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Autoimmunity results from a breakdown in im-
mune tolerance, a phenomenon that can occur 
in both the central (generative) lymphoid or-
gans and peripheral tissues. Within the thymus, 
it has clearly been established that expression of 
self-antigens can mediate the deletion of self-
reactive T cells (1, 2). However, to our knowl-
edge there exists no direct evidence that thymic 
selection against a single self-antigen is essential 
in preventing a spontaneous organ-specifi c au-
toimmune disease from occurring. Recently, 
the possibility of providing evidence of this 
mechanism has been aff orded by the detailed 
study of the autoimmune regulator (Aire) gene (3, 4). 
Aire is a putative transcription factor that was 
identifi ed through a positional cloning eff ort in 
human subjects with the monogenic recessive 
disorder autoimmune polyendocrinopathy can-
didiasis ectodermal dystrophy (APECED) (5, 6). 
APECED patients develop autoimmune infi ltrates 
in multiple organs and autoantibodies to multiple 
organ-specifi c antigens (7). Like APECED sub-
jects, aire-defi cient mice spontaneously develop 
multiple organ infi ltrates and autoantibodies 

(3, 8–10). Experiments with the mouse model 
have shown that a defect in the thymus is suf-
fi cient for the development of the autoimmune 
syndrome (3, 9). Within the thymus, Aire’s ex-
pression mainly localizes to a subset of medul-
lary thymic epithelial cells (mTECs) that have 
been shown to ectopically express many tissue-
specifi c self-antigens (TSAs) (11). It appears 
that Aire is involved in driving the expression 
of a subset of these TSAs in mTECs, leading to 
a working model in which Aire prevents auto-
immunity by promoting the deletion of poten-
tially self-reactive thymocytes with specifi city 
for the Aire-regulated TSAs (3, 4, 12). Detailed 
analyses of the aire-regulated TSAs in mTECs 
using microarrays suggests that aire controls the 
expression of a wide array of self-antigens (3, 13). 
However, the scope and  number of antigens 
that are critical for preventing any individual 
autoimmune disease phenotype in this model 
is unknown.

To further clarify how the loss of aire func-
tion leads to one of the spontaneously occur-
ring autoimmune phenotypes in the mouse 
model, we sought to clearly defi ne the targeted 
antigens, whether such antigens are primary 
or secondary targets, and whether the targeted 
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 antigen is expressed in the thymus and is aire regulated. For this, 
we chose to perform a detailed analysis of the autoimmune 
disease that occurs in the posterior portion of the eye in aire-
defi cient animals as a representative model. Aire-defi cient 
mice develop spontaneous immune infi ltrates in the posterior 
chamber of the eye that are reminiscent of those seen in the 
induced rodent model of experimental autoimmune uveitis 
(EAU) (3, 14, 15), and APECED patients have also been de-
scribed that develop idiopathic retinopathy (16). In this pa-
per, we demonstrate that the eye disease that spontaneously 
develops in aire-defi cient mice is targeted against a single an-
tigen whose expression is controlled within the thymus by 
aire. In addition, we also show that the expression of this single 
eye antigen within the thymus is critical to prevent sponta-
neous autoimmunity against the eye, even in the presence of 
functional aire.

RESULTS

Aire-defi cient mice have a limited autoreactive repertoire 

to eye antigens

We had previously shown that aire-defi cient animals develop 
a spontaneous autoimmune uveitis that increases in frequency 
and severity with age and is characterized by a mononuclear 
infi ltrate and autoantibodies specifi c to the photoreceptor 
layer of the retina (3). These autoantibodies were used as a 
tool to defi ne the specifi city of the immune response. To 
 determine the complexity of the eye-specifi c autoantibody 
 repertoire, whole-eye extract was immunoblotted with sera 
from a large number of aged aire-defi cient mice from several 
genetic backgrounds (Fig. 1 A and Fig. S1, available at 
http://www.jem.org/cgi/content/full/jem.20061864/DC1) 
(9). Many sera derived from individual aire-defi cient mice 
reacted strongly against an antigen migrating at 150 kD; 
however, some variability was observed within and between 
strains. To help distinguish the primary targets of the immune 
response, kinetic studies were also performed. In both the 
NOD and C57BL/6 (B6) strains, we observed that reactivity 
against the 150-kD antigen generally develops at the same 
time or before any other reactivities (Fig. 1 B).

The predominant eye autoantigen is interphotoreceptor 

retinoid-binding protein (IRBP)

To identify this 150 kD antigen, immunoprecipitation was 
performed on columns containing protein agarose coupled 
to knockout animal sera (17). Tissue extracts were precleared 
to identify nonspecifi c background with columns coupled to 
wild-type animal sera. Eluates from both wild-type and aire-
defi cient sera-coupled columns were concentrated and sub-
jected to immunoblotting. The immunoprecipitation eluate 
from the aire-defi cient but not the wild-type coupled column 

Figure 1. Aire-defi cient mice have a limited autoreactive reper-

toire and predominantly recognize IRBP. (A) Immunoblotting of whole-

eye extracts with aire-defi cient (individual animals listed by number) and 

strain- and age-matched wild types for BALB/c, C57BL/6, and NOD mice. 

