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Increasing evidence suggests that cancer-associ-
ated infl ammation fosters tumor growth and pro-
gression (1, 2). CD40, a key molecule for adaptive 
immune response (3), is expressed on dendritic 
cells (4), but also on B cells (5), macrophages (6), 
endothelial cells (ECs; reference7), fi broblasts, and 
epithelial cells (8). Thus, it may bridge the im-
mune and the stromal compartments, a link high-
lighted also by the recent fi nding of B cells 
promoting infl ammation in a mouse model of 
epithelial carcinogenesis (9).

Malignant transformation can be followed in 
mice transgenic for the expression of oncogenes 
under tissue-specifi c promoters. We used the 
BALB/NeuT transgenic mouse model carrying 
the mutated rat HER-2/neu (r-p185) oncogene 
under the control of mouse mammary tumor vi-
rus promoter and developing mammary tumors 
in all 10 mammary glands by 32–33 wk of age. 

These mice have been fully characterized during 
the steps of malignant transformation from ini-
tial lobular hyperplasia to invasive and metastatic 
lobular carcinoma (10), a progression that has 
been similarly described in human breast cancer. 
Although in BALB/NeuT mice the rat HER-
2/neu oncogene is recognized as self-antigen, 
DNA vaccination using the extracellular and 
transmembrane domains of rat HER-2/neu par-
tially hampers tumor progression by the induc-
tion of high titers of anti–r-p185 antibody (Ab), 
capable of down-modulating r-p185 on preneo-
plastic mammary cells (11).

To study a possible role of CD40 in cancer 
development and progression, we transferred 
the rat HER-2/neu oncogene into a CD40-null 
background and studied tumor development. 
 Although CD40 defi ciency might suggest weak 
“immunosurveillance” against developing tu-
mors, and therefore increased morbidity, we 
rather found CD40-KO/NeuT mice developing 
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acterize BALB/NeuT tumors, whereas tiny numerous vessels with scarce extracellular matrix 

are dispersed in the parenchyma of poorly organized CD40-KO/NeuT tumors.

Activated platelets, which may interact with and activate ECs, are a possible source of 

CD40L. Their localization within tumor vessels prompted the idea of treating BALB/NeuT and 

CD40-KO/NeuT mice chronically with the anti-platelet drug clopidogrel, known to inhibit 

platelet CD40L expression. Treatment of BALB/NeuT mice reduced tumor growth to a level 

similar to CD40-defi cient mice, whereas CD40-KO/NeuT mice treated or not showed the 

same attenuated tumor outgrowth, indicating that activated platelets are the likely source 

of CD40L in this model. Collectively, these data point to a participation of CD40/CD40L in 

the angiogenic processes associated with mammary carcinogenesis of BALB/NeuT mice.
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fewer, smaller, and delayed tumors compared with CD40-
 suffi  cient BALB/NeuT counterpart. To explain this less severe 
phenotype we tested two alternative hypotheses: (a) reduced tol-
erance to self-antigens due to the lower number of CD4+CD25+ 
T regulatory (T reg) cells characterizing CD40-null mice, and 
(b) impaired tumor angiogenesis as a consequence of the lack of 
CD40 on ECs.

RESULTS

Reduced mammary carcinogenesis in CD40-KO/neuT mice

To test whether CD40 has any role in the development of 
mammary carcinomas, we have introduced the rat HER2/
neu oncogene into the CD40-KO background and evaluated 
tumor onset and progression. The analysis of >50 CD40-
KO/NeuT mice showed slower tumor onset, reduced mul-
tiplicity (Fig. 1 A, left), and decreased total tumor volume 
(Fig. 1 A, right) compared with BALB/NeuT mice. Whole 
mount analysis of mammary glands from BALB/NeuT and 
CD40-KO/NeuT mice from 6 wk, when atypical hyper-
plasia is evident, until 17 wk, when palpable invasive carci-
nomas appear, confi rmed the delayed carcinogenesis in the 
KO strain (Fig. 1 B). Comparison of whole mount sam-
ples from wild-type and CD40-defi cient mice at diff erent 
time points excluded any macroscopic diff erence in normal 
mammary gland development between the two strains, and 

therefore the possibility that a slower mammary gland de-
velopment could account for the reduced tumor growth in 
CD40-KO/NeuT mice (Fig. S1, available at http://www.
jem.org/cgi/content/full/jem.20060844/DC1).

