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Autoimmune diabetes results from a systemic 
breakdown in the central and peripheral me-
chanisms of tolerance (1). Autoreactive T cells 
respond to autoantigens in conjunction with 
costimulatory signals promoting initial T cell 
activation resulting in selective expansion, dif-
ferentiation, tissue invasion, and ultimately 
 destruction. Thus, many attempts to regu-
late autoimmunity have focused on therapies 
targeting early activation. However, these thera-
pies, often eff ective for preventing disease, 
have provided little success in abrogating or re-
versing ongoing disease (2). In sharp contrast, 
targeting the TCR complex has been suc-
cessful in abrogating autoimmunity and induc-
ing tolerance after disease onset has occurred 
(3). To this end, FcR-nonbinding anti-CD3 

mAb and anti-thymocyte globulin have been 
among the most eff ective therapies for rever-
sing  diabetes in nonobese diabetic (NOD) 
mice, with initial effi  cacy in patients with type 1 
diabetes (T1D) as well (3, 4). However, these 
broad-based immunosuppressive treatments 
have potentially signifi cant side eff ects, includ-
ing  increased  development of infections and 
cancer. In contrast, antigen-specifi c therapies 
for treatment of autoimmune diabetes “after” 
disease onset, although potentially safer, have 
been less successful. Administration of antigen-
pulsed ethylene carbodiimide–fi xed APCs has 
been used effi  ciently to induce specifi c toler-
ance and ameliorate ongoing experimental au-
toimmune encephalitis (EAE) disease in mice 
(5). Interestingly, like anti-CD3 therapy, the 
effi  cacy of the antigen-coupled APC therapy 
depends on a direct eff ect on pathogenic T 
cells within the infl amed tissue (6, 7), imply-
ing that a cell-intrinsic mechanism induces and 
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The past decade has seen a signifi cant increase in the number of potentially tolerogenic 

therapies for treatment of new-onset diabetes. However, most treatments are antigen 

nonspecifi c, and the mechanism for the maintenance of long-term tolerance remains 

unclear. In this study, we developed an antigen-specifi c therapy, insulin-coupled antigen-

presenting cells, to treat diabetes in nonobese diabetic mice after disease onset. Using this 

approach, we demonstrate disease remission, inhibition of pathogenic T cell proliferation, 

decreased cytokine production, and induction of anergy. Moreover, we show that robust 

long-term tolerance depends on the programmed death 1 (PD-1)–programmed death ligand 

(PD-L)1 pathway, not the distinct cytotoxic T lymphocyte–associated antigen 4 pathway. 

Anti–PD-1 and anti–PD-L1, but not anti–PD-L2, reversed tolerance weeks after tolerogenic 

therapy by promoting antigen-specifi c T cell proliferation and infl ammatory cytokine 

production directly in infi ltrated tissues. PD-1–PD-L1 blockade did not limit T regulatory 

cell activity, suggesting direct effects on pathogenic T cells. Finally, we describe a critical 

role for PD-1–PD-L1 in another powerful immunotherapy model using anti-CD3, suggesting 

that PD-1–PD-L1 interactions form part of a common pathway to selectively maintain 

tolerance within the target tissues.
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maintains tolerance in the setting of continual autoantigen 
exposure. Finally, recent studies have positioned insulin as 
the primary autoantigen in T1D in mice and man (8).

Several cell surface molecules have been implicated in the 
control of immune responses in various tolerance settings. 
Many studies by our group and others have demonstrated the 
importance of cytotoxic T lymphocyte–associated antigen 4 
(CTLA-4) in immune tolerance. Engagement of CTLA-4 
down-regulates T cell proliferation and cytokine production 
by altering TCR complex phosphorylation. In a variety of 
autoimmune diseases, CTLA-4 engagement is critical to ini-
tiate a tolerogenic response and in some settings regulates 
T regulatory (T reg) cell activity. Less is known about a re-
lated CD28/CTLA-4 family member, programmed death 1 
(PD-1; CD279). Recent studies have shown that PD-1 en-
gagement on activated T cells limits proliferation and IFN-γ 
production, and increases apoptosis (9). PD-1 interacts with 
two B7 family ligands, programmed death ligand (PD-L)1 
(B7-H1 and CD274) and PD-L2 (B7-DC and CD273), 
whose expression patterns are distinct (9). PD-L1 is widely 
distributed on leukocytes, nonhematopoietic cells, and in 
nonlymphoid tissues including islets, whereas PD-L2 is ex-
pressed exclusively on dendritic cells and monocytes (for 
 review see reference 9). Disruption of PD-1 results in auto-
immune cardiomyopathy (10), progressive arthritis (11), lupus-
like glomerulonephritis (12), and exacerbated EAE in mice 
(13). Most importantly, blocking the PD-1–PD-L1 pathway 
in NOD mice results in diabetes (14), with PD-1–PD-L1 
 interactions critical within the pancreas for limiting T cell 
function (15). Although these fi ndings could not distinguish 
a role for PD-1 in the initiation of immunity versus tolerance 
maintenance, this pathway was positioned as a critical regu-
lator of immunity and may play a signifi cant role in tolerance 
in normal and therapeutic settings.

