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B-1 B cells represent an important and func-
tionally distinct subset of B cells that reside 
predominately in pleural and peritoneal cavi-
ties, in the gut lamina propria, and to a minor 
extent in the spleen. They can be distinguished 
from their “conventional” B-2 counterparts 
by diff erences in their surface phenotype be-
cause B-1 cells are B220loIgMhiIgDloCD43+

CD21−CD23−. Cavity B-1 cells also express 
CD11b/CD18 (Mac1), and B-1a and B-1b 
subsets diff er in the presence or absence of 
CD5, respectively (1, 2).

B-1 cells develop primarily from Lin−

CD45Rlo−CD19+ precursors in the fetal BM 
and fetal liver but can also arise from adult BM 
progenitors (1, 3–5). Several genetic studies 
have shown B cell receptor (BCR) signal 
strength to be crucial for B-1 cell development. 
Defects in signaling molecules that decrease 
BCR signaling result in an increase in B-1 cell 
populations, and defects in those molecules 
that increase BCR signals reduce B-1 cells (1, 6). 
Thus, strong BCR antigen signals appear to be 
important for the decision to become a B-1 
cell. Unlike B2 cells, which have limited life 
spans and are constantly replenished from BM 
progenitors, B-1 cells are maintained by ho-
meostatic proliferation (self-renewal) as shown 
by adoptive transfer experiments of B-1 cells 
into immunodefi cient recipients (7, 8). Inter-

estingly, the spleen is required for the genera-
tion and maintenance of a large fraction of B-1a 
cells (9), and B-1 cells are also a major source 
for IgA-secreting plasma cells that inhabit the 
lamina propria of the gut (10, 11).

A defi ning feature of B-1 cells is their  ability 
to secrete so-called “natural” antibodies in the 
absence of apparent infection or immunization 
(2, 7, 10). The repertoire of these antibodies 
is limited. They lack N region additions and 
 somatic hypermutations and often recognize 
highly conserved, T-independent type 2 bacte-
rial and viral antigens (1, 12–20). Self- and oxi-
dized self-antigens are thought to be responsible 
for the positive selection and maintenance of 
B-1 cells expressing natural antibodies (21–23). 
In addition to providing immunity against 
 several pathogens, B-1–specifi c antibodies also 
reduce atherosclerotic lesions, activate T cell 
responses, contribute to autoimmunity, and 
promote ischemia/reperfusion injury (23–32). 
Finally, important functional diff erences have 
been identifi ed for B-1a and B-1b cells. B-1a 
cells spontaneously secrete protective natural 
antibodies, whereas B-1b cells respond to patho-
gens by generating long-lasting immunity in-
dependent of T cell help (32, 33).

In humans, B-1 lymphocytes are present at 
the time of birth and persist into adulthood. 
Although less is known about their function, 
human B-1a and B-1b cells resemble murine 
B-1 cells in their expression of surface CD5, in 
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their anatomical placement within the peritoneal cavity 
(PerC), spleen, and peripheral blood, and in their secretion of 
poly-specifi c, autoreactive antibodies (34, 35). In spite of 
such diverse and important roles for natural antibodies, the 
mechanisms that regulate antibody secretion by B-1 cells are 
poorly understood.

Our current molecular understanding of antibody secre-
tion comes almost entirely from the investigation of B-2–
 derived plasma cells. Recent studies have revealed a network of 
transcription factors that regulate plasmacytic diff erentiation 
(36, 37). One principle player in this process is the transcrip-
tional repressor, B lymphocyte–induced maturation protein 1 
(Blimp-1; reference 38). Blimp-1 orchestrates a gene expres-
sion program that drives B cells to become plasma cells 
through the repression of genes involved in B cell prolifera-
tion, antigen presentation, germinal center reactions, BCR 
signaling, and B–T cell–cell interactions (39). Importantly, 
Blimp-1 also promotes the Ig secretion program (39–45). 
A crucial direct target of Blimp-1 for inducing the secretory 

program is Pax5, which encodes B cell lineage-specifi c 
activator protein and represses genes encoding Ig heavy chain, 
J chain protein, and X-box binding protein 1 (XBP-1; 
references 46–48). Blimp-1 relieves Pax5-dependent repres-
sion of XBP-1, which in turn functions as the proximal trans-
criptional activator for most of the genes necessary for the 
dramatic phenotypic changes in plasma cells associated with 
antibody secretion, including increases in cell and ER size, 
ribosomal and mitochondria number and function, and 
 expression of numerous genes involved in the secretory path-
way (49). Like Blimp-1, XBP-1 is required for plasma cell 
formation and antibody secretion (50). Blimp-1 is also 
 required for processing of μ heavy chain transcripts to the 
 secreted form (μS), although the molecular mechanism is not 
understood (42).

Recently, Tumang et al. (51) studied Bcl-6, Pax5, Blimp-1, 
and XBP-1 mRNA and protein levels in purifi ed, Ig- secreting 
PerC B-1 cells and compared them to those of splenic B-2 
cells activated with LPS to undergo plasmacytic  diff erentiation 

Figure 1. Prdm1 gene deletion and phenotypic analysis of PerC 

and splenic B-1 cells. (A) Quantitative real-time PCR for prdm1 per-

formed on genomic DNA from two purifi ed CD19Cre/+prdm1Flox/Flox (open 

bars) and one littermate control (fi lled bar) PerC B-1 cell cultures. Primers 

were designed to amplify the fl oxed, but not the deleted, allele (see Mate-

rials and methods), and DNA loading was normalized to the peptidyl prolyl 

isomerase A gene. Percentages of prdm1Flox/Flox amplifi ed DNA are shown. 