(B) C57BL/6 and NOD aire-defi cient animals were bled by tail vein at vari-

ous time points, and sera were immunoblotted against whole-eye extracts 

to determine kinetic changes in autoantibody reactivity. Arrows in A and 

B indicate the IRBP band. (C) Purifi ed, full-length bovine IRBP was immuno-

blotted with sera derived from aire-defi cient animals. (D) Sera from 

individual animals were preincubated with bovine IRBP or S-Ag before 

use as primaries in an immunoblot against whole-eye extract. S-Ag, 

 another photoreceptor-specifi c antigen, was included as a control. (E) Sera 

preincubated with bovine IRBP or S-Ag were also used for immunohisto-

chemistry and visualized with DAB chromogen.
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had a band observable by coomassie stain that, when immuno-
blotted with aire-defi cient sera, had strong reactivity at 150 kD 
(Fig. S2, available at http://www.jem.org/cgi/content/
full/jem.20061864/DC1). This 150-kD band from the aire-
defi cient eluate was given a provisional identifi cation by pep-
tide mass fi ngerprinting (PMF) as IRBP (Fig. S3). IRBP is a 
photoreceptor-specifi c antigen with the appropriate molecu-
lar mass for our candidate (�150 kD) that is known to bind 
retinoids, and its expression is localized to the photoreceptor 
matrix of the retina between the retinal pigment epithelium 
and the photoreceptor cells (18). IRBP is also a known auto-
antigen; i.e., an emulsifi cation of full-length bovine IRBP in 
adjuvant can elicit EAU in rodents (15, 18).

To confi rm that IRBP was the 150-kD target antigen, 
purifi ed full-length bovine IRBP was immunoblotted with 
aire-defi cient sera. Reactivity against bovine IRBP was ob-
served in all strains tested: B6, NOD, BALB/c (Fig. 1 C), and 
(B6 × NOD)F2 (Fig. S1). When purifi ed bovine IRBP was 
incubated with aire-defi cient sera before immunoblotting, 
reactivity against the 150-kD band in whole mouse eye ex-
tract was diminished (Fig. 1 D). In contrast, incubation with 
an equal concentration of purifi ed retinal soluble antigen 
(S-Ag), another photoreceptor-specifi c protein, failed to 
abrogate reactivity. This competition was similarly observed 
on frozen sections stained with aire-defi cient sera (Fig. 1 E). 
Finally, indirect immunofl uorescence using sera from aire-
defi cient mice on IRBP-defi cient eye sections failed to reca-
pitulate the photoreceptor-specifi c autoantibody reactivity 
observed previously (Fig. S4, available at http://www.jem.
org/cgi/content/full/jem.20061864/DC1) (3). From these 
experiments, we conclude that IRBP is a dominant autoantigen 
targeted by autoantibodies in the spontaneous autoimmune 
uveitis observed in aire-defi cient animals.

Uveitis in aire-defi cient mice is T cell dependent

Although autoantibodies against IRBP predominate in aire-
defi cient mice, previous work has demonstrated that recon-
stitution of athymic nude mice with aire-defi cient thymi is 
suffi  cient to induce the eye disease, thus implicating auto-
reactive T cells as eff ectors in the disease process (3, 9). To 
further characterize the cellular requirements for disease, we 
analyzed the infi ltrates of aire-defi cient animals with uveitis. 
Using immunohistochemistry with antibodies against cell-
surface markers, we determined that CD4+ T cells make 
up the bulk of infi ltrating immune cells within the retina, 
although both CD8+ T cells and IgD-expressing B cells 
were also observed (Fig. 2 A). As a control, age-matched 
aire-suffi  cient NOD mice were analyzed (Fig. 2 B), and no 
infi ltrates were observed. To determine which cellular subset 
was capable of transferring disease, specifi c cell populations 
were adoptively transferred into immunodefi cient NOD.scid 
host mice. Spleen and cervical lymph node cells were pooled 
(Fig. 2 C), depleted of either CD4+ or CD8+ T cell sub-
sets, and adoptively transferred into immunodefi cient animals 
(Table S1, available at http://www.jem.org/cgi/content/full/
jem.20061864/DC1). Animals that received CD4+ T-depleted 

cell populations failed to develop eye disease or autoanti-
bodies (Fig. 2 D and not depicted). In contrast, animals 
that received CD8+ T-depleted cells developed disease and 
photoreceptor-specifi c autoantibodies that reacted against IRBP 
(Fig. 2 E and not depicted).