Thus, in this study, we took advantage of the robust 
 tolerance-inducing treatments, FcR-nonbinding anti-CD3 and 
insulin-coupled fi xed APCs, to examine the role of PD-1 in 
active tolerance in NOD mice. We show that, unlike CTLA-4, 
PD-1–PD-L1 is involved in both tolerance induction and 
maintenance after antigen-coupled splenocytes (antigen-SP) 
or anti-CD3 treatments. PD-L1 blockade did not aff ect T reg 
cell function but directly eff ected diabetogenic T cells, re-
versing T cell anergy and promoting tissue destruction and 
the rapid development of autoimmune diabetes. These results 
suggest that the PD-1–PD-L1 pathway controls autoimmu-
nity by directly controlling pathogenic T cells at the site of 
tissue attack, making this pathway an ideal target for novel 
therapeutics to induce immune tolerance.

RESULTS

Antigen-specifi c tolerance regulates autoimmune diabetes

Autoimmune diabetes is a chronic disease exemplifi ed by the 
development of progressive autoreactive antibodies and T 
cells. Although multiple approaches have been used to pre-
vent diabetes in the spontaneous NOD mouse model, there 
has been less success in reversing disease after onset. One of 

the approaches successfully used in other autoimmune dis-
eases in mice is the i.v. injection of antigen-coupled APCs. 
It has recently been reported that insulin is a key target dur-
ing the pathogenesis of T1D in the NOD mouse (8). There-
fore, we tested the use of insulin-coupled fi xed splenocytes 
(INS-SP) as a therapy to reverse autoimmune diabetes. New-
onset diabetic NOD mice were treated with INS-SP–coupled 
cells and monitored for disease remission. As seen in Fig. 
1 A, INS-SP treatment reverses diabetes in �50% of the 
mice. This eff ect is durable, lasting >25 wk after therapy 
(Fig. 1 A). Similar studies using other islet proteins impli-
cated in diabetes, including glutamic acid decarboxylase 
(GAD), the dominant peptides GAD 206–220, GAD 
217–236, and GAD 524–536, and islet-specifi c glucose-
6-phosphatase catalytic subunit–related protein peptide 
NRP-V7, had no eff ect in reversing diabetes (not depicted; 
n ≥ 9/group), even though immunological responses to 
these proteins have been detected in disease (1). These re-
sults  indicate that insulin is a critical autoantigen during the 
pathogenesis of spontaneous diabetes. Moreover, this result 

Figure 1. Antigen-specifi c coupled cell tolerance induces diabetes 

remission of ongoing spontaneous autoimmune diabetes by the 

induction of T cell anergy. (A) New-onset spontaneously diabetic NOD 

mice were treated with INS-SP or control SHAM-SP. The percent of mice 

that entered disease remission after INS-SP treatment (●; n = 19) are 

shown compared with SHAM-SP controls (○; n = 9). (B) Adoptive trans-

fer diabetes tolerance model. Diabetes was induced by the transfer of 

activated BDC2.5 T cells to NOD recipients. The next day, mice received 

p31-SP or SHAM-SP. Individual glucose readings for p31-SP–tolerized 

(●; n = 8) and diabetic SHAM-SP mice (○; n = 8) are shown. (C–E) p31-

SP–tolerized mice have decreased antigen-specifi c proliferation and cy-

tokine production. 7 d after BDC2.5 transfer and p31-SP tolerance, pLN 

cells were isolated and in vitro cultured with p31. (C) Antigen-specifi c 

proliferation was determined from p31-SP– (●) or SHAM-SP– (○) 

treated mice. (D) Antigen-specifi c IFN-γ (ng/ml) and (E) IL-2 (pg/ml) pro-

duction from p31-SP– and SHAM-SP–tolerized mice. Gray bars, 0.1 μM 

p31 peptide; black bars, media control. These data are representative of 

three independent experiments. 
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demonstrates an antigen-specifi c therapy that can reverse di-
abetes in the NOD mouse after clinical disease onset (2).

To determine the basis for tolerance in the insulin-SP set-
ting, we used traceable T cells from islet antigen–specifi c 
TCR transgenic (Tg)+ mice. In this model, diabetes was in-
duced in NOD mice by the adoptive transfer of activated 
CD4+ BDC2.5 Tg+ T cells, which recognize an islet an-
tigen that can be mimicked by a peptide, termed 1040-p31 
(16, 17). The next day, mice were treated with 1040-p31 
peptide–coupled ethylene carbodiimide (ECDI)-fi xed sple-
nocytes (p31-SP) or irrelevant peptide–coupled ECDI-fi xed 
splenocytes (SHAM-SP) as control. SHAM-SP control mice 
develop severe diabetes within 7 d of transfer, with 100% 
disease incidence (Fig. 1 B). p31-SP treatment, however, 
provided complete and long-lasting protection (>100 d; 

Fig. 1 B). This model replicated the results observed with 
 insulin-SP in spontaneously diabetic NOD mice and there-
fore provided a useful tool to dissect the basis for tolerance.