(B) Representative fl ow cytometry analysis from one purifi ed CD19Cre/+

prdm1Flox/Flox B-1 cell culture used for deletion analysis in A, stained with 

antibodies against IgM and Mac-1. (C) Total PerC cells from CD19Cre/+

prdm1Flox/Flox mice (right) and littermate control (left) mice stained with 

antibodies against B220 and CD5. Upper gate is B-1a, and the lower gate 

is B-1b. Mean ± SEM, n = 7. (D) Bar graph shows averages and SEM of 

total PerC B-1 cells (IgM+Mac-1+), n = 7. (E) Total splenocytes stained 

with antibodies for CD43, B220, and CD5. B220 and CD5 expression on 

CD43+ cells are shown. Mean ± SEM, n = 4.
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to antibody-secreting cells. Similar to plasmacytic  development 
of B-2 cells, these authors found that Bcl-6 and Pax5 mRNAs 
were decreased in B-1 cells whereas mRNAs encoding 
Blimp-1 and XBP-1 were not signifi cantly elevated when 
compared with LPS-treated B-2 cells. Interestingly, XBP-1 
protein levels were comparable to naive B-2 cells, and levels 
for Bcl-6, Blimp-1, and Pax5 were completely undetected in 
B-1 cells relative to naive and 2-d LPS-stimulated B-2 cells. 
These fi ndings suggested that B-1 cells might use a diff erent 
regulatory program for Ig secretion.

In a previous study, however, we demonstrated that  naive 
mice lacking Blimp-1 in their B cells have dramatically 
 reduced serum IgM, of which more than half comes from 
B-1 cells (7, 42). To follow up this observation, we sought to 
determine the nature of Blimp-1’s role in B-1 lymphocytes. 
Here we report that Blimp-1 is not required for B-1a or 
B-1b lymphocyte formation or for B-1 cell self-renewal. 
However, Blimp-1 is required for antibody secretion by B-1 
cells, and in its absence, Pax5 mRNA is elevated while XBP-
1 and μS mRNAs remain low compared with WT controls. 
Finally, we demonstrate that Blimp-1–defi cient B-1 cells are 
also less eff ective at protecting reconstituted mice against 
 infl uenza infection.

RESULTS

B-1 cell formation does not require Blimp-1

Blimp-1 is encoded by the prdm1 gene. CD19Cre/+prdm1Flox/Flox 
mice and littermate controls were used to assess the role of 
Blimp-1 in B-1 cells. CD19Cre-dependent gene deletion is 
very effi  cient in splenic B cells (52), and deletion of the 
 prdm1Flox/Flox allele in splenic B cells is nearly complete (42). 
Deletion of prdm1 in PerC B-1 cells was assessed by quantita-
tive real-time PCR performed on genomic DNA prepared 
from PerC B-1 cells purifi ed from CD19Cre/+prdm1Flox/Flox 
and CD19+/+prdm1Flox/Flox animals (Fig. 1 A). Primers were 
designed specifi cally to amplify fl oxed but not deleted prdm1 
alleles, and samples were normalized using a control single 
copy gene. Less than 15% of the fl oxed allele was detected in 
CD19Cre/+prdm1Flox/Flox cells. Because fl ow cytometry showed 
that the cells we analyzed were >70% Mac1+IgM+ B-1 cells 
(Fig. 1 B), we conclude that prdm1 is effi  ciently deleted in 
B-1 cells of CD19Cre/+prdm1Flox/Flox mice, hereafter referred 
to as conditional knockout (CKO) mice.

Flow cytometry was used to study B-1 cells in 6–10-wk-
old CKO and control mice. No signifi cant diff erences were 
observed in the frequency of PerC B-1a and B-1b subsets 
determined by staining for B220 and CD5 (Fig. 1 C). How-
ever, CKO mice had an increase in total cellularity in the 
PerC resulting in a 2.5-fold increase in total numbers of B-1 
cells (Fig. 1 D). When total splenocytes were examined, no 
diff erences were seen in the frequency of CD5+B220+CD43+ 
splenic B-1a cells (Fig. 1 E) or in the overall cellularity of 
 total splenocytes (not depicted). From these data, we  conclude 
that Blimp-1 is not required for the formation or  maintenance 
of B-1 cells in either the PerC or spleen. Moreover, we 
 surmise that the absence of serum Ig observed in our initial 

study of naive CKO mice (42) was not due to the absence 
of B-1 cells.

Blimp-1–defi cient B-1 lymphocytes are defective 

in antibody secretion

To determine directly the antibody-secreting ability of Blimp-
1–defi cient B-1 cells, ELISA assays were performed on super-
natants from purifi ed PerC B-1 cells cultured ex vivo. Although 
control B-1 cells secreted IgM in this setting, IgM secreted 
by B-1 cells derived from CKO mice was nearly undetect-
able (Fig. 2 A; WT, 756 ± 73 ng/ml; CKO, 53 ± 13 ng/ml). 

