fell, 1995) and fish (Martin, 1999),
and variable offspring size in frogs (Crump, 1981). There has also been much interest recently
in phenotypic switching behaviors in microbes as a form of bet-hedging against novel and
hostile environments (Avery, 2006; Kussell et al., 2005; Kussell and Leibler, 2005; Stumpf et
al., 2002; Thattai and van Oudenaarden, 2004; Wolf et al., 2005). Examples of bet-hedging in
the form of phenotypic switching or phase variation include pili expression in bacteria
(Abraham et al., 1985), phage growth limitation machinery (Sumby and Smith, 2003), bacterial
persistence (Balaban et al., 2004; Kussell et al., 2005; Kussell and Leibler, 2005), the yeast
prion [PSI+] (Masel, 2005; Masel and Bergman, 2003; True and Lindquist, 2000), viral latency
(Stumpf et al., 2002), as well as many other examples (Avery, 2006; Hallet, 2001; Henderson
et al., 1999).

In the study of bet-hedging strategies, optimality is usually defined according to the
maximization of expected geometric mean fitness over time, even at the expense of a decrease
in arithmetic mean fitness (Seger and Brockman, 1987). If one phenotype is very strongly
adaptive, but only on very rare occasions whose frequency isθ, then geometric mean fitness
calculations predict that the phenotype will be optimally expressed with probabilityθ. This
geometric mean fitness approach to bet-hedging has recently been exploited to explain
phenotypic switching phenomena in microbes (Kussell et al., 2005; Kussell and Leibler,
2005; Stumpf et al., 2002; Thattai and van Oudenaarden, 2004; Wolf et al., 2005).

Unfortunately, geometric mean fitness calculations invoke infinitely large populations, and
hence cannot capture the dynamics of weak selection. It has been suggested that selection for
optimal bet-hedging in real populations may be weak, and that true optimality is not always
achieved (Philippi, 1993). There are two scenarios of weak selection. First, selection for bet-
hedging may be of recent origin, with insufficient time for optimal strategies to evolve. Second,
selection for bet-hedging may be infrequent. In this case, even if an allele that hedges against
rare catastrophic events has maximal geometric mean fitness, short-term selection against this
allele may drive it extinct before the next catastrophic event occurs. This second limitation
relating to the “myopic” nature of natural selection has largely been considered with regards
to the evolution of evolvability (e.g, Sniegowski and Murphy (2006)), but also applies to the
evolution of all bet-hedging strategies against rare events.

One way to study the limitations posed by weak selection of this kind is to focus on fixation
probabilities rather than geometric mean fitness, thus explicitly capturing extinction dynamics
(Masel, 2005; Masel and Bergman, 2003; Nowak et al., 2004; Proulx and Day, 2001). Here
the fixation probability of a bet-hedging strategy is the probability that it replaces the resident
strategy in a population, when it is originally held by a single individual. In this setting,
optimality, rather than maximizing some explicit fitness function, becomes a game-theoretic
notion. For example, in the formulation of Masel (2005), a strategy S is called optimal if, for
every strategy T, the fixation probability of S in a resident population of T is at least as large
as the fixation probability of T in a resident population of S.

The optimal strategy was computed according to this definition by Masel (2005), using a
simplified model of a fluctuating environment and various approximations for computing
fixation probabilities. Counterintuitively, as the population size increased, the optimal strategy
diverged from the expected result of phenotype expression with probability equal to that of the
environment making the phenotype useful. This discrepancy at large population sizes is
puzzling in the light of the fact that the expected result was derived for an infinite population
(Kussell et al., 2005). Here we revisit the Masel (2005) model, and describe improved analytical
and computational methods for estimating fixation probabilities, which we validate using
Monte Carlo simulations. This leads to qualitatively and quantitatively different results to those
of the earlier study (Masel, 2005), including the elimination of this puzzling discrepancy.
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2. MATHEMATICAL MODEL
We consider individuals having two phenotypes, A and B. These phenotypes are heritable, but
subject to random switching: with probability m an offspring of a type A individual will be of
type B, and with probability m′ an offspring of a type B individual will be of type A. Here the
probabilities m and m′, which completely characterize the bet-hedging strategy, are assumed
to be governed by some heritable modifier allele M.

We also consider two environments, E and F, with stochastic switching between the
environments. The waiting times until environmental changes are modeled as being
exponentially distributed, with rateθ from E to F and rateθ ′ from F to E. Here the units of time
are generations, so for example when starting in environment E, the probability that a change
to F happens within t generations is given by 1 − e −θt. In environment E, type A individuals
have fitness fAE and type B individuals have fitness fBE. In environment F, type A individuals
have fitness fAF and type B individuals have fitness fBF.

Note that our assumption of discrete and heritable phenotypes has been most frequently studied
in microbial contexts, but also applies to any epigenetically inherited state. Similarly, the highly
autocorrelated environments that we model are most frequently assumed in microbial contexts
in which environmental change is rare relative to generation time, but our model also applies
to exceptionally rare events in the context of organisms with longer generation times. Note that
our model describes bet-hedging against aggregate rather than idiosyncratic risk (Robson et
al., 1999).

We are concerned with the following two main problems:

1. Given two genotypes that differ only in modifiers controlling their phenotypic
switching probabilities m and m′, what is the probability that a single individual with
one genotype replaces a resident population with the other genotype?

2. What are the “optimal” switching probabilities m and m′, for some suitable definition
of optimality? (For this question to be interesting, A individuals should be more fit
than B individuals in one of the two environments, and less fit in the other.)

2.1 Full model
To address these questions we consider a haploid population of constant size N consisting of
four types of individuals, A1, A2, B1, B2, where A and B indicate the phenotypes, and the
subscript indexes the modifier allele --- subscript 1 for modifier allele M1, which has switching
probabilities (m1, m1′ ), and subscript 2 for modifier allele M2, which has switching
probabilities (m2, m2′ ).

We use a Moran model for the evolutionary process: at each step one individual is chosen
uniformly at random to die, and one individual (possibly the same) is chosen to reproduce with
probability proportional to its fitness in the current environment. The newly-born individual
immediately switches phenotype with probability m1, m2, m1′, or m2′, according to its type.
Before taking each step, the environment has an opportunity to change: if the environment is
currently E, it switches to F with probability T1,2, and if the environment is currently F, it
switches to E with probability T2,1, where T = exp(R) is the rate matrix

R = ( − θ / N θ / N

θ ′/ N − θ ′/ N ). Note that N birth-death rounds in the Moral model correspond to

one generation for the population, and that when θ′ = 0 we have T = (e−θ/N 1 − e−θ/N

0 1 ).

King and Masel Page 3

Theor Popul Biol. Author manuscript; available in PMC 2008 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Eventually one of the two modifier alleles will be lost, and the population will consist entirely
of type A1 and B1 individuals, or entirely of type A2 and B2 individuals. Under this model, the
evolution of the population and environment are jointly Markovian, so by standard Markov
chain theory it is in principle possible to compute the probabilities of each of these two
outcomes by solving a particular system of linear equations --- see, for example, section 1.3
of Norris (1998).