CD40 expression on BM-derived cells is not involved 

in tumor development in BALB/neuT mice

To explain the reduced tumorigenicity of CD40-KO/NeuT 
mice, we tested two hypotheses: a weaker tolerance to tumor-
associated antigens because of the reduced number of T reg 
cells characterizing CD40-KO mice (12), and an impaired 
tumor angiogenesis because of the lack of CD40 on ECs. 
A single experimental approach that allows discrimination 
between the two hypotheses is BM transplantation (BMT). 
CD40-null donors, transferred into BALB/NeuT recipients, 
were expected to reproduce the CD40-KO/NeuT tumor 
phenotype if cells of BM origin, including T reg cells, are ac-
tively involved in the process. Complementary results could 
be obtained by the transfer of BALB/c BM into CD40-KO/
NeuT mice to restore the BALB/NeuT morbidity. 5–6-wk-
old mice, which have completed mammary gland develop-
ment, were transplanted. At this time point, no sign of 
carcinomas are detectable. An earlier time point has been 
avoided because of radiation-induced impairment of normal 
mammary tree development.

Figure 1. Development of mammary carcinomas in BALB/NeuT and 

CD40-KO/NeuT mice. (A) Tumor growth curves showing delayed tumor 

onset and reduced tumor incidence (left) and tumor volume (right) in CD40-

KO/NeuT (○) versus BALB/NeuT mice (●). Tumor multiplicity is calculated as 

the cumulative number of incident tumors per total number of mice. Mean 

(± SE) of 52 mice for each group is shown. Single tumor volume is calcu-

lated as r2xR where r is the minor diameter and R the major one. The mean 

of cumulative tumor volumes (± SD) per mouse is shown. (B) Whole mount 

preparation of BALB/NeuT (top) and CD40-KO/NeuT (bottom) mammary 

glands at 8, 12, and 17 wk of age. The black spot in the middle is the ingui-

nal lymph node. The dark areas surrounding the ducts correspond to hyper-

plastic areas. Black arrows point to solid tumor nodules. Bar, 5 mm.
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Although CD40-KO > BALB/NeuT chimeras showed a 
reduced number of T reg cells, similar to that of CD40-null 
and CD40-KO/NeuT mice (Fig. 2 A), tumor onset and mul-
tiplicity remained identical to that of BALB/NeuT mice 
(Fig. 2 B, left). Accordingly, BALB/c > CD40-KO/NeuT 
chimeras showed the same number of T reg cells present in 
the periphery of BALB/c and BALB/NeuT mice (Fig. 2 A), 
without any eff ect on tumor onset and multiplicity (Fig. 2 B, 
right). Because donor BM did not modify the host tumor 
phenotype, we excluded a preeminent immunological role 
of CD40 in this tumor model and therefore focused on 
the second hypothesis testing whether CD40 is involved in 
 tumor angiogenesis.

Despite the fact that the contribution of BM-derived 
 endothelial progenitor cells to tumor endothelium is still 
 debated, the most accepted theory is that tumor vessels originate 
mainly from host, rather than BM-derived, cells (13). Indeed, 
(FVBTieβ-galxBALB/NeuT)F1 double transgenic mice and 

(FVBTieβ-galxBALB/c)F1 > BALB/NeuT chimeras show 
all blood vessels, or only vessels of BM origin, respectively, 
stained in blue because the β-galactosidase gene is placed un-
der the endothelial Tie2 promoter (14). Comparison of their 
tumor vasculature indicates that, in our tumor model, tumor-
associated vessels derive mostly from host ECs rather than 
from donor BM-derived EC precursors (Fig. S2, available at 
http://www.jem.org/cgi/content/full/jem.20060844/DC1).

CD40 expression on mouse blood vessels 

and tumor-associated vasculature

We fi rst assessed CD40 expression on mouse ECs in vitro 
 using the 1G11 EC clone isolated from mouse lung tissue 
(15), which presents a typical endothelial phenotype, forms 
contact-inhibited monolayers on gelatin and capillary-like 
“tubes” in Matrigel, and can be kept in culture for several 
passages without loosing their endothelial characteristics (15). 
1G11 cells express low level of CD40 (25–28% positive cells) 

Figure 2. BMT experiments in BALB/NeuT and CD40-KO/NeuT mice. 

(A) Number of T reg cells in BALB/NeuT, CD40-KO/NeuT, CD40-KO > BALB/

NeuT, and BALB/c > CD40-KO/NeuT chimeras. CD4+CD25+ T reg cell num-

bers in CD40-KO/NeuT mice (▲) is lower than in BALB/NeuT mice (■). CD40-

KO > BALB/NeuT chimeras (●) show several T reg cells comparable to that 

of CD40-KO/NeuT mice, whereas BALB/c > CD40-KO/NeuT chimeras (◆) 

have several T reg cells not different from those of BALB/NeuT animals. 