Figure 2. Absence of Ig secretion in vitro and in vivo by CD19Cre/+

prdm1fl ox/Flox B-1 cells. (A) Anti-IgM ELISA performed on superna-

tants from B-1 cells after enrichment and in vitro culture. B-1 cells 

were plated at a density of 106 cells/ml for 4 d with no stimulation. 

Graph represents fi ve control and eight CD19Cre/+prdm1Flox/Flox samples. 

(B) Summary of data from two immunohistochemical experiments for 

the percentages of cytoplasmic Ig+ WT B-1 (fi lled bars, 33.8 and 29.5%), 

CD19Cre/+prdm1Flox/Flox B-1 (open bars, 9.2 and 10.2%), and 4-d LPS-

treated splenic B-2 (gray bars, 39.1 and 37.9%) B cells. Percentages 

were determined by dividing the fraction of cytoplasmic Ig+ cells 

(WT, 68 Ig+/273 total and 114 Ig+/558 total; CKO, 23 Ig+/332 total and 

32 Ig+/462 total) by the purity of the respective cultures (WT, 73.8 and 

69.3% Mac1+IgM+; CKO, 74.9 and 67.5% Mac1+IgM+). The fraction of 

cytoplasmic Ig+ splenocytes (C; 63 Ig+/161 total and 109 Ig+/297 total) 

was determined directly because the culture was assumed to be near 

100% pure. (C) Bar graph showing data from one representative anti-

IgM ELISA experiment for untreated (no bars) or LPS-treated (bars) 

 control (fi lled bars) and CD19Cre/+prdm1Flox/Flox (open bar)-purifi ed B-1 

cell cultures. ELISA was performed as in A. (D) Anti-T15 ELISA against 

serum harvested from 6–10-wk-old CKO (fi lled squares, n = 8) and 

control (open squares, n = 6) mice. Filled bars represent the SEM 

 values. Units are OD405.
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Similar results were obtained from sort-purifi ed, cultured PerC 
B-1a and B-1b cells (not depicted).

To estimate the portion of cells secreting Ig in these B-1 
cultures, we stained permeabilized cells for cytoplasmic Ig 
and calculated the fraction of cytoplasmic Ig+ B-1 cells. This
analysis showed that in control B-1 cell cultures, 31.7% 
 (average from two experiments) were secreting, as indicated 
by the presence of cytoplasmic Ig. In the CKO cultures, 
this fraction was 3.2-fold lower or 9.7% (average from two 
 experiments), consistent with the conclusion that Blimp-1 
is required for Ig secretion by B-1 cells (Fig. 2 B and Fig. 
S1, A and B, which is available at http://www.jem.org/cgi/ 
content/full/jem.20060411/DC1). For comparison, �38.5% 
(average from two experiments) of LPS-activated B-2 
splenocytes were found to be cytoplasmic Ig+ after 4 d in 
culture when similarly analyzed (Fig. 2 B and Fig. S1 C).

Treatment of PerC B-1 cells in vitro with LPS causes 
their proliferation (53), and in mice treated with LPS, PerC 
B-1 cells increase IgM secretion (28). When purifi ed PerC 
B-1 cells were cultured for 3 d in LPS, the cells proliferated 
(on average, cell numbers doubled during the 3-d treatment) 
and greater than fi vefold more IgM measured by ELISA was 
secreted into the cultures compared with untreated cultures. 
Similarly, when CKO B-1 cells were treated with LPS 
they also doubled during the 3-d LPS treatment. However, 
the CKO B-1 cells secreted 38-fold less IgM than LPS-
treated control B-1 cells, although there was a small increase 
in IgM secretion comparing untreated and treated CKO 
cultures (Fig. 2 C).

To study Ig secretion by B-1 cells in a more physiological 
context, we determined the relative serum levels of  antibodies 
bearing the T15 idiotype in CKO and WT mice. T15 idiotype 
antibodies recognize phosphorylcholine-containing self-
 antigens derived from oxidized lipids on apoptotic cells and 
atherosclerotic lesions (23, 54), provide protection against the 
pathogen Streptococcus pneumonia (55), and are regarded as 
typical natural antibodies that are exclusively derived from 
B-1 cells (16). ELISA assays were performed for T15 anti-
bodies in serum from WT and CKO animals using a mixture 
of two rat anti-T15 antibodies, T139 and Tc54 (56). Relative 
T15 antibody levels in the sera of unimmunized CKO mice 
were roughly equivalent to the level of detection of this assay 
in all but one of eight mice analyzed, whereas the T15 serum 
levels in all six unimmunized control animals were on  average 
>2.8-fold above background (Fig. 2 D; WT, OD405 = 0.404 ± 
0.11; CKO, OD405 = 0.144 ± 0.07). Collectively, these data 
demonstrate that Blimp-1 is required for normal  antibody 
 secretion by B-1 cells both ex vivo and in vivo.

Ig secretion by B-1 cells depends on transcriptional 

regulators previously identifi ed in B-2 cells

We next explored the molecular mechanisms underlying the 
requirement for Blimp-1 in Ig secretion by B-1 cells. In B-2 
cells, direct repression of Pax5 leads to the derepression of 
the activator XBP-1, which then functions as the critical 
 proximal regulator of a complex secretory program (42, 49). 

 Furthermore, Blimp-1 is required for the processing of primary 
μ transcripts to the μS form of mRNA (42).