The number of equations in this system is equal to the size of the state space (≈ N 3/3; see
Appendix A). The system of equations is quite sparse, as each state can move in one step to at
most 13 other states. By ordering the states appropriately, one can structure the system of
equations to be band-diagonal with upper- and lower- bandwidth of order N 2, but no smaller
(even for a single environment), as described in Appendix A. Solving this system directly with
a band-diagonal solver would then have space requirements of order N5 and time requirements
of order N 7 (see e.g. section 4.3 of Golub and Van Loan, (1996)), making it currently
impractical for N above 100 or so. It may be possible to bring the time and space requirements
closer to order N 3 by using a direct method that exploits the sparseness via a different strategy,
or by using an iterative method such as conjugate gradients, but we do not pursue these direction
here. Rather, we make several simplifying assumptions, and use several approximations, to
arrive at an algorithm for computing approximate fixation probabilities in order N time and
space. This is suitable for population sizes up to at least 10 million.

2.2 Simplifications and approximations
To simplify the problem, we assume that different evolutionary processes occur on sufficiently
different time scales such that they can be separated (Gillespie, 1983). In particular, we assume
that environmental change events are rare relative to the time scales of phenotypic switching
and of fixation at the modifier locus. Rare environmental change events mean that we can study
switching from environment E to F and associated adaptive phenotypic switching from A to
B separately from switching in the reverse direction. Without loss of generality, we consider
environmental switching in a single direction only, and set θ ′ to zero.

The next simplifying assumption is that phenotype B has fitness 0 in environment E, i.e., that
fBE = 0. This is a conservative assumption, simplifying the mathematics while increasing the
cost of phenotypic switching and hence making it harder for bet-hedging to evolve. As only
the relative fitnesses within each environment matter, we may assume without loss of generality
that fAE = 1 and fAF = 1, and we will write fBF = 1 + s.

Since we are studying evolutionary processes associated only with switching from E to F, we
begin in environment E as our initial condition. Since phenotype B has fitness 0 in environment
E, we initialize the population with phenotype A only. Phenotypic switching from B to A now
has no opportunity to occur in environment E, and in F it is both rare and disadvantageous, so
we approximate m′ as zero.

Again employing the “weak mutation” separation of timescales approximation (Gillespie,
1983), we assume that mutations at the switching modifier locus are rare relative to other
processes. We therefore consider events occurring after each such mutation, and begin with
N – 1 individuals of type A1 and a single individual of type A2. We define pfix(m1, m2) to be
the probability that modifier allele M2 with switching probability m2 ultimately fixes, i.e. that
the population eventually consists entirely of type A2 and B2 individuals. We will sometimes
write pfix (m1, m2) as pfix(m1, m2, N, θ, s) to emphasize its dependence on N, θ, and s.

These same simplifying assumptions were used in Masel (2005), and in what follows we mostly
use the same notation as in that study, except that here we denote fixation probabilities by
pfix rather than pinvasion, and we use hats to denote approximate values e.g., p̂fix
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With these simplifications, we can approximate the population in environment E as consisting
of two types of individuals, A1 and A2, having fitnesses 1 – m1 and 1 – m2, respectively. This
approximation becomes exact if we change the rules of the Moran model in environment E
slightly, so that new-born individuals of type B, which have fitness 0, are replaced immediately.
This effectively reduces the state space of the Markov chain to size N + 1, and allows us to
compute the probability q(1, i) that there are exactly i individuals of type A2 at the time of the
first environmental change to F, given that there was initially just one. Details are given in
section 2.4.

In environment F, we again explicitly track only the numbers of types A1 and A2 individuals,
but here we introduce “jump” moves --- each time a new type B individual appears by
phenotypic switching, we estimate the probability that it and its descendents eventually take
over the population, treating this as a single step in the Markov chain. Using this chain we
compute the approximate probability p(i) of a modifier allele with switching probability m2
fixing, given that there are exactly i individuals of type A2 at the time of the environmental
change. Details are given in section 2.5.

Our approximation p̂fix(m1, m2) to pfix(m1, m2) is then computed as

p̂fix(m1, m2) = ∑
i=0

N
q(1, i)p(i) (1.)

The values q(1, i) for i = 0, …, N can be computed numerically by solving a single system of
N + 1 linear equations, as can the values of p(i) for i = 0, …, N. In both cases the systems of
equations are tridiagonal, so can be solved in time and space of order N ---see, e.g., Golub and
van Loan (1996). These systems can be solved in memory for N up to about 10 million on a
computer with 1GB of RAM.

2.3 Optimality
To address problem (2) above, we need a definition of optimality. As in Masel (2005), we will
say that the switching probability m1 is optimal (for given N, θ, and s) if pfix(m1, m2, N, θ, s)
≥ pfix(m2, m1, N, θ, s) for all switching probabilities m2. (Here we are still assuming that θ ′ =
0 and m′ =0, although the above definition of optimality readily extends to the more general
case.) The two-way comparisons used to define optimality are equivalent to asking which of
two possible alleles will be more prevalent if mutation rates are symmetric and mutations are
rare relative to fixation time --- see section 4.1.

With this definition, for any given parameters N, θ, and s we can ask whether an optimal
switching probability exists and whether it is unique. While we do not presently have a formal
answer to either of these questions for this model, both appear to hold numerically for all of
the parameter values we have tried. Moreover, for this particular model it appears, from Fig.
3A and other numerics, to be sufficient to check optimality locally, i.e., that if pfix (m2, m1) ≥
pfix (m1, m2) holds for all m2 in a small interval [m1 −ε, m1 +ε] around m1 (with ε> 0), then it
also holds for all m2 in the entire interval [0, 1]. This makes numerical search algorithms for
mopt straightforward, while allowing all values of mopt returned by the algorithm to be
subsequently checked for global optimality.

2.4 Model preceding environmental change
Suppose we are in environment E, and that a population currently consists of i individuals of
type A= and N – i individuals of type A1. The number of type A2 individuals increases to i + 1
after one step of the Moran model if a type A2 individual is chosen to reproduce and a type
A1 individual is chosen to die. The probability that both these events happen is given by
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λi =
(1 − m2)i

((1 − m1)(N − i) + (1 − m2)i)
× N − i

N .

The probability that the number of type A2 individuals decreases from i to i – 1 is given by the
probability that a type A1 individual is chosen to reproduce and a type A2 individual is chosen
to die:

μi =
(1 − m1)(N − i)

((1 − m1)(N − i) + (1 − m2)i)
× i

N .

Let q(i, j) be the probability that there are exactly j individuals of type A2 at the time of the
next environmental change event, given there are initially i individuals of type A2. To evaluate
Equation 1, only the values q(1, j) for j = 1, …, N are needed. (The value q(1,0) is not needed
since p(0) = 0.) The values q(1, j) for j = 1, …, N –1 can be found by solving the single tridiagonal
system of linear equations

q(1, j) = 1 − e−θ/N + e−θ/N (μ j+1q(1, j + 1) + (1 − λ j − μ j)q(1, j)) for j = 1

q(1, j) = e−θ/N (λ j−1q(1, j − 1) + μ j+1q(1, j + 1) + (1 − λ j − μ j)q(1, j)) for j = 2, … , N − 2

q(1, j) = e−θ/N (λ j−1q(1, j − 1) + (1 − λ j − μ j)q(1, j)) for j = N − 1

and q(1,N) --- the probability that a single m2 individual fixes by drift before an environmental

change --- is given by q(1, N ) = q(1, N − 1) e −θ/N

1 − e −θ/N
λN−1. The derivation of the single

tridiagonal system of linear equations is given in Appendix B: this is the key mathematical
observation of the current work, as it reduces a calculation that appears to be of order N2 to a
far more tractable order N. This allows us to compute the values q(1, j) directly, avoiding several
of the approximations used in Masel (2005).