(B) Tumor incidence in CD40-KO > BALB/NeuT chimeras (△, left) and in 

BALB/c > CD40-KO/NeuT chimeras (□, right). Tumor growth in BALB/NeuT 

mice (●) and CD40-KO/NeutT mice (○) is shown for comparison. Mean ± SE 

is shown. (C) Mean of cumulative tumor volume in CD40-KO > BALB/NeuT 

chimeras (△, left) and in BALB/c > CD40-KO/NeuT chimeras (□, right). 

 Volumes for BALB/NeuT mice (●) and CD40-KO/NeutT mice (○) are shown 

for comparison. Mean ± SD is shown. Mice number: 14–18 per group.
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that is up-regulated by TNF-α plus IFN-γ treatment (50–55% 
positive cells). Triggering of CD40 receptor on 1G11 cells by 
recombinant sCD40L is able to up-regulate VCAM-1 expres-
sion on their surface and induce the production of vascular 
endothelial growth factor (VEGF; Fig. S3, available at http://
www.jem.org/cgi/content/full/jem.20060844/DC1).

To verify the expression of CD40 on ECs in vivo, we 
have used a recently developed, very sensitive method, the 

dual  radiolabeled mAb technique, which allows the quanti-
fi cation of EC-associated proteins with a precision and sen-
sitivity not previously possible using immunohistochemical 
procedures (16, 17). Indeed, although immunohistochemis-
try failed to detect CD40 expression on mouse ECs, the 
dual radiolabeled mAb technique demonstrated the pres-
ence of CD40 on  vessels of diff erent organs, mainly the kid-
ney, lung, pancreas, and in the tumor masses collected from 

Figure 3. Angiogenic effect of CD40 in vivo. Liquid growth factor–

reduced Matrigel, containing Ab to CD40, isotype-matched control Ab, 

sCD40L plus enhancer, bFGF (as positive control), or without any additives, 

was injected s.c. in BALB/c or CD40-KO mice. After 7–10 d, semisolid plugs 

were recovered and included in paraffi n or OCT. (A) Hematoxylin and eosin 

staining of Matrigel sections in BALB/c and CD40-KO mice. Bar, 500 μm. 

(B) Percentage of CD31+ cells over total number of cells in the Matrigel 

plugs in BALB/c and CD40-KO mice (mean of 10 fi elds/sample). (C) Immuno-

staining of Matrigel plug sections with Ab to CD31. Black arrows indicate 

the edge of the Matrigel plug. Bar, 300 μm; bar in inset, 300 μm.

Table I. CD40 and PECAM-1 expression on mouse EC in BALB/NeuT mice

Tissue CD40

(ng mAb/g tissue)

PECAM-1

(ng mAb/g tissue)

CD40/PECAM-1

ratio

Lung 70.06 ± 22.56a 3716.82 ± 1191.06 0.0188 

Kidneys 68.52 ± 15.58 1061.06 ± 227.94 0.0646 

Heart 4.94 ± 2.92 794.68 ± 234.58 0.0062 

Brain 0.77 ± 0.86 46.60 ± 3.94 0.0165 

Muscles 1.76 ± 2.16 167.92 ± 42.35 0.0105 

Pancreas 4.47 ± 2.30 233.54 ± 74.85 0.0192

Mesentery 1.92 ± 1.49 350.14 ± 106.92 0.0055

Small bowel 5.99 ± 1.70 844.05 ± 83.09 0.0071

Colon 2.27 ± 2.07 293.43 ± 61.06 0.0077

Tumors 13.21 ± 6.78 426.44 ± 77.01 0.0310

aMean ± standard deviation.
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BALB/NeuT mice (Table I).  Although the abnormal, irreg-
ular, and leaky vessels characterizing tumor vasculature could 
allow a small fraction of CD40 Ab to extravasate and bind 
to some CD40-expressing tumor-infi ltrating cells, such as 
macrophages, the short pulse with the Ab and the extensive 
washing minimize such contribution. Indeed, the ratio of 
CD40/platelet EC adhesion molecule (PECAM)-1 in tu-
mor vasculature was one of the highest, confi rming CD40 
expression on tumor vessels as part of their activate/infl amed 
state. As expected, no CD40 expression was detected on 
 either normal or tumor vessels from CD40-KO/NeuT mice 
(not depicted).

Triggering of CD40 recruits ECs within Matrigel plug in vivo

To functionally test, in vivo, the eff ect of CD40 engagement on 
angiogenesis, we used the Matrigel implantation assay. Liquid 
Matrigel, containing agonist Ab to CD40, isotype-matched 
control Ab, sCD40L, bFGF (as positive control), or no addi-
tives, was injected s.c. in CD40-suffi  cient and -defi cient mice. 
Semisolid plugs were recovered after 7–10 d and processed for 
light microscopy analysis or immunostaining.

sCD40L and Ab to CD40, but not isotype control Ab, 
are able to recruit ECs in Matrigel plugs implanted into 
CD40-suffi  cient, but not CD40-defi cient, mice. On the con-
trary, bFGF recruited ECs into Matrigel plugs regardless of 
the CD40 genotype of recipient mice (Fig. 3 A). Immuno-
staining with Ab to CD31 confi rmed the endothelial nature 
of some cells infi ltrating the Matrigel plugs (Fig. 3 C). The 
number of CD40-recruited CD31+ cells was signifi cantly 
diff erent in Matrigel plugs collected from CD40-suffi  cient 
and -defi cient mice (Fig. 3 B).