Multiple peripheral pathways have been implicated in the 
development and maintenance of immune tolerance, includ-
ing clonal deletion, anergy induction, and active suppression 
by T reg cells. We next examined these parameters in this 
antigen-fi xed APC-induced tolerance model. First, BDC2.5 
T cell numbers were monitored in control and p31-SP–
treated mice. After antigen-SP treatment, there was an initial 
increase in BDC2.5 T cells in both p31-SP and SHAM-SP 
groups followed by a retraction phase (not depicted) similar 
to that previously reported in the EAE model (5). BDC2.5 
cells were enumerated using congenic markers 4 wk after re-
ceiving antigen-SP therapy (Fig. S1, available at http://www.
jem.org/cgi/content/full/jem.20061557/DC1). There was 
a reduction in the percentage of cells isolated from the pan-
creatic LN (pLN), but because of the low cell numbers in the 
pLN, the total number of BDC2.5 T cells was not diff erent 
in p31-SP compared with SHAM-SP when all other periph-
eral lymphoid compartments were compared. These results 
indicate that BDC2.5 cells persist in p31-SP–treated mice. 
Next, we examined the responses of the BDC2.5 T cells ex-
posed to p31-SP tolerogenic therapy 7 d after treatment. 
Proliferation to p31 peptide was signifi cantly reduced in the 
pLN (Fig. 1 C), peripheral LN, and spleen (not depicted). 
Additionally, antigen-specifi c infl ammatory cytokines in-
cluding IFN-γ and IL-2 were signifi cantly reduced after 
p31-SP treatment (Fig. 1, D and E). This decrease in cyto-
kine production did not refl ect a switch toward a Th2 pheno-
type as both IL-4 and IL-10 were not produced after T cell 
activation from either p31-SP– or SHAM-SP–treated mice 
(not depicted).

Lastly, we determined the role of T reg cells during 
 antigen-SP tolerance induction. To assess this, TCR-α KO 
recipients, defi cient of T cells including T reg cells, were 
given CD4+CD25− BDC2.5 TCR Tg+ T cells that had 
been depleted of CD4+CD25+ T reg cells followed by 
CD25-depleted p31-SP antigen–coupled splenocytes. These 
recipient mice were protected from developing diabetes 
(Fig. S2 A, available at http://www.jem.org/cgi/content/
full/jem.20061577/DC1) and had decreased antigen-
 specifi c proliferation and cytokines (not depicted), indicat-
ing that antigen-SP is eff ective in the absence of T reg cells. 
Furthermore, we did not detect an increase of FoxP3+BDC2.5 
TCR Tg+ T cells, indicating that antigen-SP tolerance did 
not induce adaptive T reg cells (Fig. S2 B). Collectively, 
these results indicate that antigen-SP therapy results in the 
induction of antigen-specifi c T cell anergy through an in-
trinsic mechanism.

p31-SP–coupled cells limit, but do not eliminate, pancreatic 

infi ltration of antigen-specifi c T cells

We next investigated whether p31-SP treatment aff ected 
pancreatic insulitis. Diabetogenic BDC2.5 T cells were acti-
vated and transferred to NOD mice. The next day, mice 

Figure 2. p31-SP–coupled cells prevent adoptive transfer of dia-

betes, but not peri-insulitis. Pancreata from p31-SP–tolerized and 

SHAM-SP control mice were stained with hematoxylin and eosin to de-

termine clinical severity of insulitis. 100 pancreatic islets were scored for 

the presence of mononuclear infi ltration. Representative pictures from NOD 

mice 7 d after receiving activated BDC2.5 T cells and either (A) p31-SP– or 

(B) SHAM-SP–coupled cells are shown. (C) Quantifi cation of >100 pan-

creatic islets as a percentage for each histological score demonstrating 

that SHAM-SP–treated mice have more severe insulitis compared with 

p31-SP–protected mice (n = 5 mice/group; P = 0.0004). 
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were treated with p31-SP or SHAM-SP. 7 d after treatment, 
pancreatic islets were examined for the presence of mono-
nuclear cell infi ltrates. p31-SP treatment prevented severe 
 insulitis; however, mild insulitis and perivascular infi ltrates 
developed throughout the pancreas based on histological 
 examination (magnifi cation, 200×; Fig. 2 A) compared 
with SHAM-SP–injected mice that developed severe insulitis 
(Fig. 2 B). Quantifi cation confi rmed that there was more se-
vere insulitis in SHAM-SP compared with p31-SP–protected 
mice (Fig. 2 C). Thus, p31-SP therapy prevents clinical dis-
ease but did not fully prevent cellular accumulation within 
the target organ, suggesting that there may be active tissue-
specifi c regulation of these potentially pathogenic T cells.

Both PD-1 and CTLA-4 blockade inhibits the induction 

of peripheral CD4+ T cell tolerance

We next turned our attention toward cell surface inhibitory 
molecules as a potential mechanism for maintaining antigen-
SP anergy. Several regulatory pathways have been implicated 
in controlling intrinsic T cell function. In this study, we 
sought to examine two such pathways, PD-1 and CTLA-4. 
We have previously shown that CTLA-4 is important for 

T cell tolerance during an immunogenic encounter with a 
model antigen, ovalbumin (5). These results raised the possi-
bility that CTLA-4 would regulate tolerance induced in this 
system. Similarly, PD-1 has been shown to be involved in the 
control of tissue-specifi c autoimmunity  (15, 18). PD-1 and 
CTLA-4 expression is rapidly up-regulated after T cell activa-
tion (for review see reference 9). We measured the expression 
of PD-1 and CTLA-4 on activated diabetogenic BDC2.5 
CD4+ T cells to ensure that CTLA-4 and PD-1 were ex-
pressed both at the time of transfer and after antigen-specifi c 
treatment. Results shown in Fig. 3 A demonstrate signifi cant 
expression of PD-1 and CTLA-4 from the transferred 
BDC2.5 CD4+ T cells. Therefore, we examined the role of 
CTLA-4 and PD-1 inhibitory pathways in peripheral toler-
ance using the antigen-coupled cell tolerance model. Acti-
vated BDC2.5 T cells were transferred to NOD mice followed 
1 d later with p31-SP tolerogen or SHAM-SP. Each group 
was concurrently treated with control Ig, anti–CTLA-4, or 
anti–PD-1 and monitored for diabetes. SHAM-SP–treated 
mice developed diabetes by day 6, whereas p31-SP–treated 
mice were completely protected (Fig. 3, B and D). The pro-
tection correlated with reduced antigen-specifi c proliferation 

Figure 3. CTLA-4 and PD-1 blockade prevents the induction of 

antigen-SP tolerance and restores autoreactive T cell function. 