Quantitative RT-PCR was used to determine the steady-
state levels of μS, Pax5, and XBP-1 mRNAs in CKO and 
control B-1 cells. Purifi ed PerC B-1 cells were analyzed with 
and without treatment with LPS for 3 d. Pax5 mRNA was 
higher in CKO cells compared with WT cells, both without 
LPS and after LPS treatment. Furthermore, Pax5 mRNA de-
creased after LPS treatment in the WT but not in CKO cells 
(Fig. 3 A; 2.9-fold diff erence between unstimulated CKO/
WT; 20.2-fold diff erence between LPS-stimulated CKO/
WT). These data provide evidence that Blimp-1 is required 
to repress Pax5 mRNA in B-1 cells. CKO B-1 cells also had 
lower levels of XBP-1 mRNA without LPS treatment and 
failed to induce XBP-1 after LPS treatment compared with 
control B-1 cells (Fig. 3 B; 2.6-fold unstimulated WT/CKO; 

Figure 3. Misregulation of Blimp-1 targets in Blimp-1–defi cient 

B-1 cells. Quantitative real-time PCR performed on cDNA prepared from 

purifi ed, untreated (no bars) or LPS-treated (bars) control (fi lled bars) and 

CD19Cre/+prdm1Flox/Flox (open bars) B-1 cells. Mean and SEM for (A) Pax5 

(n = 5; unstimulated CKO/WT, P = 0.050; LPS-stimulated CKO/WT, 

P = 0.002), (B) XBP-1 (n = 6; unstimulated WT/CKO, P < 0.001; LPS-

stimulated WT/CKO, P < 0.001), and (C) μS (n = 6; unstimulated WT/CKO, 

P = 0.002; LPS-stimulated WT/CKO, P <0.040) steady-state mRNA levels 

are shown as relative units normalized to the untreated control samples. 

All values were normalized to β2 microglobulin mRNA.
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5.6-fold LPS-stimulated WT/CKO). Finally, μS was not 
 expressed normally in untreated cells nor was it induced 
 normally in LPS-treated CKO B-1 cell (Fig. 3 C; 3.0-fold 
unstimulated WT/CKO; 8.6-fold LPS-stimulated WT/
CKO) transcripts. Thus, we conclude that Blimp-1 is  required 
in B-1 cells for Pax5 repression and XBP-1 induction, as well 
as for formation of μS mRNA.

Blimp-1 is not required for self-renewal/homeostatic 

proliferation of B-1 cells

A unique feature of PerC B-1 cells, in contrast to B-2 cells, is 
their ability to regenerate the entire B-1 cell compartment. 
Adoptive transfer of peritoneal B-1 cells by i.p. injection into 
immunodefi cient mice leads to the stable, long-term recon-
stitution of the PerC and IgA+ lamina propria B-1 cell pools, 
as well as restoration of natural IgM titers (7, 8). Peripheral 
B-2 cells, on the other hand, lack this ability and can only be 
generated from BM progenitors. To investigate a possible 
role for Blimp-1 in the self-renewal capacity of B-1 cells, 
 total PerC cells from WT and CKO mice were harvested and 
adoptively transferred i.p. to 6–12-wk-old Rag1−/− mice. 
Recipient mice were killed 6–8 wk after transfer and the fre-
quency of PerC B-1 cells was measured by fl ow cytometry. 
A small number of mice, receiving either WT or CKO B-1 
cells, failed to reconstitute. Those in which reconstitution 
was <10% were excluded from the study. The half-life of 
B-1 cells has been reported to be between 38 and 56 d (57); 
therefore, recovery of >50% of donor B-1 cells after 6–8 wk 
indicates proliferation of the transferred B-1 cells. Represen-
tative fl ow cytometry analyses for IgM+Mac1+-stained PerC 

cells harvested from nonreconstituted, WT-reconstituted, 
and CKO-reconstituted Rag1−/− mice (Fig. 4 A) indicate 
that CKO cells can reconstitute Rag1−/− mice. CKO B-1 
cells, as well as WT B-1 cells (Fig. 4 B; WT, 66.2 ± 17.1% 
recovered; CKO, 71.4 ± 13.9% recovered), proliferated and 
self-renewed in this experimental setting, and more total 
PerC cells were recovered from CKO-reconstituted Rag1−/− 
mice than WT-transferred Rag1−/− mice (Fig. 4 C; WT, 3.1 × 
106 ± 0.55 total cells; CKO, 5.0 × 106 ± 0.81 total cells). 
In addition, T15 antibodies were detected in the sera of mice 
reconstituted with WT PerC cells at the time recipient mice 
were killed, demonstrating that transferred B-1 cells were 
functional (not depicted). Thus, we conclude that Blimp-1 is 
not required for the self-renewal/homeostatic proliferation 
of B-1 cells.