Tumor vascularization in CD40-KO/neuT and 

BALB/NeuT mice

A role of CD40 in tumor vessel formation and/or organization 
was confi rmed by immunohistochemical analysis of tumors 
collected from the two strains at diff erent sizes and at diff erent 
time points. Staining with Ab to CD31 showed a diff erent or-
ganization of tumor-associated vessels (Fig. 4, top). Tumors from 
BALB/NeuT mice present large vessels surrounding the tumor 
lobular structures and a few tiny vessels inside the parenchyma, 
whereas those from CD40-KO/NeuT mice lack all large ves-
sels while numerous tiny vessels are dispersed in the tumor pa-
renchyma. Accordingly, tumors from BALB/NeuT mice show 
dense collagen type IV (Fig. 4, bottom) and laminin (not de-
picted) around the large vessels and in the stromal septa defi ning 
the tumor lobules. This feature is much less evident in CD40-
KO/NeuT tumors, which are characterized by undefi ned lob-
ules with thin stromal septa.

This diff erence was confi rmed by measuring the area oc-
cupied by blood vessels in tumors from the two strains (calcu-
lated as CD31 positive pixel number/tumoral area pixel 
number × 100 [4.09 ± 1 in BALB/NeuT tumors vs. 2.71 ± 
0.58 in CD40-KO/NeuT tumors]; P < 0.05).

Possible involvement of platelets in BALB/NeuT 

mammary carcinogenesis

Aside from the well-known expression of CD40L on activated 
CD4+ T cells (18), this molecule has also recently been de-
scribed on human platelets, which release its soluble form 
(sCD40L) upon activation (19, 20). Because of the paucity of 
CD4+ T cells infi ltrating BALB/NeuT tumors (21), and their 
virtual absence in early lesions (not depicted), we tested whether 

Figure 4. Tumor vasculature in BALB/NeuT and CD40-KO/NeuT 

mice. Immunohistochemical analysis of tumor samples from BALB/NeuT 

and CD40-KO/NeuT mice. Tumors of similar size and from the same 

 mammary gland are compared. Staining has been performed with Ab 

anti-CD31 and Ab anti–collagen type IV, as indicated. Bar, 1 mm; bar in 

inset, 500 μm.
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platelet-released sCD40L may contribute to the development 
of BALB/NeuT tumors.

First, we confi rmed the expression of CD40L on activated 
mouse platelets because this evidence is lacking in the current 
literature. Fig. 5 A shows the presence of CD40L on the sur-
face of thrombin-activated, but not resting, platelets. The aden-
osine diphosphate (ADP) receptor antagonist, clopidogrel (22), 
is an anti-platelet drug with anti-aggregating properties. 
Among its actions, it inhibits ADP-induced CD40L expression 
on the platelet surface (23, 24). Therefore, to support the hypo-
thesis that platelets might provide CD40L for interaction with 
CD40-expressing tumor ECs, we treated BALB/NeuT mice 

from an early age (4 wk) with clopidogrel, given chronically in 
the drinking water. The inhibitory activity of clopidogrel on 
platelet activation was confi rmed by FACS analysis showing 
the inhibition of CD62P up-regulation on platelets stimulated 
in vitro with thrombin (Fig. S4, available at http://www.jem.
org/cgi/content/full/jem.20060844/DC1). In addition, im-
munostaining of tumor vasculature from clopidogrel-treated 
and -untreated mice with Ab to CD41 shows dispersed or in 
blood clot–aggregated platelets, respectively (Fig. 5 B).

Clopidogrel treatment eff ectively decreased tumor mul-
tiplicity and size in BALB/NeuT mice (Fig. 5, C and D) to 
the level of CD40-KO/NeuT mice. Because clopidogrel has 

Figure 5. Platelet involvement in tumor growth. (A) CD40L expres-

sion on mouse platelets by FACS analysis. Thrombin-activated platelets 

have been stained for CD62P, to assess their activation, and for CD40L. 

Filled histogram, resting platelets; open histogram, activated platelets. 