(A) Up-regulation of PD-1 and CTLA-4 expression on diabetogenic 

BDC2.5 T cells after p31 antigen activation in vitro (day 4; top) and 

30 h after p31-SP transfer (bottom). Flow cytometric analysis was per-

formed on congenic BDC2.5 CD90.1+ CD4+ T cells for PD-1 and CTLA-4 

expression. CD4+ gated events are shown illustrating increased PD-1 

and CTLA-4 expression on the majority of the CD90.1 cells compared 

with isotype hamster control staining. Numbers illustrate the percent-

age of cells in each quadrant. (B–E) Anti–CTLA-4, anti–PD-1, or IgG 

control was administered surrounding BDC transfer and coupled cell 

tolerance to determine the role of these inhibitory molecules during 

tolerance induction. (B) Diabetes incidence and (C) day 3 p31-specifi c 

proliferation is shown for p31-SP plus IgG-tolerized mice (●; n = 7), 

SHAM-SP plus IgG control mice (○; n = 7), anti–CTLA-4 p31-SP mice 

(▲; n = 7), and anti–CTLA-4 SHAM-SP control mice (▽; n = 7). 

(D) Diabetes incidence and (E) day 3 p31-specifi c proliferation is shown 

for p31-SP plus IgG-tolerized mice (●; n = 5), SHAM-SP plus IgG con-

trol mice (○; n = 5), anti–PD-1 p31-SP mice (▲; n = 5), and anti–PD-1 

SHAM-SP control mice (▽; n = 5) illustrating PD-1 reversal of antigen-

SP tolerance. (F) p31-specifi c IFN-γ production from p31-SP and SHAM-

SP mice treated with IgG or anti–PD-1 (n = 3) demonstrating signifi cant 

IFN-γ increase after anti–PD-1 treatment (P = 0.027). Results shown 

are representative from two independent experiments.
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(Fig. 3, C and E). Anti–CTLA-4 and anti–PD-1, but not 
control Ig, surrounding tolerance induction resulted in rapid 
diabetes within 6 d of CTLA-4 or PD-1 blockade (Fig. 3, 
B and D). Anti–CTLA-4 and anti–PD-1 treatment not only 
prevented anergy induction, but also enhanced antigen-
 specifi c proliferation (Fig. 3, C and E, respectively).

Anti–PD-1 treatment of p31-SP–tolerized mice resulted 
in enhanced cytokine production including IFN-γ and IL-2 
compared with control Ig–treated mice (Fig. 3 F and not 
 depicted). IFN-γ was signifi cantly increased in anti–PD-1–
treated mice (15.7 ± 0.8 ng/ml) compared with control 
IgG–treated tolerized animals (0.35 ± 0.06 ng/ml; Fig. 3 F; 
P = 0.027). The increased proliferation and eff ector cyto-
kines after PD-1 blockade are consistent with a direct eff ect 
on the tolerized T cells and the induction of diabetes.

PD-L1, but not PD-L2, regulates the induction of CD4+ 

T cell tolerance

Experiments were performed using blocking antibodies to 
PD-L1 and PD-L2 to determine the relative importance of 
each ligand in tolerance induction. BDC2.5 T cells were ac-
tivated and transferred to NOD mice. The next day, mice 
were treated with p31-SP or SHAM-SP together with anti– 
PD-L1, anti–PD-L2, or control Ig. p31-SP, but not SHAM-
SP, treatment protected mice from developing diabetes (0/15; 
Table I). Anti–PD-L1, but not anti–PD-L2 or control Ig, ad-
ministration prevented tolerance induction (18/18; Table I). 
Finally, we tested whether the need for PD-L1 expression on 
the p31 peptide ECDI-fi xed APC was critical for tolerance 
induction. Antigen-coupled cells (antigen-SP) from WT or 
PD-L1–defi cient NOD mice were used to induce tolerance 
in BDC2.5 T cell–transferred NOD mice. The NOD WT 
and NOD.PD-L1KO p31- coupled APCs were equally ef-
fective at inducing antigen-specifi c T cell tolerance and pre-
venting diabetes (not depicted), suggesting that tolerance 
induction in this setting does not require PD-1–PD-L1 inter-
action on the fi xed APCs. Thus, PD-L1 expression on host 
tissue is critical for the induction of tolerance in this model.