Blimp-1 is required for B-1 cells to protect 

against infl uenza virus infection in vivo

Baumgarth et al. (26) have elegantly demonstrated that both 
B-1 and B-2 cells are required for eff ective early immunity 
against infl uenza infection in mice. Specifi cally, B-1 cell– 
derived natural antibodies, present before infection, promote 
subsequent B-2 cell IgG2b responses and reduce mortality. 
This is probably because natural antibodies trap viruses and 
fix complement (58–60). Because Blimp-1 is required for 
natural antibody secretion by B-1 cells (Fig. 2), we hypothe-
sized that B-1 cells lacking Blimp-1 would be defective in 
their ability to provide protection to infl uenza infection. To 
test this hypothesis, 4–6-wk-old irradiated muMT− mice 
were reconstituted i.v. with B-2 cells from BM from WT 

Figure 4. Normal self-renewal/homeostatic proliferation of Blimp-

1–defi cient B-1 cells. Equal numbers of total PerC cells from control 

and CD19Cre/+prdm1Flox/Flox mice were transferred i.p. to Rag1-defi cient 

hosts. 6–8 wk after transfer, PerC cells were harvested from recipient mice 

and the effi ciency of B-1 cell reconstitution was determined by dividing 

the number of B-1 cells recovered by the number transferred. (A) Repre-

sentative fl ow cytometry plots for anti-IgM– and Mac-1–stained PerC 

cells from Rag1−/− recipient mice either untreated (left) or receiving WT 

PerC cells (middle) or CD19Cre/+prdm1Flox/Flox PerC cells (right) are shown. 

IgM+Mac1+ B-1 population is shown. (B) Bar graph showing the mean 

and SEM of the percentage of WT (fi lled bar) and CD19Cre/+Prdm1Flox/Flox 

(open bar) B-1 cells recovered for fi ve WT and six CD19Cre/+prdm1Flox/Flox 

samples. (C) Total PerC cells harvested from mice in B.
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mice. Mice were also given PerC B-1 cells i.p. from either 
WT or CKO mice. B-2 cell reconstitution was confi rmed by 
fl ow cytometric analysis performed for peripheral blood B220+ 
cells. 3 wk after reconstitution, mice were infected intrana-
sally with an <LD50 dosage of A/WSN/33 infl uenza virus, 
and then monitored for 2 wk.

Weight loss was used as a criterion for susceptibility to 
infl uenza infection. In more than three independent experi-
ments in which 27 mice were intranasally infected with infl u-
enza virus ranging from 4,500 to 7,000 PFU/g, we found 
only 1/13 WT-reconstituted mice (Fig. 5, top), but 9/14 
CKO-reconstituted mice (Fig. 5, bottom) lost at least 30% of 
total body weight. Mice were killed when they lost 30% of 
their body weight to prevent excessive suff ering, or on day 
14 for analysis of the effi  ciency of B-1 cell reconstitution. 
Every mouse successfully reconstituted donor PerC B-1 cells 
as determined by fl ow cytometry analysis for surface IgM and 
Mac1 expression (not depicted). The increased susceptibility 
to infl uenza infection of mice receiving CKO B-1 cells 
 demonstrates the physiological relevance of the requirement 
for Blimp-1 in antibody secretion by B-1 cells.

DISCUSSION

Blimp-1 is required for Ig secretion in B-1 cells

Our data reveal an essential role for Blimp-1 in antibody 
 secretion by B-1 cells, both ex vivo and in vivo (Fig. 2). 
A requirement for Blimp-1 in antibody secretion by B-2 cells 
has been established previously (42). Earlier studies have 
shown that Blimp-1 is necessary for full induction of IgH, J 
chain, and XBP-1 mRNAs in B-2 cells, presumably due to 
direct repression of Pax5 by Blimp-1 (44) and subsequent 

derepression of these genes that are repressed by Pax5 
(46–50), although recent papers disagree on whether or not 
Pax5 represses XBP-1 (61, 62). XBP-1 then functions as the 
proximal regulator of the Ig secretion program, inducing 
genes encoding proteins responsible for targeting proteins to 
the ER, cleavage of signal peptides, proper protein folding, 
degradation of misfolded proteins, and protein glycosylation, 
as well as proteins needed for ER and other organelle bio-
genesis and increased cell size (49, 63). In addition, Blimp-1 
is required for the formation of μS mRNA, although 
the mechanistic basis for this requirement is not currently 
understood (42).

We therefore compared Pax5 mRNA repression, XBP-1 
mRNA induction, and formation of μS mRNA in control 
versus CKO B-1 cells to determine if similar mechanisms 
were involved in Ig secretion by B-1 cells and B-2 plasma 
cells. We found that B-1 cells lacking Blimp-1 failed to 
 repress Pax5 mRNA, failed to induce XBP-1 mRNA, and 
failed to form μS mRNA when compared with control B-1 
cells (Fig. 3). These results provide strong evidence that the 
Blimp-1–dependent mechanisms we studied are important 
for Ig secretion in both B-1 and B-2 cells. This conclusion is 
also consistent with a previous study showing that mice lack-
ing XBP-1 in their lymphocytes formed B-1 cells but failed 
to secrete IgM (50).

Why do spontaneously secreting B-1 cells have signifi -
cantly lower levels of mRNA encoding Blimp-1 and XBP-1 
compared with Ig-secreting B-2 cells, as reported by Tumang 
et al. (51)? The amount of IgM measured by ELISA in LPS-
treated splenic B-2 cell supernatants is �18-fold higher 
than that in cultures of purifi ed B-1 cells (unpublished data). 