(B) Immunohistological staining for CD41, a platelet-specifi c marker, of 

tumor samples from untreated (left) and clopidogrel-treated (right) 

BALB/NeuT mice. In untreated mice, many platelets are clearly aggre-

gated in a blood clot at the vessel bifurcation, and only a few of them 

are single or double (black arrows). In clopidogrel-treated mice, platelets 

are dispersed, not attached to the vessel wall, and no blood clots are 

present. Bar, 75 μm; bar in inset, 100 μm. (C and D) Clopidogrel effect 

on NeuT tumor growth. Tumor multiplicity and cumulative tumor vol-

ume per mouse of BALB/NeuT (C) and of CD40-KO/NeuT (D) mice treated 

chronically with clopidogrel (▲) compared with untreated CD40-KO/

NeuT (○) and BALB/NeuT mice (●). n = 15 for both BALB/NeuT and 

CD40-KO/NeuT mice.
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additional eff ects other than inhibiting CD40L expression, 
we also treated CD40-KO/NeuT mice to evaluate any ef-
fects of clopidogrel other than inhibition of CD40L expres-
sion and therefore of CD40 triggering. Results show that 
clopidogrel had no signifi cant eff ect on tumor growth in 
CD40-KO/NeuT mice (Fig. 5, E and F), indicating that, in 
our tumor system, its eff ect is mainly through the inhibition 
of platelet CD40L.

DISCUSSION

To study the role of CD40 in mammary carcinogenesis, we 
introduced the mutated rat HER-2/neu oncogene, driven by 
mouse mammary tumor virus promoter, into a CD40-null 
background. Because CD40 is crucial in mounting an im-
mune response (6, 25), CD40-KO/NeuT mice might have 
been expected to be more tumor prone than their CD40-
suffi  cient counterpart. On the contrary, CD40-KO/NeuT 
mice showed delayed tumor onset and reduced multiplicity 
compared with BALB/NeuT mice, data confi rmed by whole 
mount analysis of mammary glands from the two strains.

Two hypotheses were formulated to explain such an un-
expected phenotype: a weaker tolerance to tumor-associated 
antigens because of the reduced T reg cell number in CD40-
KO mice (12), or an impaired tumor angiogenesis because of 
the lack of CD40 on ECs. Any possible direct role of CD40 
on tumor cells was excluded because these tumors do not 
 express it, neither in vitro nor in vivo (not depicted).

The spleen of CD40-KO mice has such a reduced number 
of CD4+CD25+ T reg cells to induce autoimmunity if trans-
ferred into nu/nu mice (12). Indeed, we found a 50–80% re-
duction of T reg cells in the peripheral blood, spleen, and thymus 
of CD40-KO mice compared with normal BALB/c mice of 
the same age. Although CD40-KO T reg cells were equally ca-
pable of suppressing CD4+CD25− cell proliferation as their 
wild-type counterpart (26), it might be possible that their low 
number might allow a response to tumor-associated antigen, 
otherwise ignored by the immune system, thus explaining the 
milder tumor phenotype of CD40-KO/NeuT mice.

Supporting the second hypothesis are several reports in-
volving CD40 in EC activation and proliferation (7, 27–29), 
at least in humans. It has been shown that CD40 engagement 
on human ECs induces the expression of several angiogenic 
 factors in vitro and promotes angiogenesis in vivo (7, 27). 
 Interestingly, up-regulation of CD40 has been observed in 
 tumor ves sels of renal carcinomas and Kaposi’s sarcoma (30). 
A Kaposi’s sarcoma cell line engineered to release a soluble form 
of CD40, as decoy receptor, when injected s.c. into SCID mice 
develops signifi cantly smaller tumors with reduced vascular-
ization compared with the nontransduced counterpart (31).

Both hypotheses have been challenged at the same time 
using BMT experiments in which CD40-KO BM was trans-
ferred into BALB/NeuT recipients and BALB/c BM into 
CD40-KO/NeuT mice. If CD40 expressed on cells of BM 
origin was involved, BM replacement was expected to modify 
host tumor outgrowth. Despite the fact that BMT brought the 
number of recipient T reg cells to the donor level, mammary 

carcinogenesis remained unchanged, indicating that CD40 on 
BM cells did not have any relevant role in tumor development 
in BALB/NeuT mice. Rather, BMT data are consistent 
with the second hypothesis, suggesting that, in this experi-
mental tumor model, the main role of CD40 is nonimmuno-
logical but likely associated to the angiogenic phenotype that 
fosters malignancy.

A large body of literature reports on the expression and 
function of CD40 on human ECs (7, 27–29), whereas no clear 
data are available in the mouse system, except for two reports 
that—although suggesting a functional role of CD40 in mouse 
angiogenesis—do not show CD40 expression on ECs (31, 32). 
Here, the dual radiolabeled mAb technique showed, in vivo, 
CD40 expression on normal and tumor blood vessels, and the 
functional activity of CD40 on mouse ECs has been demon-
strated, both in vitro and in vivo, using a primary EC line and 
Matrigel implantation assay, respectively.