Figure 2. Uveitis in aire-defi cient animals is T cell dependent, and 

increased frequencies of IRBP-specifi c T cells arise in aire-defi cient 

animals. Immunostaining of frozen eye sections from aire-defi cient mice 

with cell surface markers identifi es CD4+ T cells as the predominant cells 

within the mononuclear infi ltrate. (A) CD8+ T cells and IgD+ B cells are 

also present in the retina. (B) No infi ltrate was observed in the eyes of 

age-matched, aire-suffi cient animals. (C) Eye disease can be transferred 

with a pooled population of splenocytes and cervical lymph node cells 

from aire-defi cient animals. Cells devoid of (E) CD8+ T cells but not (D) 

CD4+ T cells are capable of transferring disease into immunodefi cient 

hosts. T cells were purifi ed from cervical lymph nodes from unimmunized 

aire-defi cient and age- and sex-matched aire wild-type controls in the 

C57BL/6 background (18–20 wk old). (F) T cells were assayed in an 

ELISPOT assay for IFN-γ production in the presence of 10 μg/ml IRBP, 

media alone, or 10 μg/ml OVA in the presence of APCs (ConA was also 

tested as a positive control; not depicted). Open circles represent indi-

vidual aire-defi cient animals; the solid line indicates the mean value. 

Closed circles represent individual aire-suffi cient animals; the dashed 

line indicates the mean value. For IRBP and media alone, n = 7 animals 

per group; the number of spots for IRBP was statistically signifi cant 

(P = 0.0023) for aire-defi cient compared with aire-suffi cient animals. For 

the OVA control, n = 3 animals per group.
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We next asked whether aire-defi cient mice had an in-
creased precursor frequency of IRBP-reactive CD4+ T cells. 
T cells were isolated from aire-suffi  cient or aire-defi cient 
 animals and cultured with APCs loaded with purifi ed bovine 
IRBP. ELISPOT analysis of T cells reacting against these 
IRBP-loaded APCs (or OVA as a control antigen) showed 
that aire-defi cient mice had an increased frequency of IRBP-
reactive cells in their immune repertoire (Fig. 2 F). Previous 
work has suggested that aire-defi cient dendritic cells may 
cause T cell hyperproliferation (19). Thus, as an additional 
control, experiments were performed in which purifi ed 
T cells from aire-defi cient or aire-suffi  cient mice were mixed 
only with aire-suffi  cient irradiated splenocytes as a source of 
APCs. Again, we observed increased reactivity to IRBP in 
aire-defi cient mice (Fig. S5, available at http://www.jem.org/
cgi/content/full/jem.20061864/DC1).

IRBP expression in the thymus is aire dependent

Having identifi ed the ocular autoantigen targeted in aire-
 defi cient mice and characterized the cells involved, we next 
sought to confi rm that IRBP is expressed in the thymus (20) 
and to determine whether or not its thymic expression is aire 
regulated. We purifi ed thymic stroma from aire-suffi  cient 
and aire-defi cient mice and generated cDNA from these cells. 
Using this cDNA, we queried several known aire-regulated 
and aire-independent TSAs, as well as IRBP, using quan-
titative real-time PCR. Indeed, IRBP was found to be ex-
pressed in the thymus, and the thymic expression of IRBP 
was found to be aire-dependent in our analysis (Fig. 3 A). 
Importantly, the expression of insulin, a known aire- regulated 
antigen (3), was observed in aire-suffi  cient but not aire-defi cient 

thymic stroma, whereas GAD67, which is not aire regulated 
(3), was equally expressed in both cell samples. Interestingly, 
the expression of IRBP within these cells was quite low: 
 although the Ct for cyclophilin, a housekeeping control, was 
approximately equal for both pools of cells (average Ct = 
22.2 for aire-suffi  cient cells and 21.9 for aire-defi cient cells; 
Fig. 3 B), the Ct of IRBP was almost at the limit of detection 
(Ct = 38.2 for aire-suffi  cient cells and not detectable in aire-
defi cient cells; Fig. 3 C).

However, IRBP is not the only retina-specifi c gene reg-
ulated by aire in the thymus. To identify other potential reti-
nal autoantigens that are aire-regulated in the thymus, we 
generated a list by compiling publicly available gene chip da-
tasets that examine aire-defi cient versus aire-suffi  cient mTEC 
gene expression (3, 13) and gene chip datasets identifying 
retinal expressed genes (Fig. 3 E) (21). In an attempt to con-
fi rm that these genes were in fact aire regulated, we used 
real-time PCR to study the expression of four of these genes 
in thymic stroma from aire-suffi  cient and aire-defi cient mTECs. 
Two of these four genes were down-regulated >75% in the 
aire-defi cient compared with the aire-suffi  cient thymic stroma 
(Fig. 3 F), showing that at least a subset of the genes on this 
list are aire regulated within the thymus.

Uveitis in aire-defi cient mice is IRBP dependent

In an eff ort to prove that the uveitic process in aire-defi cient 
mice is directly dependent on IRBP and that reactivity does 
not result from a secondary process like epitope spreading, 
we obtained IRBP-defi cient mice and performed a genetic 
test cross with aire-defi cient mice. Importantly, IRBP-defi -
cient mice maintain a retina structure that has minor changes, 

Figure 3. IRBP is an aire-regulated antigen expressed in the thymus. 

(A) cDNA derived from thymic stroma of aire-deficient and aire-

suffi cient animals was prepared. Quantitative real-time PCR was used to 

determine the expression of known TSAs (insulin and Gad67) and IRBP. 