2.5 Model after environmental change
Suppose now we are in environment F. If the population consists of i individuals of type B
(which have fitness 1 + s) and N – i individuals of type A (which have fitness 1), and if we
neglect further phenotypic switching, then following Ewens (2004) Eq. 2.158, the probability
π(i) that type B fixes is given by

π(i) = 1 − (1 + s)−i

1 − (1 + s)−N
for s ≠ 0; π(i) = i / N for s = 0. (2.)

In what follows we set y = π (1) --- the probability that a single B replaces a resident population
of type A. Suppose that at the time of the change to environment F, there are i individuals of
type A2 and N – i individuals of type A1. We wish to compute p(i), the probability that the
m2 allele fixes --- this includes both the possibility of adaptive B2 individuals sweeping the
population, and the possibility of A2 individuals taking over by drift.

To avoid explicitly tracking four types of individuals, we instead consider a population
consisting only of type A individuals, say i of type A2 and N – i of type A1. This is always the
case in environment E, since we have assumed that type B individuals have fitness zero there,
and are replaced immediately. This population evolves by neutral drift until it reaches an
absorbing state i = 0 or i = N, but with the following modification:

King and Masel Page 6

Theor Popul Biol. Author manuscript; available in PMC 2008 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Each time an A2 is born, with probability m2 it switches to B2. In this case with probability y
we jump immediately to state i = N; this jump corresponds to the new-born B2 variant being
destined for fixation. With probability 1 – y this variant does not become fixed, and is eliminated
from future consideration: this reduces the number of A1 and A2 individuals to N –1. To keep
the size of the population we are tracking constant, we replace the B2 by an A1 with probability
(N – i)/(N – 1) and by an A2 with probability (i –1)/(N – 1). (Note that these replacement
individuals are not given the opportunity to switch phenotype, but such two-in-a-row switching
should happen with probability of order m2.)

Similarly, each time an A1 is born, with probability m1 it switches to B1. In this case with
probability y we jump immediately to state i = 0; otherwise the B1 is replaced by an A1 with
probability (N − 1 − i)/(N − 1) and by an A2 with probability i/(N − 1).

Under this approximation, the values p(i) satisfy the following tridiagonal system of linear
equations:

p(0) = 0
p(i) = ri + ai p(i − 1) + bi p(i) + ci p(i + 1) for i = 1, … , N − 1

p(N ) = 1

where

ai = i(N − i)(1 − m1) + i(N − i)m1(1 − y)(N − i − 1) / (N − 1) + i 2m2(1 − y)(N − i) / (N − 1) / N 2

ci = i(N − i)(1 − m2) + i(N − i)m2(1 − y)(i − 1) / (N − 1) + (N − i)2m1(1 − y)i / (N − 1) / N 2

bi = 1 − ai − ci − i m2 y / N − (N − i)m1 y / N

ri = i m2y / N

This formulation differs from that in Masel (2005) in several regards, and has the advantages
that it becomes exact when y = 1, and gives p(i) = i/N when m1 = m2.

Note that, for s > 0, if there is more than one type B variant, then y overestimates the probability
that any particular one of these type B variants eventually takes over the population. (For
example, when s = 0.2 and N is large, y is roughly 1/6; if there are ten type B variants they
certainly cannot each have probability more than 1/10 of taking over the population.) In some
cases the population may become pure B while it is still comprised of a mixture of B variants
with independent origins. This is known as a “soft sweep”, as opposed to the traditional scenario
considered by population genetics of a “hard sweep” in which a single adaptive variants is
selected to the point of fixation (Hermisson and Pennings, 2005). In practice, however, our
approximation works well for a wide range of parameters, as analyzed in Appendix C and
assessed with Monte Carlo simulations in Appendix D.

2.6 The accuracy and biological significance of m̂opt
For fixed N, θ, and s, if the curves for pfix(mopt, m, N, θ, s) and pfix(m, mopt, N, θ, s), as functions
of m, are flat for m close to mopt, then even if our approximate fixation probabilities are accurate,
our approximation m ̂opt may be less accurate. In such cases the accuracy of m ̂opt can be difficult
to assess with Monte Carlo simulations, because small differences in probabilities require many
simulation runs to resolve. In addition, when these curves are flat then the theoretical superiority
of m ̂opt relative to close values of m does not reflect a significant biological advantage.

To give a sense of the flatness of the curves, after computing m ̂opt, we found the range of m
surrounding m ̂opt for which p̂fix (m,m ̂opt)/p̂fix (m ̂opt ,m)< R , for several thresholds R > 1. (By
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the definition of m ̂opt, this ratio is at least 1.) For mild inaccuracies in computing fixation
probabilities, these intervals should contain the true value of mopt. Under certain assumptions
the ratio pfix (m, mopt )/pfix (mopt ,m) is also approximately equal to the ratio of times for which
a population is homogeneous for mopt versus m alleles (Proulx and Day, 2001) --- see section
4.1. For this reason, the magnitude of R can be interpreted as a measure of the extent to which
mopt is superior.

3. RESULTS
In Figure 1A we show the estimated optimal probability of phenotypic switching, m ̂opt, as a
function of the three parameters of the model, N, θ and s. For N larger than some critical cutoff,
we get m ̂opt ≈ θ. (Note that since θ can be arbitrarily large but m can be at most 1, this relationship
breaks down for largeθ; it is more accurately given by m ̂opt ≈ 1−e−θ = θ− θ2/2! + θ3/3!-...,
where 1−e−θ is the probability that the environment changes within one generation. The
difference between θ and 1 − e−θis barely noticeable in the curve for θ = 0.1 in Figure 1A
(where 1 − e−θ= 0.095), and is negligible for smaller θ.) This result agrees with the classical
result (Cohen, 1966) confirmed for phenotypic switching through geometric mean fitness
calculations (Kussell et al., 2005), namely that the optimum probability of expressing a trait is
approximately equal to the probability that the trait is adaptive.

With smaller population sizes, bet-hedging alleles are not favored by natural selection. The
minimum cutoff value of N depends on the parameters s andθ; the cutoff increases as s decreases
and as θ decreases. Below this cutoff value of N, bet-hedging alleles are only mildly disfavored,
however. In Figure 1B we show envelopes around m ̂opt consisting of those m for which p̂fix
(m, m ̂opt) / p̂fix (m ̂opt ,m)<R , for R = 1.01, 2, and 10, where R is a good measure of the extent
to which one allele is favored over another, as described in Sections 2.6 and 4.1. These
envelopes are rather broad for small N, and narrow as N increases. When m = 0, we refer to
the ratio R =p̂fix (0,mopt ) / pfix (mopt ,0) as the “advantage of bet-hedging.”