Figure 5. Sensitivity to infl uenza virus by mice reconstituted with 

Blimp-1–defi cient B-1 cells. Lethally irradiated muMT− mice received 

WT bone marrow cells and either WT (top) or CD19Cre/+prdm1Flox/Flox 

(bottom) PerC cells. 3 wk after reconstitution, anesthetized mice were 

intranasally infected with 4,500, 6,000, or 7,000 PFU/g body weight with 

A/WSN/33 infl uenza virus. Mice were monitored daily and weighed from 

days 4–14. The percentage of weight change over 14 d as compared with 

the initial weight on the day of infection is shown. B-2 cell reconstitution 

was confi rmed 1 d before infl uenza infection, and B-1 cell reconstitution 

was determined on the fi nal day of the experiment. The fraction of sus-

ceptible mice is shown.
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Yet our data for purifi ed B-1 cells in short-term culture (Fig. 
2 B), and that of Tumang et al. for ex vivo–purifi ed B-1 cells, 
show that a signifi cant fraction (�32 and �21%, respectively) 
of purifi ed B-1 cells spontaneously secrete IgM. In addition, 
our data (Fig. 2 B and Fig. S1 C) indicate that a comparable 
fraction of LPS-stimulated B-2 cells are secreting, as  measured 
by cytoplasmic Ig (�39%). These data suggest that B-1 cells 
secrete less Ig per cell than B-2 cells. This conclusion is 
 consistent with the �55% smaller spot sizes seen in B-1 cell 
ELISPOT assays, further demonstrating that B-1 cells secrete 
less IgM than do LPS-treated B splenocytes (51). Moreover, 
the morphology of B-1 cells is distinct from that of plasma 
cells. Although they have ample ER, B-1 cells lack the 
 distinct arrays of rough ER characteristic of plasma cells (64). 
Thus, we suggest that although B-1 cells use the same regu-
latory mechanisms for Ig secretion, because they have less ER 
and secrete less Ig per cell, they may require lower amounts 
of Blimp-1 and XBP-1 mRNA and protein compared with 
B-2 plasma cells.

Our data clearly show that although Blimp-1 mRNA in 
B-1 cells is relatively low, it is nevertheless functionally 
 important because it is required for normal Ig secretion. This 
conclusion is strengthened by the demonstration that Blimp-
1–defi cient B-1 cells do not secrete normal amounts of T15 
natural antibodies (Fig. 2) and do not provide normal protec-
tion against infl uenza virus infection (Fig. 5).

Role of IgM in the formation of B-1 cells

Mice that cannot secrete IgM due to mutation in the μ-
 secreted exon and polyA sites have 1.5–2-fold increases in the 
frequency and total numbers of PerC B-1 cells (65, 66). The 
CD19Cre/+prdm1Flox/Flox mice we studied have signifi cantly 
 reduced serum levels of all Ig isotypes including IgM (42). In 
spite of this, we did not observe an increase in the frequency 
of B-1a or B-1b cells in the PerC or in B220+CD5+CD43+ 
B-1 cells in the spleen of these mice. There were, however, 
more total cells in the PerC of the CKO mice, resulting in 
a 2.5-fold increase in the total number of B-1 cells. Hence, 
our data support the idea that a lack of serum IgM feeds back 
to cause an increase in total B-1 cells in the PerC. The mech-
anism responsible for this eff ect remains obscure.

CKO B-1 cells, although defi cient in Ig secretion, are 
normal in their ability to proliferate and self-renew, as dem-
onstrated by their successful reconstitution of lymphopenic 
Rag1−/− and muMT− hosts. We found no diff erence in the 
rate of recovery between CKO- and WT-transferred PerC 
B-1 cells after 6–8 wk after intraperitoneal transfer (Fig. 4), 
consistent with our previous observation that splenic B-2 
cells from CKO mice proliferate well in response to LPS 
(42). Although we cannot formally rule out the possibility, 
we do not believe that CKO B-1 cell reconstitution was the 
result of preferential proliferation of CD19Cre/+prdm1Flox/Flox 
B-1 cells that failed to delete prdm1. In addition to fi nding no 
diff erences in total cell numbers in our in vitro cultures, 
 serum from WT-reconstituted Rag1−/− were found to have 
approximately ninefold greater T15 antibody levels than CKO-

reconstituted mice (not depicted) and CKO-reconstituted 
muMT− mice were functionally inferior to WT-reconstituted 
mice upon challenge with infl uenza virus (Fig. 5).

The relationship between Ig secretion and cell division 

in B-1 cells

The B-1 cell compartment is heterogeneous and no single 
anatomical location or surface marker can defi ne the entire 
population. B-1 cells are particularly uncharacterized in terms 
of two defi ning features: proliferation associated with self-
 renewal and Ig secretion. Further complexity is added by the 
fact that many B-1 cells are resting and perform neither func-
tion. Although in earlier studies Ig secretion was not detected 
in PerC B-1 cells (67, 68), Tumang et al. (51) showed by 
ELISPOT assay that �21% of naive, freshly sorted PerC 
CD5+B220+ B-1 cells secreted IgM over 3 h. Our results on 
primary B-1 cells in short-term culture confi rm this (Fig. 2, 
A and B, and Fig. S1 A). Many fewer PerC B-1 cells, how-
ever, are cycling than were found to be secreting: 2.5% of 
CD5+ PerC B cells depleted of T cells and macrophages were 
found to be in cycle in vitro, and when the proliferative 
 capacity of PerC CD5+ B cells was determined in vivo, only 
0.5–1.0% were in S phase (69, 70). Thus, it is not clear 
whether B-1 cells that secrete Ig have lost their proliferative 
capability, retain it, or, after a period of secretion, can revert 
to cells with proliferative potential.