Values are normalized to cyclophilin and are relative to expression in the 

WT TEC stroma. Data represent the mean of three independent experi-

ments. A representative amplifi cation plot of (B) cyclophilin, (C) IRBP, and 

(D) insulin are shown for wild-type and aire-defi cient thymic stroma. 

(E) Summaries of genes shown in two publicly available datasets, GSE85 

(reference 3) and GSE2585 (reference 13), to be aire-regulated in the thy-

mus were each queried for retinal-expressed transcripts. The top nine 

transcripts fitting this profile are shown (all statistically significant; 

P < 0.05). (F) Quantitative real-time PCR was used to confi rm the expression 

of the microarray-identifi ed genes. Values are normalized to cyclophilin 

and are relative to expression in the WT TEC stroma. Error bars represent 

mean ± SD.
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including some thinning of the outer nuclear layer (22). 
Consistent with a dominant role for IRBP, aged mice defi -
cient for both aire and IRBP (double knockout; DKO) do 
not have mononuclear infi ltrates within the retina (P = 
0.0006; Fig. 4 A), nor are they capable of generating autoan-
tibodies against the photoreceptor layer (Fig. 4 C). As ob-
served in previously published data, not all C57BL/6 
aire-defi cient animals manifest ocular autoimmunity (3, 10). 
A small percentage of aire-defi cient animals on the C57BL/6 
background are free of infi ltrates and autoantibodies specifi c 
for the 150-kD band, purifi ed bovine IRBP, or the photore-
ceptor layer as determined by immunoblotting and indirect 
immunofl uorescence, respectively (Fig. 4, B and D, animal 
5166; and Fig. S6, available at http://www.jem.org/cgi/
content/full/jem.20061864/DC1). In contrast, all DKO 
mice analyzed to date (n = 10) fail to develop not only 
IRBP-specifi c autoantibodies but also other reactivities di-
rected at the eye that arise in aire-defi cient mice (Fig. 4, D 
and E). Thus, in the absence of IRBP, no ocular antigens 
are targeted by autoantibodies. Importantly, aire-defi cient, 
IRBP-defi cient (DKO) mice do develop autoimmune  disease 
characterized by mononuclear infi ltrates directed against other 
organs, including the salivary and lacrimal glands (Fig. 4 B 
and Fig. S7), and autoantibodies specifi c for antigens in the 
stomach, salivary and lacrimal glands, and prostate (Fig. 4 D), 
thus ruling out a nonspecifi c eff ect of the IRBP knockout 
mutation in suppressing autoimmunity. In addition, the 
 cellular infi ltrate of the eye was analyzed by fl ow cytometry 
using markers specifi c for CD4+ T cells (Fig. 4 F and Fig. S8). 
CD4+ T cells were observed in the eyes of aire-defi cient, 
IRBP-suffi  cient animals but not in the eyes of aire/IRBP 
double-defi cient mice.

Absence of IRBP within the thymus is suffi cient to induce 

spontaneous autoimmunity

Given that IRBP appears to be such a dominant antigen 
despite aire’s thymic regulation of several retina-specifi c 
genes, we next sought to determine if the absence of IRBP 
within the thymic compartment alone is suffi  cient to cause 
spontaneous autoimmune uveitis. For this, we performed 
thymic transfers of IRBP-defi cient, aire-suffi  cient fetal thy-
mic stroma under the kidney capsule of nude mice (which 
are both IRBP and aire suffi  cient) and next aged recipients 

Figure 4. Uveitis in aire-defi cient animals is IRBP dependent. The 

aire mutation was bred with IRBP-defi cient animals (both backcrossed 

>10 generations back to C57BL/6) to produce animals devoid of aire and 

IRBP expression. 18–20-wk-old DKOs and aire single knockouts were ana-

lyzed for disease. (A) Aire single knockouts, but not DKOs, displayed a 

characteristic mononuclear cell infi ltrate (indicated with an arrow) in the 

retina, as shown in representative histology from the indicated groups. 