PD-1–PD-L1, but not CTLA-4, plays a critical role 

in the maintenance of CD4+ T cell tolerance

The previous results suggested that antigen-SP injection in-
duced a state of T cell anergy that is dependent on PD-1– PD-
L1 engagement on host cells. We next investigated whether 
PD-1–PD-L1 was involved in the tissue- specifi c tolerance 
given the peri-insulitis observed after p31-SP  tolerance. 
 Activated BDC2.5 T cells were transferred to NOD mice, 
 tolerized on day +1 with p31-SP cells, and treated with 
mAbs 2 wk after tolerance induction, a time point with 

Figure 4. PD-1 and PD-L1, but not CTLA-4, maintain peripheral 

tolerance. (A) p31-SP–tolerized NOD mice that received BDC T cells were 

treated with anti–PD-1, anti–CTLA-4, or IgG control (days 14, 16, 18, 20, 

22, and 24; gray shaded area) to determine the role of these inhibitory 

molecules during tolerance maintenance. Diabetes incidence from p31-SP 

anti–PD-1 (100%; n = 10; ▼), p31-SP anti–CTLA-4 (0%; n = 10; ○), and 

p31-SP IgG (0%; n = 10; ●) is shown. (B) p31-SP–tolerized mice were 

injected with anti–PD-L1 or anti–PD-L2 on days +14, 16, 18, 20, 22, and 

24 (gray shaded area) to determine which PD-1 ligands were important for 

tolerance. Diabetes incidence from p31-SP anti–PD-L1 (87.5%; n = 8; ○) 

and complete protection in p31-SP anti–PD-L2 (0%; n = 8; ●) is shown. 

(C) Diabetogenic CD4+CD90.1+ BDC2.5 T cell percentages from the pan-

creas and pLN were determined 7 d after anti–PD-1 treatment, illustrating 

an increase after anti–PD-1 injection. Results shown are representative 

from at least two independent experiments. 

Table I. Anti–PD-1 and anti–PD-L1, but not anti–PD-L2, 

therapy inhibits tolerance induction

Couple cells Treatment No. diabetic/n % Diabetes

p31-SP Control 0/15 0

SHAM-SP Control 15/15 100

p31-SP Anti–PD-1 21/21 100

SHAM-SP Anti–PD-1 20/20 100

p31-SP Anti–PD-L1 18/18 100

SHAM-SP Anti–PD-L1 18/18 100

p31-SP Anti–PD-L2 0/9 0

SHAM-SP Anti–PD-L2 8/8 100

Disease was induced by BDC2.5 cell transfer to NOD mice. 24 h later, recipients 

received either p31-SP or SHAM-SP. Anti–PD-1, anti–PD-L1, anti–PD-L2, or IgG was 

administered on days (−1, 0, and +1) surrounding coupled cell transfer. Mice were 

monitored for diabetes for 6 wk. Disease incidence (No. diabetic/n) and percent 

diabetic for each group is shown.
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 nondestructive peri-insulitis. Injection of anti–PD-1 or anti–
PD-L1, but not PD-L2, resulted in the reversal of tolerance 
and rapid development of diabetes (Fig. 4, A and B). Anti–
PD-L1 led to an increase of antigen-specifi c BDC2.5 T cell 
accumulation, enhanced T cell expansion (Fig. 4 C), and in-
fl ammatory cytokines in the pancreas and pLN (not depicted), 
suggesting that the eff ects were limited to the local sites 
of autoantigen. However, in sharp contrast, unlike PD-1, 
CTLA-4 blockade during the maintenance phase of periph-
eral tolerance induced by antigen-SP therapy had no eff ect 
(Fig. 4 A). Therefore, CTLA-4 blockade was not suffi  cient to 
break tolerance. Thus, PD-1 is distinct as a negative regulator 
of tolerance in that it appears to play a critical role in the 
maintenance of already established tolerance. These results 
suggest that PD-1–PD-L1 plays a dual role in tolerance by 
antigen-SP, which is required for the induction and mainte-
nance of T cell anergy in this model.

The previous results could not rule out that endogenous 
T cells, not the transferred BDC2.5 T cells, were responsible 
for the antigen-specifi c proliferation, cytokine production, 
and rapid induction of diabetes after anti–PD-1–anti–PD-L1. 
Thus, we took advantage of the CD28 costimulation–defi -
cient NOD B7-2 KO mouse strain, which does not develop 
insulitis or progress and develop autoimmune diabetes due 
to limited activation of the potentially pathogenic T cells 
(19, 20). NOD B7-2 KO mice were treated with blocking 
anti–PD-L1 antibodies and followed for diabetes. B7-2KO 
mice were completely protected from developing diabetes 
compared with NOD controls (83.6% diabetic; Fig. 5 A). 
This diabetes-resistant model was exploited to directly study 
anti–PD-L1 treatment of BDC2.5 T cells and the develop-
ment of diabetes without the confounding eff ects from poly-
clonal host T cells. Activated BDC2.5 T cells were transferred 
to NOD B7-2KO recipients. The next day, mice received 
 either tolerogenic p31-SP cells or SHAM-SP. SHAM-
SP–treated NOD B7-2 KO mice rapidly developed diabe-
tes (Fig. 5 B). p31-SP cells induced complete tolerance and 
disease protection (Fig. 5 B). These results suggest that the 
previously activated BDC2.5 T cells did not need CD28/
B7-2–mediated costimulation to promote pathogenesis. 
Moreover, tolerance induction by antigen-coupled APCs did 
not require B7-2 expression on host cells. This result was in 
sharp contrast to the PD-1–PD-L1 blockade results and dem-
onstrates the distinct role of these pathways in controlling 
tolerance at diff erent stages of immune activation.