Accordingly, tumors from BALB/NeuT mice have large 
and well-structured vessels delimiting the tumor lobular 
structures and a few small vessels inside the parenchyma, 
whereas those from CD40-KO/NeuT mice have only nu-
merous tiny vessels dispersed in the tumor parenchyma, while 
lacking all main large vessels. Thus, BMT experiments, Matri-
gel assay, in vitro and vivo detection of CD40 on both normal 
and tumor-associated ECs, and immunohistological analysis 
of the tumor vasculature concur to demonstrate a role of 
CD40 in tumor angiogenesis.

Such an eff ect of CD40 on tumor vasculature and, con-
sequently, on tumor growth, is relevant in the BALB/NeuT 
tumor model, in which tumor development is a very slow 
process. On the other hand, in transplantable models of tumor 
cell lines derived from the same BALB/NeuT mice, such an 
eff ect is undetectable, and tumors, which develop very rapidly 
in 2–3 wk, are even more aggressive in CD40-defi cient than 
in wild-type mice (not depicted). This evidence suggests that in 
very rapid transplantable models, probably, is the immuno-
logical, antitumoral role of CD40 that prevails over the pro-
tumoral angiogenic eff ect we see in the slow and more 
“physiological” transgenic model. Moreover, considering the 
redundancy of the factors involved in tumor angiogenesis, it 
is very likely that EC activation by CD40 triggering is an 
early event, whereas subsequent angiogenic stimuli can ren-
der its eff ect dispensable. This view is consistent with the de-
layed onset but late progression of some tumors in the 
CD40-null background.

The search of the cells providing the ligand for CD40 
triggering is quite restricted. CD40L is mainly expressed on 
activated CD4+ T cells (18) but is also present on human 
platelets, which upon activation release its soluble form 
(sCD40L; references 19 and 20). Human platelets up-regulate 
CD40L expression very rapidly after activation in vitro and 
during thrombus formation in vivo (33). Platelet-derived 
CD40L induces ECs to express tissue factor (34) and adhesion 
molecules, as well as the secretion of chemokines, all mole-
cules responsible for the recruitment and extravasation of 
 leukocytes at the site of injury. Moreover, an increased serum 
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level of sCD40L has been detected in patients with lung 
 cancers (35) and bone tumors (36).

There is increasing evidence that platelets may participate to 
tumor growth by contributing to the metastatic process (37, 38), 
protecting tumor cells from immune surveillance (39, 40) and 
regulating tumor cell invasion and angiogenesis (41–43). Plate-
let granules contain a variety of factors, such as VEGF, TGF-β, 
thrombin, and fi brinogen, which are secreted upon platelet 
 activation. Many of these factors have been implicated in various 
steps of tumor progression and metastasis; indeed, being the tu-
mor vasculature leaky, platelets may come in contact with the 
tumor and deposit in situ several of these angiogenic factors, 
which in turn can promote tumor vascularization.

In light of this evidence, and considering that BALB/
NeuT tumors are virtually lacking infi ltrating CD4+ T cells, 
especially at early phases of transformation (21 and unpub-
lished data), we have focused our attention on platelets as the 
likely source of CD40L. Once confi rmed that CD40L is ex-
pressed on activated mouse platelets, and that platelets are pre-
sent in the vessels of BALB/NeuT tumors, we functionally 
tested their involvement in the tumorigenic process. The ADP 
receptor antagonist clopidogrel (22) is an anti-platelet drug 
that, among its actions on platelet activation, has been found 
to specifi cally inhibit ADP-induced CD40L expression on 
the platelet surface (23). We used clopidogrel to test whether 
platelets, and likely CD40L expressed by them, may have any 
role in tumor development in our model by treating young 
BALB/NeuT mice chronically. We hypothesized that clopi-
dogrel, by inhibiting CD40L expression on the platelet sur-
face, could delay/reduce tumor outgrowth in BALB/NeuT 
mice to the rate shown by CD40-KO/NeuT animals.

Because the clopidogrel eff ect on platelets is wider than 
inhibiting CD40L expression, we also treated CD40-KO/
NeuT mice to distinguish the eff ect due to CD40 engage-
ment from all other CD40-independent eff ects. CD40-KO/
NeuT mice treated or not with clopidogrel did not show any 
statistically signifi cant diff erence, whereas a highly signifi cant 
diff erence was observed between treated and untreated 
BALB/NeuT mice. These results indicate that the major ef-
fect of clopidogrel is on the contribution of CD40L, whereas 
other eff ects on platelets are less involved in our system, espe-
cially if aff ecting other players that are redundant in the an-
giogenic process. For example, VEGF, one of the key molecules 
in the angiogenic process, is already released by the mammary 
tumors (44).