However, both sets of animals showed infi ltrates in numerous other or-

gans, as described for aire-defi cient mice. (B) Blue-shaded sections of the 

pie graphs indicate the presence of mononuclear infi ltrates in the desig-

nated organ, and each circle and corresponding number represent an 

individual mouse for that group. (C) Similarly, aire single knockouts, but 

not DKOs, displayed an autoantibody reactivity to the photoreceptor cell 

layer, as shown in representative staining. Both sets of animals had auto-

antibodies present against other organs, summarized in (D), where circles/

numbers represent individual mice and red-shaded wedges represent 

positive staining for a particular autoantibody. (E) Immunoblotting of 

whole-eye extracts prepared from immunodefi cient scid animals with 

sera from 18–20-wk-old aire-defi cient, IRBP-defi cient, or aire- and IRBP-

defi cient animals in the C57BL/6 background. (F) Flow cytometry was used 

to assess the presence or absence of CD4+ T cells within the retina. Ocular 

cells from aire-defi cient, IRBP-suffi cient (thin black line), aire-defi cient/

IRBP-defi cient (DKO; thick black line), or C57BL/6 wild-type (red line) mice 

were gated on lymphocytes and stained with CD4.
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for 10 wk to determine if they could develop autoimmune 
disease of the eye. As shown in Fig. 5 A, all fi ve recipients 
of IRBP-defi cient thymi spontaneously developed autoan-
tibodies to the retina, whereas no autoantibodies were ob-
served in any of the fi ve mice that received IRBP-suffi  cient 
thymic stroma. Histological evaluation revealed a mononu-
clear infi ltrate in the retina of recipients of IRBP-defi cient 
thymic stroma (Fig. 5 B). Finally, fl ow cytometry was used 
to confi rm the presence of CD4+ T cells within the eye of 
IRBP-defi cient, but not IRBP-suffi  cient, thymic stroma re-
cipients (Fig. 5 C and Fig. S9, available at http://www.jem.
org/cgi/content/full/jem.20061864/DC1).

D I S C U S S I O N 

We have demonstrated that the loss of expression of a single 
self-antigen exclusively within the thymus can induce a spon-
taneous organ-specifi c autoimmune attack, even in the pres-
ence of functional aire. This result suggests that there are 
individual TSAs whose thymic expression is crucial in pre-
venting autoimmune disease. Previous studies have suggested 
the importance of thymic tolerance and thymic TSA expres-
sion as a component in disease susceptibility (23–26), but to 
our knowledge no previous study has demonstrated that the 
loss of a single TSA in the thymus is suffi  cient to induce organ-
specifi c autoimmunity in a host with a polyclonal T cell 
 repertoire. Unlike our results described in this paper, recent 
experiments with proinsulin 2 indicated that defi ciency of 
this gene within the thymic compartment was not suffi  cient 
to induce diabetes (27). In the case of insulin, peripheral tol-
erance mechanisms were likely suffi  cient to prevent overt 
autoimmunity, because a defect in central tolerance could be 
detected through an increase in insulin-specifi c T cells. In 
contrast, our results have identifi ed an antigen for which cen-
tral tolerance is critically important. It will be interesting to 
determine whether or not the phenomenon described in this 
paper is restricted to the eye. It is possible that we may have 
obtained this result because we focused on a site that has been 
described as immunologically privileged (28). Perhaps be-
cause the immune system has limited access to the eye, there 
may be limited opportunity to induce tolerance via periph-
eral mechanisms, and this could increase the importance of 
central tolerance mechanisms for this target organ.

 The level of IRBP expression within the thymus in our 
experiments was remarkably low. Despite this low level of 
expression, it is clearly enough to help impose tolerance in 
our model system, most likely through mechanisms that in-
volve deletion rather than the positive selection of regulatory 
cells; in previous experiments, cotransfers of equal amounts 
of wild-type and aire-defi cient thymi or lymphocytes were 
not capable of suppressing retinal disease (9). Furthermore, 
it has been shown that T reg cells capable of suppressing 
EAU can be generated even in the absence of IRBP (29). 
It remains to be understood how even this low level of 
 expression allows for suffi  cient presentation to the develop-
ing thymocyte repertoire. Interestingly, because we could 
induce uveitis with transfers of IRBP-defi cient/aire- suffi  cient 

thymic stroma, this process appears to be exclusively 
 dependent on IRBP’s expression and not another possible 
activity of aire such as antigen presentation, as invoked in a 
recent study (9).

We have also confi rmed one mechanism by which Aire 
operates to maintain self-tolerance. One of the current mod-
els for the function of Aire in maintaining self-tolerance has 
been that it is involved in the regulation of TSA expression 
in the thymus and that the loss of this function leads to a de-
fect in negative selection of autoreactive thymocytes (3, 4, 12). 
Microarray analysis of mTEC expression in the presence 
or absence of aire has helped identify many potential targets 
for autoimmunity in the aire-defi cient model (3, 13), but 
data have been lacking on the actual primary targets to date. 
Two recent studies identifi ed autoantigens targeted in the 

Figure 5. The absence of IRBP within the thymic compartment is, 

by itself, suffi cient for autoimmunity. Thymi from IRBP-defi cient or 

wild-type control mice in the C57BL/6 background were isolated and 

cultured for 8 d in 2-deoxyguanosine to deplete hematopoietic cells. Thy-

mic stroma was then transferred to individual C57BL/6 nude congenic 

recipients (n = 5 for recipients in each group) under the kidney capsule. 