Next, p31-SP–tolerized NOD B7-2 KO mice were 
treated with anti–PD-L1 or control IgG antibody 10 d after 
p31-SP tolerance was established. The administration of 
anti–PD-L1 resulted in tolerance reversal and rapid develop-
ment of diabetes (Fig. 5 B). Anti–PD-L1 treatment not only 
abrogated tolerance, but also enhanced antigen-specifi c cyto-
kines. To investigate if BDC2.5 T cells were truly functional 
after PD-L1 blockade, pLN cells were isolated from NOD 
mice seeded with activated BDC2.5 T cells, treated with ei-
ther p31-SP or SHAM-SP, and injected with either anti–
PD-L1 or IgG control. As demonstrated above, BDC2.5 

T cells are completely anergic after p31-SP tolerance, as these 
cells do not make IFN-γ (Fig. 5 C) or IL-2 (not depicted). 
However, anti–PD-L1 abrogates tolerance and restores the 
ability of BDC2.5 cells to respond to antigen challenge with 
between 3 and 14% of the total BDC2.5 T cells producing 
IFN-γ, similar to SHAM-SP treatment (Fig. 5 C; P = 0.007). 

Figure 5. PD-L1 blockade releases the antigen-specifi c BDC2.5 

CD4+ T cells from anergy and allows the development of diabetes. 

(A) Anti–PD-L1–treated NOD B7-2 KO mice (n = 8; ○) are protected 

from diabetes compared with WT NOD mice (n = 6; ●). (B) Anti–PD-L1 

precipitates clinical diabetes in B7-2 KO mice receiving BDC2.5 T cells. 

Disease was induced by BDC2.5 T cell transfer. 24 h later, recipient mice 

were treated with p31-SP to induce tolerance. 10 d after tolerance, B7-2 

KO recipients were injected with anti–PD-L1 or IgG control (days +10, 

12, 14, 16, 18, and 20; gray shaded area) and monitored for diabetes. 

Diabetes incidence for NOD B7-2KO SHAM-SP (▼; n = 3), NOD B7-2KO 

p31-SP plus anti–PD-L1 (●; n = 4), and NOD B7-2 KO p31-SP plus IgG 

(○; n = 4) is shown. (C) BDC2.5 T cell antigen-specifi c cytokine production. 

pLN cells were isolated and activated in vitro for 6 h with p31 antigen at 

day 20 after receiving anti–PD-L1 or IgG and p31-SP treatment. Cells 

were stained with immune markers for transferred CD90.1 BDC2.5 CD4 

T cells, IL-2, and IFN-γ. IFN-γ+ cells are shown as a percent of the total 

BDC2.5 T cells from three to fi ve mice per group. Results demonstrate 

a signifi cant increase in BDC2.5 IFN-γ+ cells from anti–PD-L1 compared 

with IgG controls (P = 0.007). These data are representative of two inde-

pendent experiments. 
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Anti–PD-L1 did not result in a signifi cant increase in IFN-γ 
production by host CD4+ T cells. Less than 1% of polyclonal 
host CD4+ T cells made IFN-γ when stimulated with PMA 
and ionomycin (not depicted). Therefore, PD-L1 blockade 
precipitates diabetes in resistant NOD B7-2 KO animals by 
directly aff ecting previously tolerized BDC2.5 T cells. More-
over, PD-L1 blockade reverses anergy in BDC2.5 T cells 
weeks after tolerance induction resulting in diabetes and 
demonstrating a critical role for the PD-1–PD-L1 pathway 
for the maintenance of T cell tolerance.

PD-1–PD-L1 regulates the maintenance of peripheral 

tolerance in spontaneous polyclonal autoimmune diabetes

The above mechanistic studies were limited to the use of 
monoclonal islet antigen–specifi c TCR Tg+ T cells. Thus, it 
was critical to determine whether the PD-1 pathway was op-
erational in tolerance-inducing therapies using intact NOD 
mice, which involves polyclonal T cell responses with a wide 
range of TCR specifi city and antigen affi  nity (Fig. 1 A). 
New-onset NOD mice, tolerized with insulin-SP, were 
treated with anti–PD-L1 mAb 25 wk after tolerogenic ther-
apy and disease remission. Tolerance was abrogated in all 
mice resulting in the rapid development of diabetes within 
5 ± 2 d of anti–PD-L1 (Fig. 6, A and B). These results indicate 
that tolerance induced by INS-SP therapy is also dependent on 
PD-1–PD-L1 interactions long after tolerance induction.

Finally, we examined whether the role of the PD-1–PD-
L1 pathway could be generalized to other TCR signaling–
mediated tolerogenic therapies. We and others have previously 
reported that anti-CD3 prevents and reverses diabetes in 
NOD mice (4, 21, 22). This tolerance is robust and durable, 
with the majority of mice remaining normal glycemic for the 
rest of their lives. In the fi rst set of experiments, we treated 
5-wk-old prediabetic NOD mice with anti-CD3 to induce 
tolerance (Fig. 7 A). Mice were aged for an additional 12 wk 
(a time point when untreated mice start to become diabetic 
in our colony) and monitored for diabetes. None of the anti-
CD3–treated animals became diabetic for the duration of the 
study (43 wk; Fig. 7 A), whereas all those receiving anti–PD-
L1 mAb at 12 wk became diabetic within the subsequent 
3-wk period (Fig. 7 A). In fact, anti–PD-L1 appeared to ac-
celerate disease because only 75% of control (hamster Ig–
treated) NOD mice were diabetic by 21 wk of age. In this 
regard, anti–PD-L1 precipitated rapid disease progression and 
complete (100%) penetration (Fig. 7 A; reference 14). These 
results demonstrate that anti-CD3–induced tolerance is abro-
gated by PD-L1 blockade even weeks after tolerance induc-
tion (Fig. 7 A). As another demonstration of the importance 
of the PD- 1–PD-L1 pathway in maintaining tolerance, we 
compared the ability of anti-CD3 therapy to induce durable 
tolerance after disease onset (21, 22). Newly diabetic NOD 
mice treated with anti-CD3 became normoglycemic and re-
mained disease-free for the duration of the study (Fig. 7 B). 
Anti–PD-L1 administered to mice 12 wk after tolerance 
 induction resulted in the rapid development of diabetes 
within 2 ± 1 d of mAb injection (Fig. 7 C). In addition, 