In Figures 1C and 1D we compare the fixation probabilities for m = 0 and m =θ alleles, for a
variety of parameters N, s, and θ. For small N, m = 0 is favored over m =θ, although only
slightly. As N increases, m = θ becomes favored over m = 0 (provided s > 0 and θ> 0). Note
in Figure 1C that for small sN, the switching probability m =θ can be disfavored relative to no
switching. This approximate result is confirmed in Figures 4F and 4I. When sN is very small,
switching phenotypes gives only a negligible advantage in environment F. But it gives a
disadvantage in environment E that depends on mN, which can be larger. So the switching
probability m =θ can be worse than m = 0 when sN is small. Of course, in such cases sufficiently
small positive switching probabilities m < θ will be approximately neutral.

In Appendix E we look at the minimum value of N more carefully as a function of θ and s,
showing that the smallest value of N for which m ̂opt > 0 is around

Nmin ≈ 2(s + 1)
sθ . (3.)

But we are more interested in knowing for which parameters bet-hedging is strongly favored,
say p̂fix (0,m ̂opt, N,θ, s) / p̂fix (m ̂opt,0, N,θ, s)>R for R = 10 or R = 100. We first consider the
case of large θ, then the case of large s.

For fixed N and s > 0,p̂fix (0, m ̂opt , N, θ, s) / p̂fix(m ̂opt ,0, N, θ, s) increases as θ increases; it is
bounded above by the ratio of the fixation probabilities of type B to type A alleles in
environment F, which is given by π(1)/(1 – π (N – 1)), with π (i) as defined in Equation 2. This
ratio simplifies to (1 + s) N – 1, providing the bound R≤(1 + s) N – 1 < (1 + s) N. Rearranging
this inequality gives the bound N > log(R)/log(1 + s), and the bound
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s > R 1/N − 1 (4.)

The approximation (1 + s)N≈esN is good for large N when sN is not too large. It is accurate to
within about two percent when N > 104 and sN < 20, so for N >104 and R up to about 109 we
can use the simpler approximate bound

s > log (R) / N . (5.)

Next we consider the case of large s. Let θmin (R, N, s) denote the minimum θ required for bet-
hedging to have advantage R, as a function of N and s. We can numerically compute a lower-
bound θmin (R, N, s) by setting y = 1 in our formula for p(i), corresponding toθmin (R, N,∞). It
appears that

θ = 3 (R − 1) log (R)
N log (N ) , (6.)

gives a good approximation to θmin (N, R, ∞) for R between roughly 1 + 10 log(N)2/N and
N 2 /100. Figures 2A and 2B show target ratios R plotted against the computed ratios p̂fix
(0,m, N, θ, s) /p̂fix (m,0, N, θ, s), where, θ is given by Equation 6, s = ∞, and m = 1 – e−θ≈
mopt. Note that θ in Equation 6 is roughly proportional to R1/2 in Figure 2A, and to (R–1)1/2 in
Figure 2B (using the approximation log(1 + x) ≈ x for small x), and that the advantage of bet-
hedging is sensitive to θ in the ranges shown --- θ has not saturated, so no significantly smaller
θ would allow as large an advantage. This range of R shown in Figures 2A and 2B corresponds
to a range of θ from ~30log(N)/N 2 to ~0.1. Note also that although the condition y = 1
corresponds strictly to s = ∞, the computed ratios change very little for s down to about 10.

Thus for bet-hedging to have an advantage of at least R, the parameters s and θ should satisfy
Inequality 4 (or s > log(R)/N, for appropriate R and N) and θ>θ min (N, R, ∞), which can be
approximated by Equation 6 when R is between 1 + 10 log(N)2/N and N2/100. They should
also satisfy the inequality sθ> 2/N 2, although this provides no additional restriction when R is
greater than about log(N)2. Figure 2C shows the regions of parameter space defined by these
inequalities for various R, with N = 106. In Figure 2D we attempt to make these regions more
precise for R = 100 and various N, by numerically computing estimates of θmin (N, R, s) for
finite s.

The minimum rate of environmental change θ increases gradually as s decreases down to about
100/N, and increases sharply for smaller s. Our computed values p̂fix (m1, m2 , N, θ, s) can
become noticeably inaccurate for sN < 10 when θ is large (see Fig. 4H). Because of this, we
have limited these curves to s > 10/N and approximated the entire range for s > log(R)/N by a
hyperbola in log(s) and log(θ) having asymptotes at s = log(R)/N and at θ given by Equation
6. Such a hyperbola is given generically by

log (θ) = g(N , R)
log (s) − log ( log (R) / N ) + log (3 (R − 1) log (R)

N log (N ) ) (7.)

where the adjustable parameter g(N,R) was fit by eye as 0.12 log(N) for R = 100; we did not
explore the dependence of g(N,R) on N or R in detail, but this simple estimate allows us to
roughly extrapolate a curve for N = 108. This covers the range of the estimated effective
population size Ne ≈ 107–108 for Saccharomyces, and is at the lower-end of the estimated
effective population sizes for prokaryotes (Lynch and Conery, 2003; Wagner, 2005).

For bet-hedging to provide an organism with a 100-fold advantage in a population of effective
size Ne = 108, necessary conditions are s > 4.6×10−8 (from Inequality 5) and θ> 3.5×10−8 (from
Equation 6). From the approximations in Figure 2D it appears that a conservative sufficient
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condition is for both s > 10−6 and θ> 10−6 to hold, as the rectangle described by these two
inequalities lies completely above the curve for N = 108.

Note that the persistent nature of both the environment and heritable phenotypes are important
to our results. Consider the case of non-persistent switching in environment F: If each
individual chooses phenotype B with probability θ, independently in each round of the Moran
model, then the selective advantage of switching would scale as s θ The value of sθN required
for switching to be favored by a ratio R would then scale as log(R) in environment F --- a much
more stringent requirement than given above. This condition is relaxed somewhat if phenotype
B persists for the duration of an individual’s life, and is further relaxed if phenotype B is
heritable, which is the framework we consider. The example above corresponds to the case
where a persistent change to environment F has been made. The results would again be different
if environmental changes were nonpersistent, so that F occurred independently with probability
θ each generation.

Note also that we do not claim that m2 = mopt is the optimal response to all switching
probabilities m1, in the sense of maximizing pfix (m1,m2 ) / pfix (m2 ,m1 ) simultaneously for
all m1 in the interval [0, 1]; In particular, we do not claim that m2 = mopt maximizes this ratio
when m1 = 0. Based on computations using Equation 1, and Monte Carlo simulations, it appears
that when m1 = 0 this ratio can be maximized for m2 much smaller than mopt --- decreasing
m2 can lead to a modest decrease in pfix(0,m2) that is more than compensated for by a large
decrease in pfix(m2,0). It should therefore be emphasized that the minimality of θ in Equation
6, and the curves in Figure 2C and 2D --- apply to the case of m2 = mopt and m1 = 0. An
advantage R over no switching (m1 = 0) may be attainable for θ< θ min (R, N, s) by a suboptimal
switching probability m2 < mopt. But such a switching probability m2 would be disfavored
relative to mopt.

In Figure 2D, for the points calculated along the curves for N =105–107 we have m ̂opt≈0.9θ
when sN = 10, and θ > m ̂opt>0.99θ when sN > 100. In Figure 1A, we see that for fixed s and
N,m ̂opt approaches θ sooner for larger θ. Thus we expect that mopt is very nearly θ (or 1 –
e−θ when θ> 0.1) within the entire region satisfying s > 10−6 and θ> 10−6 described above for
N = 108.