(A) Reconstituted mice were aged 12 wk after transfer and were analyzed 

for the presence of eye-specifi c autoantibodies by indirect immunofl uo-

rescence. (B) Hematoxylin and eosin–stained sections from recipients of 

IRBP-suffi cient or IRBP-defi cient thymic stroma. (C) Flow cytometry was 

used to assess the presence or absence of CD4+ T cells within the retina 

of nude recipients. Ocular cells from IRBP-defi cient thymic stroma recipi-

ents (thin black line), IRBP-suffi cient thymic stroma recipients (DKO; thick 

black line), or C57BL/6 wild-type (red line) mice were gated on lympho-

cytes and stained with CD4.
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salivary gland and exocrine pancreas (30, 31) in the aire-defi -
cient model whose expression was not regulated by aire in 
the thymus. However, these studies did not exclude epitope 
spreading as an explanation for their results. In contrast, 
through the use of IRBP/aire double-defi cient animals, we 
have strong evidence that IRBP is the primary antigen driv-
ing the uveitis in these animals and is not an autoantigen by 
virtue of a secondary process like epitope spreading. These 
data help confi rm the link between aire-driven regulation of 
TSA expression in the thymus and the development of a 
spontaneous autoimmune disease in animals with a polyclonal 
T cell repertoire. Our fi ndings have also identifi ed and con-
fi rmed that a single antigen is the primary target in a sponta-
neous autoimmune disease, something that has been extremely 
diffi  cult to demonstrate in other spontaneous infi ltrative auto-
immune diseases, perhaps with the exception of insulin as a 
target in the NOD mouse model of diabetes (32).

Interestingly, IRBP was not a predictable eye antigen 
in our model using the current mTEC expression profi ling 
data (Fig. 3). Upon surveying the existing mTEC expres-
sion profi ling data, we discovered that IRBP was not present 
on the microarrays used in these studies. This result suggests 
that there are many potential TSAs expressed in mTECs 
in an aire-dependent fashion that may be immunologically 
relevant but are not observed using the existing microarray 
analyses. Why IRBP is such a dominant and potent anti-
gen in this system remains unclear. Our work suggests that 
there are properties of IRBP yet to be identifi ed that make 
it immunogenic, which could include such processes as dif-
ferential splicing, posttranslational modifi cation, or antigen 
traffi  cking within and perhaps out of the eye. Along these 
lines, we also cannot completely exclude that the protective 
eff ect against eye autoimmunity in aire-defi cient/IRBP- 
defi cient animals is caused by secondary eff ects of the IRBP 
knockout that make the eye less immunogenic. Further work 
on IRBP as an autoantigen should shed light on the uveitic 
process that occurs both in these mice and in IRBP-induced 
EAU. IRBP is a large protein with multiple potentially im-
munogenic epitopes. However, it is not clear how and where 
IRBP peptides are presented to autoreactive cells. If priming 
occurs in the draining lymph nodes, by what route do IRBP-
 specifi c T cells gain access to the retina? A more detailed 
understanding of IRBP and IRBP-specifi c T cell responses 
should help elucidate additional aspects of disease pathogen-
esis and progression.

It is also tempting to speculate that susceptibility to EAU 
depends on a variation in IRBP expression within the thymic 
compartment across strains. In the EAU model, there are 
clearly strains that are resistant, protective, and susceptible. 
In our colony, both the EAU-resistant C57BL/6 and EAU-
protected BALB/c strains are susceptible to spontaneous uve-
itis when defi cient for aire (unpublished data) (3). This leaves 
open the possibility that when IRBP is removed from the 
thymus by aire defi ciency, the strain dependency for EAU is 
removed; in fact, there are data to support strain diff erences 
in eye antigen expression in the thymus (33, 34).

Collectively, our results show that thymic tolerance can be 
crucial in preventing autoimmune disease and that even the 
loss of expression of a single TSA in the thymus can generate 
spontaneous autoimmunity. It will be interesting to identify 
other thymic TSAs that behave similarly to IRBP and also 
 determine if this observation is applicable to autoimmunity 
in human subjects given the link to the APECED syndrome.

MATERIALS AND METHODS
Mice. Aire-defi cient mice were generated as previously described (3), and 

IRBP-defi cient mice in the C57BL/6 background (>10 generations) were 

provided by R. Caspi (22). Aire-defi cient mice used in these experiments 

were backcrossed into the C57BL/6, BALB/c, and NOD Lt/J backgrounds 

>10 generations. C57BL/6 × NOD Lt/J F2 aire-defi cient mice came from 

intercrosses of C57BL/6 and NOD Lt/J aire-defi cient mice. All mice were 

housed in a pathogen-free barrier facility at the University of California, San 

Francisco (UCSF). Experiments complied with the Animal Welfare Act and 

NIH guidelines for the ethical care and use of animals in biomedical research 

and were approved by the UCSF Animal Care and Use Committee.

Antigens and reagents. IRBP was isolated from bovine retinas, as de-

scribed previously, using Con A–sepharose affi  nity chromatography and fast 

performance liquid chromatography (35). Bovine S-Ag (arrestin) was pre-

pared from the ConA column fl owthrough as described previously (36).

Histology. Organs from mice were harvested and fi xed overnight in 10% 

formalin, embedded in paraffi  n, sectioned, and stained for hematoxylin and 

eosin. Immune infi ltrates of organs were confi rmed by an independent read-

ing of the slides with a blinded observer.