In B-2 cells, plasmablasts are highly proliferative and also 
capable of secreting Ig. However, terminally diff erentiated 
plasma cells do not divide. Blimp-1 has been shown to  repress 
multiple genes required for cell cycle entry, DNA  replication, 
and cell division, and it is thought to be important for 
 establishing/maintaining the postmitotic state of plasma cells 
(39, 43, 71–74). Nonetheless, dividing plasmablasts also ex-
press Blimp-1, demonstrating that Blimp-1 expression is not 
incompatible with cell division if the cells receive strong 
 mitogenic signals (75, 76). Although additional studies will 
be necessary to learn if B-1 cells are fundamentally diff erent 
from B-2 cells with respect to terminal diff erentiation to an 
Ig-secreting, nonproliferating state, we suspect that the low 
level of Blimp-1 mRNA in B-1 cells, compared with B-2 
plasma cells, does not preclude Ig-secreting B-1 cells in the 
PerC from dividing when they receive appropriate signals. 
PerC B-1 cells may simultaneously retain both secretory and 
proliferative abilities, or they may alternate between secre-
tory and proliferative states, but more data will be required to 
test this hypothesis. It will also be interesting to learn how 
overexpression of Blimp-1 might aff ect Ig secretion and pro-
liferation of B-1 cells.

Overall, this study has shown that B-1 cells, like B-2 
cells, require Blimp-1 and Blimp-1–dependent derepression 
of XBP-1 to secrete Ig. Antibodies derived from B-1 cells are 
important for immunity to mucosal and air-borne pathogens 
and are also implicated in autoimmune diseases, including 
systemic lupus erythematosus (77), Sjorgen’s syndrome (78), 
and rheumatoid arthritis (79). Antibodies derived from B-2 
cells are similarly critical for humoral immunity and involved 
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in autoimmunity. Understanding that both B-1 and B-2 cells 
use common mechanisms to secrete antibodies suggests that 
compounds designed to modulate the expression or activity 
of Blimp-1 or XBP-1 could aff ect both B-1 and B-2 cells 
and would be eff ective for either vaccine design or treatment 
of autoimmunity.

MATERIALS AND METHODS
Mice, cell transfers, and infl uenza infection. Prdm1Flox/Flox mice 

were crossed with CD19Cre/+ mice to generate experimental (CD19Cre/+

prdm1Flox/Flox) and control (CD19+/+prdm1Flox/Flox) mice. Rag1−/− 

(B6.129S7-Rag1tm1Mom/J) and muMT− (B6.129S2-Igh-6tm1Cgn/J) were from 

The Jackson Laboratory. All mouse procedures were approved by Columbia 

University’s Institutional Animal Care and Use Committee. PerC cells were 

harvested in 4% FBS, 1% BSA in PBS. 3–5 × 106 PerC cells were resuspended 

in 1 ml PBS and transferred i.p. to Rag1−/− or muMT− mice. The remain-

ing PerC cells were stained with IgM and Mac-1 antibodies and analyzed by 

fl ow cytometry. For BM reconstitution, muMT− mice were lethally irradi-

ated with 2× 700 rads separated by 4 h. Mice were rested overnight and then 

reconstituted via tail vein injection with 107 total BM cells in 200 uL PBS 

harvested from CD19+/+prdm1Flox/Flox control mice. Mice were fed water 

containing Baytril (enrofl oxacin) for the remainder of the experiment. 

 Infl uenza virus A/WSN/33 was provided by P. Palese (Mount Sinai School 

of Medicine, New York, NY). Infl uenza virus was cultured on Mardin-

Darby Bovine Kidney cells in modifi ed Eagle’s medium supplemented with 

0.2% BSA and tittered on Mardin-Darby Canine Kidney cells as described 

(80) but without trypsin. For infl uenza infections, mice were anesthetized 

with 5% isofl urane and maintained in 2% isofl urane with oxygen. 4,500–

7,000 PFU/g body weight was administered to each mouse intranasally in 

20 ul PBS. Mice were caged separately and weighed on days 0 and 4–14.

Lymphocyte purifi cation and LPS cultures. PerC cells were harvested in 

RPMI (10% FBS) and gentamycin sulfate and plated for 2 h to remove adher-

ent cells. Thy1.2+ T cells were removed using magnetic beads and B-2 cells 

did not survive in culture. On day 4, cells were replated at a density of 106 

cells/ml. B-1 cultures were treated with 1 ug/ml LPS (Sigma-Aldrich) or left 

untreated for 3 d when supernatants were harvested for anti-IgM ELISA assays 

and cells were processed for either immunohistochemistry, cDNA, or genomic 

DNA preparations (see below). Splenocyte cultures were prepared as described 

previously (42) and treated with 1 ug/ml LPS for 4 d at which time live cells 

were harvested for immunohistochemical analysis.