The BM origin of CD40L donors was confi rmed with 
BMT experiments using CD40L-KO (C57BL/6 background) 
donors to transplant lethally irradiated transgenic (C57BL/
6×BALB/NeuT)F1 mice. In the CD40LKO > NeuT chi-
meras, tumor development is delayed compared with C57BL/6 
> NeuT control chimeras (Fig. S5, available at http://www.
jem.org/cgi/content/full/jem.20060844/DC1).

In conclusion, our results sustain the hypothesis of using 
anticoagulants in cancer therapy to prevent platelet interac-
tion with tumor vasculature (43), and highlights CD40/
CD40L interaction as an additional mechanism that platelets 

use to promote neo-angiogenesis. At the same time, our fi nd-
ings, revealing an underestimated role of CD40 in fostering 
tumor neo-angiogenesis, raise a concern with using Abs to 
CD40 to enhance antitumor immune responses. Stimulation 
of CD40 may be a double-edged sword, and therefore a care-
ful evaluation of the pros (antitumor eff ect by means of APC 
activation) and cons (angiogenesis promotion through EC ac-
tivation) of CD40 triggering is needed in the design of an 
immunotherapeutic approach if prophylactic (45) or directed 
to incipient tumors.

MATERIALS AND METHODS
Animal models. BALB/cAnNCrl mice were purchased from Charles 

River Laboratories. CD40-KO mice (46) were provided on a BALB/c back-

ground by L. Adorini (Bioxell, Milan, Italy). Congenic, female BALB/NeuT 

mice have been described elsewhere (47, 48). The CD40-KO/NeuT strain 

has been obtained by introducing the HER2/neu transgene into CD40-KO 

mice. CD40 defi ciency has been tested by FACS analysis on PBMCs using 

an anti-CD40 FITC-conjugated mAb (clone 3/23; BD Biosciences). The 

presence of the HER2/neu transgene has been checked by PCR on tail 

DNA as described previously (48). Mice were bred and maintained at the 

 Istituto Nazionale Tumori and treated according to the European Union 

guidelines. Animal studies were approved by the Animal Ethical Committee 

appointed by the Istituto Nazionale Tumori.

Mammary gland histology. Whole mount preparations were performed 

as described at http://tgmouse.compmed.ucdavis.edu/HistoLab/wholmt1.

htm. Digital photos were acquired with a Nikon Coolpix 995 (Nital SpA) 

mounted on a stereoscopic microscope (MZ6; Leica).

BMT. 5–6-wk-old mice were lethally γ-irradiated with 900 cGy, and BMT 

was performed as described previously (49). To verify engraftment, 8 wk after 

BMT, PBMCs were stained with FITC-conjugated anti-CD40 mAb and 

PE-conjugated B220 mAb, as well as isotype control FITC/PE-conjugated 

rat IgG2a (all from BD Biosciences), and analyzed by fl ow cytometry.

FACS analysis. The analysis of T reg cell numbers was performed by cyto-

fl uorimetry with anti–CD4-FITC and anti–CD25-PE Ab (both from BD 

Biosciences). Percentage of T reg cells was calculated on the total number of 

CD4+ cells.

For analysis of activated platelets, platelet-rich plasma (PRP) was ob-

tained from PBMCs, collected with acid-citrate-dextrose, and centrifuged 

twice at 1,800 rpm to eliminate erythrocytes and other cells. PRP was acti-

vated with 0.2 U/ml human thrombin (Sigma-Aldrich) for 1 h at 37°C. 

Resting and activated platelets were stained for CD62P and CD40L (both 

from BD Biosciences).

For FACS analysis of CD40 expression on 1G11 ECs (provided by A. 

Vecchi, Mario Negri Institute, Milan, Italy), anti–CD40-FITC Abs and clones 

3/23 and HM-40-3 (both from BD Biosciences) were used.

Dual radiolabeled mAb technique. The mAbs used for in vivo assessment 

of CD40 and PECAM-1 expression were 3/23 for mouse CD40, MEC 13.3 

against mouse PECAM-1 (both from BD Biosciences), and P-23, a nonspe-

cifi c, nonbinding murine IgG1 directed against human P- selectin (provided 

by D.C. Anderson, Pharmacia-Upjohn, Kalamazoo, MI). The specifi c binding 

(3/23 and MEC 13.3) and nonbinding (P23) mAbs were labeled with 125I 

and 131I, respectively (Du Pont-New England Nuclear). Mice were anesthe-

tized intramuscularly with 150 mg/kg ketamine and 7.5 mg/kg xylazine. The 

right jugular vein and right carotid artery were cannulated with polyethylene 

tubing (PE-10). To measure CD40 or PECAM-1 expression, a mixture of 
125I-labeled binding mAb (either 20 μg anti-CD40 or 10 μg anti–PECAM-1) 