 although anti-CD3 therapy eff ectively reversed diabetes in 
NOD mice after disease onset, anti-CD3 therapy was inef-
fective at reversing disease in NOD.PD-L1 KO mice (Fig. 7 B). 
Collectively, these data indicate that both antigen-specifi c 
and anti-CD3–mediated tolerance is dependent on PD-1–
PD-L1 signaling.

Anti-CD3 therapy has been shown to induce tolerance by 
two distinct mechanisms: the induction of pathogenic T cell 
apoptosis and through the induction of T reg cells (4). We next 
tested whether PD-1–PD-L1 blockade was acting on eff ector 
cell function alone or T reg cell function as well. BDC2.5 
T cells were sorted into T reg cells (CD4+CD25+CD62L+) 
and eff ector T (T eff ) cells (CD4+CD25-CD62L+). NOD.
RAG KO recipient mice received T eff  cells alone or to-
gether with T reg cells. The addition of T reg cells with T eff  
cells suppressed the development of diabetes. Mice receiving 
BDC2.5 T eff  cells with either IgG control or anti–PD-L1 
developed diabetes within 11 d after transfer (Fig. 7 D); how-
ever, coinjection of T reg cells with T eff  cells suppressed the 
induction of diabetes. These results indicated that T reg cells 
did not depend on PD-1–PD-L1 interactions for tolerance 
induction and prevention of autoimmune diabetes (Fig. 7 D). 
Thus, in this model, the PD-1–PD-L1 pathway reversed an-
ergy in islet antigen–specifi c T cells by a direct eff ect on the 
pathogenic T cells.

DISCUSSION

The goal of this study was to examine the role of PD-1 in the 
induction and maintenance of tolerance in NOD mice that 
are prone to develop T1D. We demonstrate that insulin is a 
critical antigen involved in T1D pathogenesis, and that selec-
tively silencing insulin-specifi c T cells can reverse disease 
progression and lead to long-term tolerance. This result 
demonstrates one of the fi rst antigen-specifi c therapies for 

Figure 6. PD-L1 blockade breaks tolerance induced by insulin-SP 

in spontaneous autoimmune diabetes. New-onset spontaneously dia-

betic NOD mice were treated with insulin-SP or SHAM-SP and evaluated 

for disease remission. (A) Five mice that were treated with INS-SP and 

became euglycemic compared with fi ve SHAM-SP diabetic control mice 

are shown. The fi ve INS-SP–treated mice shown remained disease free for 

25 wk after INS-SP therapy. At this time, mice were injected with anti–PD-

L1 and followed for diabetes. After PD-L1 blockade, all fi ve mice became 

diabetic within 5 ± 2 d. Diabetes incidence for INS-SP plus anti–PD-L1 

(●; n = 5) and SHAM-SP control (○; n = 5) is shown. (B) Individual mice 

and their blood glucose levels after INS-SP therapy and PD-L1 blockade. 

Each circle represents an individual mouse (n = 5). 



2744 PD-L1 CONTROLS PERIPHERAL TOLERANCE AND DIABETES | Fife et al.

diabetes reversal after clinical onset (2). The mechanism for 
antigen-specifi c tolerance is the induction of T cell anergy 
maintained through the interactions of PD-1–PD-L1. Previ-
ous studies have documented that PD-1–PD-L1 are impor-
tant for regulating T cell responses in vivo. This is most 
evident in PD-1 KO mice, which exhibit several autoim-
mune syndromes, and in humans where polymorphisms in 
PD-1 are associated with susceptibility to systemic lupus ery-
thematosus, rheumatoid arthritis, and diabetes (23, 24). Fur-
thermore, treatment of autoimmune-prone NOD mice with 
PD-1 antagonists precipitates disease. However, none of 
these studies has directly addressed the role of PD-1 in a 
tolerogenic setting. In this study, we demonstrate that PD-1–
PD-L1 interactions control tolerance weeks to months after 
induction by suppressing immunity within target tissues. 
These studies took advantage of a newly developed model of 
tolerance in NOD mice where ECDI-fi xed insulin-coupled 
spleen cells induced robust tolerance even after disease onset. 

Similarly, the PD-1–PD-L1 pathway, but not the PD-1–PD-
L2 pathway, was critical for maintenance of tolerance in anti-
CD3–treated mice. Collectively, these fi ndings support a 
central role in the maintenance of tolerance in well-defi ned 
and clinically applicable tolerogenic treatments currently 
 being developed for humans with T1D.