Flow cytometry. The following unlabeled, biotinylated, fl uorochrome-

conjugated, and secondary detection antibodies were used: Mac-1-PE 

(M1/70), IgM-biotin (II/41), CD16/32 (93), and B220-APC (Ra3-6B2; all 

from eBioscience), and CD5-biotin (Ly-1), CD43-PE (S7), and strepavidin-

APC (all from BD Biosciences). All fl ow cytometry stains were performed 

by incubating 106 cells in 10 uL of 4% FBS plus 1% BSA in PBS with Fc 

block for 10 min followed by primary antibodies for 45 min, and then, after 

a brief wash, secondary antibodies for 30 min at 4°C in darkness. Analysis 

was performed on an LSRII (BD Biosciences) using WinMDI software 

 (Joseph Trotter, Scripps Research Institute).

ELISA. Anti-IgM ELISA assays were performed on supernatants from B-1 

cell cultures as described previously (81). Anti-T15–expressing hybridoma 

lines T139.2 and Tc54.8 were provided by M. Scharff  (Albert Einstein College 

of Medicine, New York, NY). Hybridomas were grown and antibodies 

were purifi ed using standard ammonium acetate precipitation techniques. 

For detection of serum T15, 96-well plates were coated with 50 uL of a 

mixture of 25 ug each of T139.2 and TC54.8 antibodies in PBS for 60 min, 

and then blocked with a solution of 2% BSA in PBS overnight at 4°C. Wells 

were washed once with 0.05% Tween-20 in PBS and exposed to mouse 

 serum (1:2 dilutions) for 60 min at 37°C. Wells were washed four times and 

incubated with a 1:500 dilution of goat anti–mouse Ig(H+L)-AP secondary 

antibody (SouthernBiotech) in 1% BSA in PBS for 60 min at 37°C. Four 

 additional washes followed by development with 0.8 mg/ml of Sigma 104 

phosphatase substrate (Sigma-Aldrich) in p-nitrophenyl phosphate buff er, 

and spectrophotometric measurements at OD405 were performed.

Immunohistochemistry. Purifi ed B-1 cells or splenocytes were seeded 

on slides by cytospin at 800 rpm for 5 min, air dried, fi xed, and  permeablized 

with 1% paraformaldehyde plus 0.2% Tween-20 in PBS for 20 min. Egg 

white in PBS was incubated for 1 h to block, followed by incubation with 

3% human serum (Sigma-Aldrich) plus 3% FBS plus 1% BSA in PBS for 

20 min. Primary goat anti–mouse Ig(H+L) antibody (SouthernBiotech) 

was diluted at 1:5,000 in serum block and applied to slides overnight. The 

slides were washed for 45 min with TBST (50 mM Tris, pH 7.5, plus 0.2% 

Tween-20) and incubated with 1:100 diluted rabbit anti–goat IgG(H+L) 

alkaline phosphatase–conjugated secondary antibody (SouthernBiotech) 

for 1 h in serum block. Slides were washed as described above and 

developed by fast blue (Sigma-Aldrich) and napthol AsBi-phosphate 

 substrate (Sigma-Aldrich) supplemented with levamisole (Sigma-Aldrich) 

in 100 mM Tris-HCl, pH 9.2. A Nikon Eclipse TE300 microscope and 

Openlab (Improvision) software were used for photographic analysis. Cells 

with darkly staining rings of cytoplasm or with darkly staining cytoplasmic 

caps were scored positive.

Quantitative real-time PCR. Quantitative real-time PCR was  performed 

with a cycle of 50°C, 2 min; 95°, 10 min; 95°C, 15 s; 60°C, 1 min; and 

81°C, 20 s for 40 cycles, recording data at 81°C and using primers for the 

unprocessed form of XBP-1 (5′-A G C A C T C A G A C T A T G T G C A C C T-

C T -3′, 5′-T C C A G A A T G C C C A A A A G G A T A T C -3′), μS (5′-T C T G C C-

T T C A C C A C A G A A G -3′, 5′-T A G C A T G G T C A A T A G C A G G -3′), Pax5 

(5′-C A A C A A A C G C A A G A G G G -3′, 5′-G G G C T C G T C A A G T T G G -3′), 
β-2 microglobulin (5′-A G A C T G A T A C A T A C G C C T G C A -3′, 5′-G C A-

G G T T C A A A T G A A T C T T C A G -3′), Blimp-1 (5′-A G T A G T T G A A T G-

G G A G C -3′, 5′-C A A T G C T T G T C T A G T G T C -3′) and peptidyl prolyl 

isomerase A (5′-C T G A G C A C T G G A G A G A A A G G -3′, 5′-C T T G C T G G-

T C T T G C C A T T C C -3′). Quantitative real-time PCR was performed on 

an ABI7000 machine. Total RNA and cDNA were prepared from at least 

0.15 × 106 purifi ed B-1 cells by TRIzol and Superscript III reverse tran-

scriptase according to the manufacture’s instructions (Invitrogen). Genomic 

DNA was made by lysis of purifi ed B-1 cells in 50 mM Tris-HCl, pH 8.0, 

0.1 mM EDTA, and 12.5% SDS, followed by phenol/chloroform extrac-

tion and ethanol precipitation.

Statistics. Data were expressed as the mean ± SEM. Statistical signifi cance 

was determined by a two-tail, unpaired Student’s t test.

Online supplemental material. Fig. S1 shows representative photographs 

of cytoplasmic Ig staining of purifi ed, cultured WT B-1 (A), CKO B-1 (B), 

and LPS-treated splenic B-2 (C) cells. It is available at http://www.jem.

org/cgi/content/full/jem.20060411/DC1.
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