and 0.5–5 μg of nonbinding 131I mAb (adjusted to ensure a total 131I in-

jected activity of 500,000 ± 100,000 cpm), was  injected through the jugular 

vein catheter (total volume 200 μl). Blood samples (200 μl) were obtained 
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from the carotid artery catheter 5 min after injection of the mAb mixture 

for measurement of plasma 125I and 131I activity. Thereafter, an isovolemic 

blood exchange was rapidly performed by perfusion with 6 ml of bicarbon-

ate- buff ered saline through the jugular vein catheter with simultaneous blood 

withdrawal through the carotid artery catheter. This was followed by perfu-

sion of 15 ml of bicarbonate-buff ered saline through the carotid artery cathe-

ter after severing the inferior vena cava at the thoracic level. Organs were 

harvested and weighed before radioactivity measurements. The method 

for calculating CD40 and PECAM-1 expression has been described 

previously (17).

In vivo Matrigel plug assay. Matrigel plug assay has been performed in 

BALB/c and CD40-KO mice by s.c. injection of growth factor–reduced 

Matrigel (BD Biosciences) containing 25 ng/ml bFGF (R&D Systems), 

40 μg/ml anti-CD40 mAb (clone FGK; Qbiogene), isotype-matched  control 

mAb (rat IgG2a; BD Biosciences), 500 ng/ml of msCD40L plus enhancer 

(CD40L soluble Set; Qbiogene) or without any additive. 6–10 d later, animals 

were killed and Matrigel plugs were recovered in OCT for immunostaining 

with rat anti–mouse mAb CD31 (see below), or fi xed in 10% neutral-

 buff ered formalin, embedded in paraffi  n, sectioned (5 μm), and stained with 

hematoxylin and eosin. The percentage of CD31+ cells is calculated over the 

total number of cells recruited in the external area of the plugs (very few cells 

are present in the most inner part of the plug), and the mean of 10 fi elds per 

each sample is calculated.

Immunohistochemistry. Tumor samples were embedded in OCT com-

pound, snap frozen, and stored at −80°C. Immunohistochemical analysis 

on 5-μm cryostat sections was performed as described previously (49). The 

following Abs have been used: rat anti–mouse mAb CD31, rabbit poly-

clonal Ab anti–mouse collagen type IV (Chemicon), rat anti–mouse mAb 

Laminin (Chemicon), rat anti–mouse CD41 (Integrin IIb chain; BD 

 Biosciences), and biotinylated goat anti–rat or anti–rabbit IgG as secondary 

Ab. Avidin–peroxidase complex (Sigma-Aldrich) was used and antigens 

were revealed with 3,3′-diaminobenzidine (Sigma-Aldrich) according to 

the manufacturer’s instructions.

Images were digitally captured on a microscope (Eclipse E1000; Nikon) 

equipped with a digital camera (DXM1200; Nikon) and analyzed using ACT1 

software. The percentage of the area occupied by blood vessels in tumors is 

calculated as CD31 positive pixel number/tumoral area pixel number × 100 

in 200× fi elds. Mean ± SD is performed on nine samples per each group.

In vivo clopidogrel treatment. BALB/NeuT and CD40-KO/NeuT 

mice have been treated chronically, from 4 wk of age, with clopidogrel 

(Plavix) given continuously via the drinking water at a concentration of 

0.25 mg/ml (equivalent to an oral dose of �30 mg/kg/day). The inhibitory 

eff ect of clopidogrel treatment on platelet activation was assessed by FACS 

analysis with anti-CD62P Ab on PRP obtained from treated and untreated 

mice, restimulated in vitro with thrombin (Fig. S4).

Statistical analysis. Data were expressed as the mean plus SD or SE. 

 Diff erences between groups were analyzed for statistical signifi cance by 

means of an unpaired t test, with P < 0.05 as signifi cant cutoff .

Online supplemental material. Fig. S1 illustrates comparative whole 

mount analysis of mammary glands from BALB/c and CD40-KO mice 

at diff erent time points. Fig. S2 shows X-gal staining of tumor vessels in dou-

ble transgenic (FVBTieβ-galxBALB/NeuT)F1 mice in comparison with 

BALB/NeuT mice transplanted with (FVBTieβ-galxBALB/c)F1 BM cells 

(FVBTieβ-galxB/c > BALB/NeuT). Fig. S3 shows functional CD40 ex-

pression on mouse 1G11 ECs. Fig. S4 shows the effi  cacy of clopidogrel treat-

ment in inhibiting platelet activation. Figs. S1–S4 are available at http://www.

jem.org/cgi/content/full/jem.20060844/DC1.
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