In Figure 3A, we show the surfaces defined by p̂fix (m1,m2) and p̂fix(m1,m2) for all m1 and
m2, for N = 10000, θ = 0.001, and s = 0.1. In Figure 3B we show that for these parameters there
is a unique m ̂opt for which p̂fix (m,m ̂opt )/ p̂fix (m ̂opt ,m)≥1 for all m. Note that Figure 3A and
other numerical computations suggest that for this particular model it may be sufficient to check
optimality locally, i.e., if pfix (m2, m1)≥pfix (m1, m2) holds for all m2 in a small interval [m1 –
ε, m1 + ε] around m1 (with ε > 0), then it also holds for all m2 in the entire interval [0, 1].

In Appendix D and Figure 4 we assess the accuracy of our approximations for pfix (m1, m2) ,
and the tightness of our heuristic bounds, using Monte Carlo simulations of the Moran model,
and find good agreement for a wide range of parameters.

4. DISCUSSION
Using a finite population, we have confirmed the classical bet-hedging prediction that the
optimum probability for employing a strategy is approximately equal to the probability that
the strategy will be useful, provided the population size N is sufficiently large.

When N < 2(s + 1) / (sθ) bet-hedging appears not to be favored, or to be favored so weakly
that it can barely be detected numerically. The approximate requirements for bet-hedging to
be favored by a ratio of at least R (where R is between 2 and N 2/100), are that N > log(R)/ log
(1+s) and N > R /θ. (Note that the former condition is roughly equivalent to N > log(R)/s
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when s < 0.1, and that the latter condition is obtained by rearranging Equation 6 and ignoring
lower-order terms.) A general pattern in population genetics is that the balance between
selection and drift is determined by the product sN, with values close to 1 being critical. For
bet-hedging in finite populations, we have obtained two conditions relating to two such
products, θN and sN, corresponding to the frequency of selection as well as its intensity when
it does occur.

Our results differ both quantitatively and qualitatively from earlier work (Masel, 2005) that
addressed the same problem using different approximations. In Masel (2005) the expectations
of functions of certain random variables were approximated by functions of the expectations
of the random variables (e.g., Equation A4 of Masel (2005)). Also, given that an environmental
change occurs before fixation or loss of a B allele, the probability of having exactly i type B
individuals at the time of the environmental change was assumed to be proportional to τ̄1i---
the expected time spent in state i before loss or fixation in a static environment. These
approximations introduced several artifacts, such as p̂fix (m 1, m 2, N, θ, s) sometimes differing
markedly from 1/N when m1 = m2 (e.g., in Fig 3C of Masel (2005)), and m ̂opt decreasing from
θ to 1/N as N increases (e.g., in Fig 2A of Masel (2005)). Our present formulation avoids these
artifacts. Moreover we have confirmed the accuracy of our approximations for a broad range
of parameters using Monte Carlo simulations.

Note that we have described a switch from environment E to environment F in the short term.
Over the long term, the model could switch back-and-forth between these two environments,
and so the scenario we analyze could arise repeatedly. Alternatively, it could be interpreted as
a continued progression to novel environments: i.e., after the dynamics of the switch are
complete, environment F can be renamed environment E, and some totally novel environment
G plays the role of environment F. In this context, switching can be between suppressing and
revealing variation (evolutionary capacitance), rather than between two distinct phenotypes,
each of which has been honed by natural selection in an environment that the population has
encountered many times before.

An ideal model for bet-hedging scenarios other than evolutionary capacitance would allow the
environment to switch in both directions. We have considered an approximation in which
environmental change events are sufficiently rare to be treated according to a separation of
timescales, and hence switching in each of the two directions can be treated separately. Our
conditions on θ, N and s indicate the likely parameter range under which bet-hedging can
evolve, and provide a finite-population complement to infinite-population approximations of
other bet-hedging scenarios. Our approach relies on several approximations, most critically
that both the appearance of new alleles and changes in the environment are rare relative to all
other processes. The sensitivity of our conclusions to these assumptions remains to be explored.

4.1 Fixation probabilities and evolutionary dynamics
The overall evolutionary dynamics are governed not just by fixation probabilities, but also by
the rates with which different alleles appear by mutation or migration, and the speed with which
different alleles replace the resident population. Suppose there are just two alleles, with
switching probabilities m1 and m2, that the rates at which these appear are equal, and that the
rates at which they appear and fix are small relative to the fixation time. Then the proportion
of the time for which m2 alleles are fixed is approximately pfix(m1, m2)/( pfix(m1, m2) +
pfix(m2, m1)) (see, e.g., Proulx and Day (2001)). But if m1 alleles appear much more often than
m2 alleles, this can give m1 alleles an advantage over m2 alleles even when pfix (m2, m1) <
pfix (m1, m2) --- the proportion of the time for which m2 alleles are fixed is given more generally
by approximately
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r(m2, m1)pfix(m1, m2)

r(m2, m1)pfix(m1, m2) + r(m1, m2)pfix(m2, m1)
,

where r(mi, mj) is the rate of mutation from mj to mi. One might expect, for example, that alleles
with m1 = 0, corresponding to loss of function of the modifier allele, could appear by mutation
more often than alleles with m2 = mopt. The extreme scenario of unidirectional mutational
degradation is examined in Masel et al. (2007), although under a somewhat different framework
that includes environmental-dependent fitness but does not explicitly model stochastic
switching.

In the more general case, if there is a discrete number K of known allele types and the
probabilities associated with all mutational transitions can be estimated, then we can find the
equilibrium solution of the corresponding system of K equations derived from the values of r
(mj ,mi ) pfix (mi, mj ) . The solution yields the long-term behavior according to the stationary
probability distribution of the system (Claussen and Traulsen, 2005; Fudenberg and Imhof,
2006; Fudenberg et al., 2006), including the long-term mean value of m. Note that this approach
depends on the assumption that fixation events are rare relative to fixation times.

4.2 Evolutionary optimality in finite populations
Evolutionary theory includes many metrics that attempt to predict what will and will not evolve.
The oldest is reproductive fitness (Haldane, 1932), normally defined as the expected number
of offspring. The concept of inclusive fitness expands this to include the reproductive fitness
of other individuals with similar genotypes (Hamilton, 1964). Bet-hedging theory shows that
in a variable environment, geometric mean fitness is a better metric than arithmetic mean fitness
(Seger and Brockman, 1987).

Both arithmetic and geometric mean fitnesses may vary according to allele frequency, for
example when individuals interact, and hence break down as a clear metric. The concept of an
evolutionary stable strategy addresses the problem of frequency-dependence by focusing only
on the fitness of rare mutants. An ESS was originally defined as a strategy that once established,
has higher fitness than any rare mutant (Maynard Smith and Price, 1973). To avoid reference
to a particular definition of fitness, an ESS is often defined instead as a strategy that, once
established, cannot be invaded by a rare mutant, where “invasion” means that the mutant will
increase in frequency (Maynard Smith, 1982). The ESS approach has also been applied to
variable environments, where invasion is predicted using a Lyapunov exponent as a refinement
of geometric mean fitness when rare (Benton and Grant, 2000; Kussell et al., 2005; Metz et
al., 1992; Rand et al., 1994; Tuljapurkar, 1982).