Immunoprecipitation. Immunoprecipitation of autoantigens was per-

formed using protein G agarose coupled to aire-suffi  cient or aire-defi cient 

sera as described previously (17). In brief, tissue extracts were prepared from 

immunodefi cient mouse eyes homogenized in 0.15 M NaCl, 0.05 M Tris 

(pH 8), and 0.1% CHAPS (Sigma-Aldrich). Protein agarose G–coupled col-

umns were washed in 30 mL PBS, and tissue extracts from immunodefi cient 

animals prepared in CHAPS buff er were passed through the matrix. Col-

umns were washed with 30 mL PBS and washed again with 30 mL of 10 

mM phosphate, pH 6.8. Eluates were collected by passing 0.5 ml of 100 mM 

glycine, pH 2.5, over the column and collecting the fl owthrough. Eluates 

from multiple runs were pooled and concentrated in a centrifugal protein 

concentrator (Vivaspin; Sartorius).

Immunoblotting. Sera were screened for the presence of autoantibodies 

by Western blotting as previously described (10). For competition studies, 

sera were preincubated with serial dilutions of full-length bovine IRBP or 

S-Ag in TBS-T with 5% nonfat dry milk for 2 h at room temperature before 

use as the primary reagent. The concentrations used were 30 μg (highest), 

3 μg, 300 ng, 30 ng, 3 ng, and 0.3 ng (lowest) of purifi ed bovine protein.

In-gel digestion and PMF. IRBP was identifi ed by provisional PMF as 

previously described (37–40). In brief, gel bands were excised, destained 

(stain-stripped) three times in 50% acetonitrile and 25 mM ammonium 

bicarbonate (pH 8), dehydrated with 100% acetonitrile, and dried in a Speed-

Vac (Savant). Gel pieces were rehydrated with a solution of sequencing 

grade trypsin (10 μg trypsin [Promega]/ml in 25 mM ammonium bicarbon-

ate), and the digestion was performed for 16 h at 37°C. Peptides were ex-

tracted three times by the addition of two volumes of an aqueous solution of 

50% acetonitrile and 5% trifl uoroacetic acid. The extracts were combined 

and reduced to a fi nal volume of 5–10 μl. PMF was used for preliminary 

protein identifi cation. Portions (typically 5%) of the unseparated tryptic di-

gest was cocrystallized in a matrix of 5 mg/ml α-cyano-4-hydroxycinnamic 

acid and analyzed on a MALDI-TOF mass spectrometer (Voyager-DE STR; 

Applied Biosystems) operating in refl ector mode. Mass spectra were  produced 
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representing protonated molecular ions (MH+) of tryptic peptides from the 

proteins present in each gel spot. The mass spectra were internally mass cali-

brated using two trypsin autolysis products present in the digest mixture 

(842.51 and 2,211.1046 D, respectively). The mass measurement accuracy 

for all peptides was ±25 ppm, and the mass measurement precision, defi ned 

as the standard deviation of diff erences between the experimental and theo-

retical peptide masses, was typically ≤25 ppm. Preliminary protein identities 

were established by matching the experimentally determined peptide masses 

to those produced by an in silico tryptic digestion of the Swiss-Prot protein 

database (available at http://us.expasy.org) within the window of experimental 

mass measurement accuracy. The PMF data-searching algorithm (available 

through MS-Fit at http://prospector.ucsf.edu) was used to perform the 

 database searches.

Autoantibodies and indirect immunofl uorescence. Sera were prepared 

from tail-vein bleeds or at the time of death. Autoantibodies for the eye were 

detected by indirect immunofl uorescence as described previously (3). Slides 

were examined on a microscope (Axiostar; Carl Zeiss MicroImaging, Inc.) 

with 10×, 20×, and 40× lenses. Images were obtained using an AxioCam 

with AxioVision software (both from Carl Zeiss MicroImaging, Inc.).

Immunostaining. Immune cell subtypes were visualized by immunohisto-

chemistry using antibodies specifi c for CD4, CD8, and IgD (BD Biosci-

ences) and a DAB staining kit (Vector Laboratories).

Adoptive transfer. Cervical lymph node cells and splenocytes were har-

vested, and CD4+ or CD8+ T cells were depleted using complement. Cell 

populations (5 × 106 CD4+ and CD8+, CD4+ depleted, or CD8+ depleted) 

were injected i.v. into NOD.scid mice. On days 0, 5, 19, and 33, animals 

were treated with 0.5 mg/mouse of anti-CD4 (GK1.5, CD4+ depleted) or 

anti-CD8 (YTS169.4, CD8 depleted) to remove residual CD4+ or CD8+ T 

cells (41). Animals were aged 40 d after transfer, then killed and analyzed as 

described in the fi gures.

ELISPOT analysis. CD4+ T cells from aire-defi cient or aire wild-type 

C57BL/6 mice were isolated by AutoMACS (Miltenyi Biotec) using a CD4-

specifi c antibody (GK1.5; Southern Biotechnology Associates, Inc.). The re-

lease of IFN-γ by CD4 T cells was measured by ELISPOT assay. In brief, 

plates (Immunospot M200; BD Biosciences) were coated with 2 μg/ml of 

anti–mouse IFN-γ mAb (BD Biosciences) and incubated overnight at 4°C. 