Unfortunately, the invasion-based definition of an ESS breaks down for finite populations,
which can always be invaded at some (possibly very low) stochastic rate. This problem is not
just theoretical: ESSs have been shown to fail to predict the behavior of finite populations
(Fogel et al., 1998; Imhof et al., 2005). Attempts have been made to broaden metrics of
environment-dependent (Masel, 2005) and frequency-dependent (Nowak et al., 2004) selection
to finite populations. The approach we have followed (Masel, 2005) focuses strictly on fixation
probabilities. This captures the long-term evolutionary dynamics of the system under the
simplifying assumptions that mutation is both symmetric and rare relative to the timescale of
fixation. The alternative ESSN formulation attempts to follow more closely the spirit of an ESS
by using both local stability (invasion) and global stability (fixation) criteria (Nowak et al.,
2004) (see Lessard (2005) for the relationship between these criteria and a regular ESS). This
represents a compromise between strategies that represent the dynamics in the very long-term
and strategies that are difficult to disrupt once present.
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But while resistance to the invasion of rare mutants may be a well-defined measure for
frequency-dependent selection in a fixed environment as in Nowak et al. (2004), it is not
obvious what its analogue should be in the case of fluctuating environments. Even with constant
selection within each environment, the initial spread of a mutant depends on the environment
at the time. Requiring resistance to the initial spread of a mutant in each environment would
be one possible analogue, but this condition will not be satisfied by any strategies in settings
for which different phenotypes are favored in different environments. (For an infinite
population in an ergodic environment, the expected long term growth rate does not depend on
the initial environment, but for a finite population the initial environment can be critical.) Our
definition of optimality in a stochastic system, with its focus exclusively on replacement
probabilities, is more broadly applicable than a definition that also considers invasion when
rare. These definitions are not equivalent: for example we expect the existence of multiple
ESSNs to be more common.

The approach to optimality we use is appropriate if the rules and frequencies specifying the
range of environments stay constant and known over a long period of time. To apply it in its
entirety by calculating the stationary probability distribution of states, it is necessary to have
an estimate of the relative frequencies of mutations of different types, as discussed above. If
all mutation rates are equal, then they can be neglected, and the state of the system that is more
frequent than any other can be calculated as described in Section 4.1.

Our algebraic approximations to fixation probabilities complement prior work in which the
risk of extinction is estimated by considering the variance of the growth-rate in an infinite
population (Wolf et al., 2005), or in which stochastic simulations are used to estimate extinction
probabilities of finite populations (Kussell et al., 2005; Menu et al., 2000; Wolf et al., 2005).

4.3 Autocorrelated environments
Both frequency-dependent and environment-dependent selection can provide an advantage for
stochastic (mixed) strategies over fixed (pure) strategies. The phenotypic switching we
consider is akin to a mixed strategy, where the pure strategies are phenotypes A and B. But
here, in a fluctuating environment, we consider first-order Markov strategies, in which the
probabilities of an offspring adopting a particular strategy depends on the strategy held by its
parent, as opposed to the zeroth-order switching in which each individual makes an independent
decision as to its strategy. This matches the first-order Markov dynamics of our model of
environmental change, which produces what is sometimes referred to as an autocorrelated
(Menu et al., 2000) or temporally patchy environment (Jablonka et al., 1995), as opposed to
the completely random (zeroth-order) environment in, e.g., Cohen (1966).

The ability to sense the environment, even imperfectly, can allow for higher growth-rates
(Jablonka et al., 1995; Kussell and Leibler, 2005; Wolf et al., 2005). But stochastic strategies
may be preferred to sensing when to the environment changes very infrequently, due to the
metabolic cost of sensing (Avery, 2006; Kussell et al., 2005; Kussell and Leibler, 2005; Stumpf
et al., 2002; Thattai and van Oudenaarden, 2004; Wolf et al., 2005). Sensing may also offer
little advantage when the environment changes very frequently and there is a lag between
sensing and phenotypic switching (Jablonka et al., 1995). Note that an organism’s awareness
of its own current phenotype provides it with indirect information about an autocorrelated
environment, since selection in the current environment has sculpted the frequencies of the
phenotypes. First-order phenotypic switching exploits this introspection implicitly, since the
probability of an offspring adopting a particular phenotype depends on the phenotype of its
parent.
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4.4 Variable population size
The mathematical approach used here works only with constant population sizes, whereas
changes in population size and resulting density-dependent dynamics may be critical in real
populations. More realistic ecological scenarios such as this can be addressed using simulations
(Benton and Grant, 2000; Menu et al., 2000). In such cases, our optimality criteria can still be
applied by numerical estimation of fixation and counterfixation probabilities as an alternative
to numerical estimation of the Lyapunov exponent (Benton and Grant, 2000) or short-term
persistence (Menu et al., 2000).
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APPENDIX A: BAND DIAGONAL STRUCTURE OF FULL MARKOVIAN
SYSTEM

The state space consists of all pentuples of nonnegative integers (e, i, j, k, l) with e = 1 or 2
and i + j + k + l = N --- e indexes the environment, and i, j, k, and l represent the number of
individuals of type B1, A1, B2, and A2 respectively. There are two choices for e, and there are

(N + 3
3 ) ≈ N 3/6 choices for (i, j, k, l) by the “stars and bars” trick for counting compositions

--- see, e.g., Stanley (1997). The state space therefore has size ≈N3 / 3. The equations
corresponding to states with i + k = 0 or j + l = 0 can be eliminated, since in these cases one
modifier allele is already lost, but there are only 4(N + 1) such states.

In a fixed environment there are (N − 1
3 ) states for which i, j, k, l > 0. Each of these states can

move to any of the others in fewer than N steps of the Moran model, in either direction. If the
upper (resp. lower) bandwidth of the transition matrix of the Moran model were b, then at most
bN states would be accessible within N forward (resp backwards) steps from each of these

states. Thus we have bN ≥ (N − 1
3 ) ≈ N3/6, so b is of order at least N 2, even for a single

environment. This bound is attainable: the state ordering defined by (i, j, k, l) > (i′, j′, k′, l′) if
i(N+1)2 + j(N + 1) + k > i′(N + 1)2 + j′(N + 1) + k′ gives bandwidth of (N + 1)2 for a single
environment. Interleaving states ordered this way for two environments doubles this
bandwidth, so is still of order N2.

APPENDIX B: REDUCTION TO A SINGLE TRIDIAGONAL SYSTEM IN
ENVIRONMENT E

Let q(i, j) be the probability that there are exactly j individuals of type A2 at the time of the
next environmental change event, given there are initially i individuals of type A2. For fixed
j, the N + 1 values q(i, j) are the solution to the following tridiagonal system of linear equations:
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q(0, j) = 0

q(i, j) = r(i, j) + e−θ/N (λi q(i + 1, j) + μi q(i − 1, j) + (1 − λi − μi)q(i, j)), i = 1, … , N − 1

q(N , j) = 0

where r(i, j)=1−e−θ/N for i=j and 0 otherwise, and λi and μi are as defined in Section 2.4.

The only values of q(i, j) required for our purposes are q(1, j) for j = 1, …, N. As formulated
above, we recover only one value q(1, j) from each tridiagonal system; this leads to a total
computational time of order N2, which is potentially problematic for realistically large
population sizes. Fortunately, the total computational cost can be reduced to order N, as
described below.