The plates were washed with PBS and blocked with medium containing 10% 

FCS for 2 h at 37°C. 125,000 eff ector CD4+ T cells and 25,000 irradiated 

(3,000 rad) APCs were added to each well and incubated for 24 h in RPMI 

1640 complete medium. The plates were washed thoroughly with PBS before 

adding 2 μg/ml of biotin-labeled IFN-γ mAb (2 μg/ml; BD Biosciences) and 

incubating overnight at 4°C. After further incubation with avidin–horseradish 

peroxidase (1:100 dilutions; BD Biosciences) for 1 h at room temperature, the 

plates were developed using substrate solution (AEC; BD Biosciences). Posi-

tive spots displayed in the plate membranes were examined using an ELISPOT 

reader system (Transtec; Cell Technology). The number of spot-forming cells 

was the average number of spots in duplicate wells.

Thymic stroma preparation. TECs were prepared according to a previ-

ously established protocol (42).

Real-time PCR. Real-time PCR was performed on cDNA prepared from 

DNase-treated RNA. Aire, insulin, and cyclophilin primers were used as 

previously described (3, 9). For IRBP, the following primers were used: 

forward, 5′-A A T G A C T C G G T C A G C G A A C T T T -3′; reverse, 5′-C T G T C-

A C A C C A C T G G T C A G G A T -3′; and probe, FAM-A C A G G T G A A C G A T-

A T G G C T C C A A G A A G -TAMRA. Additional primer and probe sequences 

are listed in Table S2, available at http://www.jem.org/cgi/content/full/

jem.20061864/DC1. Reactions were run on a sequence detection system 

machine (HT7900; Applied Biosystems). For analysis of target gene expres-

sion from organ-derived cDNA, the standard curve method was used.

Microarray analysis. Aire-dependent transcripts were determined by mi-

croarray analysis of wild-type and aire-defi cient thymic stroma. Two inde-

pendent and previously published microarray datasets were analyzed (3, 13). 

Microarray data are available in the National Center for Biotechnology 

Information Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) 

under accession nos. GSE85, GSE2585, and GSE3023. The list of aire-

regulated genes was further refi ned by including only those genes that were 

determined to be expressed in the retinal compartment of the eye (21).

Flow cytometry. Eyes were incubated in 2 mg/ml collagenase D in RPMI 

1640 supplemented with 2% fetal calf serum for 2 h. The remaining tissue 

was dispersed by vortexing and fi ltered through nylon mesh. Cells were 

stained with antibodies specifi c for the CD4 surface marker (BD Biosci-

ences). Cells were analyzed on a FACSCalibur (Becton Dickinson).

Thymic transplants. Thymi were isolated from newborn IRBP-defi cient 

or wild-type mice and cultured in 1.35 mM 2-deoxyguanosine (Sigma-

 Aldrich) for 6–8 d to deplete bone marrow–derived cells. The thymi were 

washed in media for 2 h and transplanted under the kidney capsule of 6–8-

wk-old adult nude mice on the C57BL/6 background (The Jackson Labora-

tory). 12 wk after transplantation, whole blood and serum were collected. 

T cell reconstitution of all transplanted mice was confi rmed by FACS analysis of 

whole blood for CD4, CD8, and CD3. Sera was analyzed for autoantibodies 

by indirect immunofl uorescence.

Statistics. Data were analyzed using Prism software (GraphPad). For 

ELISPOT analysis, a nonparametric two-tailed Mann-Whitney test was 

 applied, with an α level of 0.05 (n = 7 for aire-suffi  cient and aire-defi cient 

animals). For histological analysis of aire-defi cient versus aire/IRBP-defi cient 

animals, a log-rank sum test was applied, with an α level of 0.05 (n = 9 and 

7 for aire-defi cient and aire/IRBP-defi cient animals, respectively).

Online Supplemental Material. Supplemental materials and methods 

provides information about Western blotting, immunofl uorescence, im-

munostaining, thymic stroma preparation, and microarray analysis. Table 

S1 details the cell populations used in the adoptive transfer experiments 

depicted in Fig. 2. Table S2 provides sequences for the quantitative real-time 

PCR primers and probes used in the paper. Fig. S1 provides  confi rmatory 

data for the immunoreactivity of IRBP using an additional background of 

mice (intercrossed B6 × NOD F2). Figs. S2–S4 show the  immunoblotting 

of immunoaffi  nity-purifi ed material that was sent to mass spectrometry, 

the specifi c peptides identifi ed by mass spectrometry, and confi rm that the 

150-kD band in aire-defi cient sera recognizes IRBP using indirect immuno-

fl uorescence. Fig. S5 shows that there is no diff erence between aire-suffi  cient 

and aire-defi cient APCs. Fig. S6 depicts the penetrance of ocular auto-

immunity in C57BL/6 aire-defi cient animals. Fig. S7 shows spontaneous 

autoimmunity in other organs of aire/IRBP double-defi cient animals, 

demonstrating that the eff ect is eye specifi c. Fig. S8 depicts the presence 

of lymphocytes in the eyes of aire-defi cient but not aire/IRBP double-

defi cient animals. Fig. S9 shows the presence of lymphocytes in the eyes 

of nude recipients of IRBP-defi cient, but not IRBP-suffi  cient, thymic 

stroma. Online supplemental material is available at http://www.jem.org/

cgi/content/full/jem.20061864/DC1.
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