The (N−1) × (N−1) matrix Q with i,j-th entry q(i, j) satisfies the matrix equation AQ=R, where
A is the (N−1) × (N−1) tridiagonal matrix with a(i,i+1)= e−θ/N λi for i=1,..., N−2, a(i,i) =
e−θ/N (1−λi−μi)−1 for i=1,..., N−1, and a(i−1,i) = e−θ/N μi for i = 2,..., N−1; and R is the (N−1)
× (N−1) diagonal matrix with diagonal entries r(i,i) = 1− e−θ/N for i=1,..., N−1. The j-th
tridiagonal system above solves for the j-th column of the matrix Q. But to compute pfix
(m1 ,m2 , N, θ, s) we require only the N−1 entries q(1, j), i.e. the first row of Q. Note that R is
just e−θ/N −1 times the identity matrix I, so Q=A−1 /( e−θ/N −1) . Since matrix inverses are two
sided, Q and A commute and we have QA=R . Transposing both sides gives AtQt = (QA)t =
Rt = R . Thus we can solve for the i-th row q of Q, which is the (transpose of the) i-th column
of Qt, by solving the single tridiagonal system Atqt = r , where r is the i-th column of the matrix
R. For i =1 this amounts to solving the following tridiagonal system:

q(1, j) = 1 − e−θ/N + e−θ/N (μ j+1q(1, j + 1) + (1 − λ j − μ j)q(1, j)) for j = 1

q(1, j) = e−θ/N (λ j−1q(1, j − 1) + μ j+1q(1, j + 1) + (1 − λ j − μ j)q(1, j)) for j = 2, … , N − 2

q(1, j) = e−θ/N (λ j−1q(1, j − 1) + (1 − λ j − μ j)q(1, j)) for j = N − 1

We also require q(1, N) --- the probability that a single m2 fixes by drift before an environmental
change. Consider the last time the system has N − 1 individuals of type A2, conditioned on
either fixation of A2 or an environmental change while in state N − 1 taking place. The relative
probabilities of these two outcomes are e−θ/N λN−1 (for fixation) to 1 − e−θ/N (for environmental

change). Thus we have q(1, N ) = q(1, N − 1) e −θ/N

1 − e −θ/N
λN−1.

We can similarly compute the probability q(1,0) that a single A2 is lost by drift before an

environmental change by q(1, 0) = q(1, 1) e −θ/N

1 − e −θ/N
μ1, or by q(1, 0) = 1 − ∑

i=1

N
q(1, i), but this

is not needed for computing p̂fix(m1, m2) = ∑
i=0

N
q(1, i)p(i), since p(0) = 0.

APPENDIX C: APPROXIMATION THAT SUCCESSFUL SELECTIVE SWEEPS
OCCUR INSTANTANEOUSLY

If at some initial time there are i type B individuals, with i > 1, y overestimates the probability
that the entire population is ultimately descended from any particular one of these individuals.
But in practice, the approximation 1−π(i)≈(1−y)i is quite good for small i (see, e.g., Orr and
Betancourt (2001)) --- even though the probability that any given type B variant takes over is
overestimated, by treating the failure of each type B variant to take over as independent, one
arrives at approximately the correct probability that none of them takes over.
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Our use of this approximation differs somewhat in that we are considering type B variants that
appear by phenotypic switching, and not just from standing variation. The idea here is that the
probability that the chain jumps directly to an absorbing state at some step before reaching an
absorbing state by drift should be approximately correct, although the probability that this
happens at any given point may be an overestimate. We would also like the relative probabilities
of jumping to the absorbing states N and 0 to be accurate.

If the Markov chain is currently in state i, the probability of jumping directly to state N is
m2yi/N, and the probability of jumping directly to state 0 is m1y(N−i) /N. The ratio of these
probabilities, m2 i / (m1(N − i)) does not depend on y. But overestimating the probability of a
jump from state i can introduce a bias if, during the sojourn that is being collapsed into the
single jump step, the expected relative rates of appearance of new B2 and B1 variants changes
from m2i/(m1(N−i)). As we do not consider back-switching from type B to type A, this can be
an issue if the switching from A1 to B1 or from A2 to B2 begins to saturate. But this should have
only a mild effect when the sojourn time τ is such that (1− (1− m2)τ)/(1 − (1 − m1)τ) ≈ m2 /
m1 (or when m1 = 0); this is the case when (1− m2)τ and (1 − m1)τ are still approximately linear
as functions of τ, say for τm1< 0.1 and τm2 < 0.1.

Ignoring subsequent phenotypic switching, when s = 0 the expected sojourn time τ̄ of a type
B variant destined for fixation is N generations; this decreases for s > 0, and for sN > 2 or so
it is approximately 2 log(sN + 0.577) / s generations (Hermisson and Pennings, 2005). But the
conditions τ̄m1 < 0.1 and τ̄m2 < 0.1 are by themselves much too conservative, since the bias
enters mainly through the jump moves, which happen rarely for small θ since then the
probability of environment F being reached is small. (The probability of the chain being
absorbed by a jump move to state N can be computed by changing the initial condition p(N) =
1 to p(N) = 0 in the triadiagonal system above.) Also, regardless of θ, when Ns is small enough
so that y ≈1/N, the bias is again small, since y no longer overestimates the absolute probability
that any particular type B variant eventually takes over the population.

Note that our values p(i) are exact in the case of y = 1; this corresponds to the limit as s
approaches infinity, since y ≈ s/(s + 1) for large N. By setting y = 1 when evaluating Equation
1, we can compute bounds on fixation probabilities for finite s.

Because such bounds can be weak for smaller s, we also computed heuristic (i.e., not rigorously
proven) bounds by modifying the algorithm for computing p̂fix (m1, m2) as follows. In
environment F (but not E), we decrease the larger of m1 and m2: when m2 > m1 we replace
m2 by m1 × (1 − (1 − m2)T)/(1 − (1 − m1)T), and when m1 > m2 we replace m1 by m2 × (1 − (1
− m1)T)/(1 − (1 − m2)T). Here T is half of the mean sojourn time τ̄. We computed τ̄ exactly, as
in Eq. 2.159 of Ewens (2004) --- this amounts to solving two tridiagonal systems, and can be
done in order N time --- but similar bounds are obtained using the approximations for τ̄ given
above. The factor of one half in T = τ̄/2 is a conservative way to boost type B variants that
appear earlier in the sojourn, since these should have an advantage over those that appear later.

APPENDIX D: ASSESSING ACCURACY WITH MONTE CARLO SIMULATIONS
We assessed the accuracy of our approximations for pfix(m1, m2 ), and the tightness of our
heuristic bounds, using Monte Carlo simulations of the Moran model. In each run of the
simulation, all four types A1, A2, B1, and B2 were tracked until either both A1 and B1 were lost,
or both A2 and B2 were lost. The population began with a single individual of type A2 and with
N − 1 individuals of type A1, and was in environment E. We also did Monte Carlo simulations
using the alternate model for environment E, in which there are only two types, A1 and B1,
with fitnesses 1 − m1 and 1 − m2 respectively; in environment F all four types were again
explicitly tracked.
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In Figure 4 we assess the accuracy of the values we compute for p̂(m1, m2, N, θ, s). Here we
fix N = 1000 (small enough to allow for accurate Monte Carlo estimates), and compare
p̂fix(m, θ, N, θ, s)to p̂fix(θ, m, N, θ, s) for various values of θ and s to see how the accuracy of
depends on m, θ, s. Each Monte Carlo estimate used 106 trials, with the standard error estimated
as f (1 − f ) / 106, where f is the fraction of trials that ended in fixation of type B variants.
Note that the discrepancy between p̂fix(m1, m2, N, θ, s) and the Monte Carlo estimate is usually
very small, and is most noticeable when m is close to 1. Note also that when there is a noticeable
discrepancy, to within the standard error the Monte Carlo estimates appear to be bracketed
between p̂fix (m1, m2, N, θ, s) and our heuristic bound from section 2.5, which is a lower bound
when m2 > m1 and an upper bound when m2 < m1.

We performed the Monte Carlo simulations using two models for environment E, as described
in section 2.2. The results shown are for the model in which type B variants are replaced
immediately in environment E, but aside from a slight difference when m > 0.1, the results
were not noticeably different. This suggests that when type B variants in environment E are
not immediately replaced, but have fitness 0, it is not critical to explicitly account for type B
variants that preexist at the time of the environmental change. This is because they tend to
reappear in approximately the right proportions in the first generation following the
environmental change.

APPENDIX E: MINIMUM POPULATION SIZE FOR BET-HEDGING
In Figures 5A and 5B we look at the minimum value of N as a function of θ and s, showing
the smallest value of N for which m ̄opt > 0. Since we are computing fixation probabilities
numerically, we cannot distinguish between m ̄opt being exactly zero, or just being very nearly
zero. But clearly mopt is exactly zero when θ = 0 or when s ≤ 0, so by the continuity of fixation
probabilities, for fixed N, m = 0 will be nearly optimal for sufficiently small positive θ and s.
Figures 5A and 5B show the smallest value of N for which p̄fix(0, m ̄opt, N, θ, s) / p̄fix (m ̄opt, 0,
N, θ, s) > 1 + 10−8; we refer to this value of N as Nmin.

Judging from Figures 5A and 5B, we have

Nmin ≈ 2(s + 1)
sθ , (8.)

with this approximation underestimating Nmin somewhat for smaller s and θ. Note that Equation
8 is roughly the same as Nmin ≈ 2/ (sθ) when s < 0.1, but stabilizes at Nmin ≈ 2/θ as s
goes to infinity. As our computations were limited to N ≤ 107, the precise choice of 1 + 10−8

in defining Nmin may mask some effects of order 1/N here.

Note that to have R > 1 + 10−8 we should have s > 10−8/N, and that this condition is not implied
by Equation 8, which saturates for large s but not for largeθ. Thus Equation 8 may underestimate
Nmin when s is extremely small, but the critical value s ≈ 10−8/N falls well below the range of
parameters we are most interested in.

King and Masel Page 19

Theor Popul Biol. Author manuscript; available in PMC 2008 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Optimal switching probabilities and the extent to which they are favored. A: The estimated
optimal switching probability m ̂opt is approximately θ for N larger than a threshold that
increases as s decreases. Note that on the curves for θ = 0.1, m ̂opt is slightly less than 0.1 even
for large N, but is approximately equal to 1 − e−0.1 = 0.095. B: A broad range of switching
probabilities m are only slightly disfavored relative to m ̂opt when N is less than the threshold
for which m ̂opt ≈ θ. C and D: These graphs compare p̂fix (0, θ, N, θ, s) and p̂fix (θ, 0, N, θ, s)
for a variety of s, N, and θ. For small N the switching probability m = 0 has an advantage over
the switching probability m = θ, but the latter dominates for large N. (In C, the fixation
probabilities for θ = ∞ were computed as π(1) and 1 – π(N – 1): the fixation probabilities of
type B and type A alleles in environment F, in which they have fitness 1 + s and 1, respectively.)
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Figure 2.
Minimum conditions for bet-hedging to evolve in a finite population. R = p̂fix (0, m ̂opt, N, θ,
s) / p̂fix (m ̂,0, N, θ, s) denotes the estimated advantage provided by using the optimal bet-hedging
strategy over using no bet-hedging. A and B: When θ = 3 (R − 1) log R / (N logN ) (from
Equation 6), s = ∞, and m−1−e−θ ≈ m ̂opt, the ratio p̂fix (0, m ̂opt, N, θ, s) / p̂fix(m ̂opt, 0, N, θ, s) ,
shown on the vertical axis, is approximately R. Curves in A are shown for R < N2/100, and in
B for R > 1 + 10 log(N)2/N, roughly the range for which the approximation is accurate. (Note
that B covers the range from R = 1.001 to R = 2.) C: Rectangular regions in which s and θ must
fall to allow for a given advantage R; these are necessary but not sufficient conditions. For
smaller R these rectangles are encroached on by the approximate equation for Nmin Computed
estimates are shown for θ ≤ s. D: Estimated parameters θ and s for which R = 100, given as
hyperbolas in log (s) and log(θ). Our computed estimates become less accurate for small sN
and large θ, and are shown only for sN > 10. The curve for N = 108 is extrapolated using
Equation 7.
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Figure 3.
The optimal switching probability is unique. Part A shows the surfaces of estimated fixation
probabilities p̂fix(m1,m2) and p̂fix(m2, m1). Here m ̂opt ≈ θ = 0.001 --- note that p̂fix (m1,0.001)
≥ p̂fix (0.001,m1) for all m1 in the interval [0, 1]. Part B shows that there is a unique optimal
value: m ̂opt ≈ = 0.001 is the only m2 for which p̂fix(m1, m2) ≥ p̂fix(m2, m1) for all m1 (solid line).
It is also the only m2 for which p̂fix(m1, m2) ≥ 1/N for all m1 (dotted line), and the only m2 for
which p̂fix (m2, m1) ≤ 1/ N for all m1 (dashed line).
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Figure 4.
Accuracy of fixation probability formula. Here we compare the approximate fixation
probabilities computed with Equation 1 to Monte Carlo (MC) simulations for N = 1000. In
parts A - I, θ varies by row, and s by column. The MC estimates for pfix (m, θ) and pfix (θ,
m) are indicated by squares and circles respectively, and the vertical bars through these symbols
indicate the standard error based on 106 trials. Equation 1 sometimes becomes inaccurate when
θ and m are large, particularly for intermediate values of sN ≈ 10, for which selection is
important but fairly slow. This is most noticeable in part H. Note that m ̂opt ≈ θ for s = 1, but
switching probabilities smaller than θ are favored for s = 0.0001. The gray shaded areas indicate
the regions between p̂fix from Equation 1 and the heuristic bound for pfix described in Appendix
C. The heuristic bound for pfix (m1, m2) is typically a lower-bound when m1 < m2 and an upper-
bound when m2 < m1. (The shaded areas are often too narrow to be seen.)
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Figure 5. Minimum population sizes for bet-hedging
R = p̂fix (0, m ̂opt, N, θ, s) / p̂fix(m ̂opt, 0, N, θ, s) denotes the estimated advantage provided by
using the optimal bet-hedging strategy over using no bet-hedging. A and B: Nmin the smallest
N for which R > 1 + 10−8, is approximately 2(s + 1) / (sθ).
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