The observation that insulin-coupled fi xed spleen cells 
induced robust tolerance even after disease onset supports 
recent suggestions that insulin is the dominant autoantigen 
in T1D (8). Tolerance induced by antigen-coupled spleen 
cells led to a rapid block in proliferation, decreased cytokine 
production, and protection from diabetes. This therapy has 
many of the attributes of anti-CD3 treatment, which has 
been shown to be eff ective for treatment of T1D in NOD 
mice and humans (3, 21). In those studies, the FcR-non-
binding anti-CD3 induced signifi cant pathogenic T cell 
death or anergy in residual T cells that infi ltrated the pancre-
atic tissue (25–28). Importantly, combination therapies using 

Figure 7. PD-L1 blockade abrogates anti-CD3–induced tolerance 

precipitating autoimmune diabetes. (A) 5-wk-old NOD mice were treated 

with anti-CD3 or IgG (days 0, 2, 4, 5, and 7). 12 wk after anti-CD3 tolerance 

induction, mice were injected with anti–PD-L1 mAb (days 84, 86, 88, 90, 92, 

and 94; gray shaded area) and monitored for diabetes. Disease incidence is 

shown for anti-CD3–treated NOD mice (○; n = 7), diabetic IgG-treated 

NOD mice (●; n = 7), 17-wk-old NOD mice plus anti–PD-L1 (□; n = 4), 

NOD mice treated with anti-CD3 plus anti–PD-L1 12 wk after tolerance 

induction (△; n = 8), and diabetic control IgG plus anti–PD-L1–treated NOD 

mice (▼; n = 5). (B) Anti-CD3 reverses spontaneous diabetes in WT NOD, 

but not NOD PDL1 KO, mice. New-onset NOD and NOD PD-L1 KO mice were 

treated with anti-CD3 or IgG and monitored for diabetes remission. 8 out of 

10 NOD mice treated with anti-CD3 went into disease remission (●; n = 8). 

None of the NOD mice treated with IgG control went into disease remission 

(○; n = 8). Similarly, none of the NOD.PD-L1 KO mice treated with anti-CD3 

(■; n = 6) or IgG control (□; n = 3) went into disease remission. (C) Anti–

PD-L1 reverses anti-CD3–induced tolerance. New-onset spontaneously 

diabetic mice were treated with fi ve injections of anti-CD3. After 12 wk, 

anti–PD-L1 was given to mice that had gone into disease remission. Blood 

glucose from four individual mice demonstrating rapid diabetes progression 

by day 3 after PD-L1 blockade is shown. (D) PD-L1 blockade does not inhibit 

T reg cell function in vivo. Disease was induced by the transfer of 106 

BDC2.5 CD4+CD62L+CD25− (T eff cells) to NOD RAG KO recipients. Mice 

were divided into two groups and half received 106 CD4+CD62L+CD25+ 

(T reg cells) to control diabetes. At the time of disease transfer, mice received 

either IgG control or anti–PD-L1 mAb to determine PD-L1 effects on T reg 

cell function. Mice receiving T eff cells plus control IgG or anti–PD-L1 devel-

oped diabetes within 15 d (Teff + IgG; ●; n = 5) and (Teff + anti–PD-L1; 

○; n = 5). Mice receiving T reg cells were protected from disease even 

in the presence of anti–PD-L1 administration. Shown are mice from 

(Teff+Treg+IgG; ▼; n = 5) and (Teff+Treg+anti–PD-L1; ▽; n = 5). These 

data are representative of two independent experiments.
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both anti-CD3 and insulin have recently been shown to 
 synergize to induce robust antigen-specifi c tolerance (29).

In this model of tolerance, the fate of the antigen-SP cells 
is not completely understood. CFSE tracking studies have 
revealed that antigen-SP cells are present in peripheral tissues, 
including the lung, liver, pancreas, spleen, and peripheral 
LNs among other locations, within 6 h after transfer (unpub-
lished data). Functionally, these cells mediate their eff ects 
within the fi rst 48 h after transfer. Antigen-SP pretreatment 
followed by adoptive transfer of TCR Tg eff ector cells 48 h 
later did not result in tolerance, suggesting that the eff ects of 
the antigen-SP cells occur before this time point (unpub-
lished data). The eff ects of this therapy are, however, anti-
gen-specifi c. p31 peptide, but not whole insulin–coupled 
APCs, tolerized the BDC2.5 T cells and prevented diabetes 
(unpublished data). Similarly, p31 peptide–coupled cells did 
not reverse spontaneous diabetes, further demonstrating the 
antigen-specifi c nature of this therapy and a critical role for 
insulin in the pathogenesis of autoimmune diabetes.

Previous studies have shown that the PD-1–PD-L1 
blockade resulted in exacerbated autoimmunity (13, 14). 
These eff ects suggest a role for PD-1–PD-L1 in immune tol-
erance; however, studies by Barber et al. (30) suggest that 
PD-1 may keep weakly pathogenic T cells in check or reverse 
the functional “exhaustion” of antigen-overstimulated T eff  
cells. Thus, these studies could not distinguish whether PD-
1–PD-L1 promoted tolerance by increasing the threshold of 
previously exposed T eff  cells or an active down-regulation 
of T cells involved in ongoing immunity. Distinguishing the 
precise role of PD-1 for tolerance reversal or bypassing the 
normal tolerogenic processes in these settings has important 
implications for PD-1 inhibition and the interpretation of 
previous studies. In the NOD mouse for instance, exacerba-
tion of disease after PD-1–PD-L1 blockade could refl ect ab-
rogation of tolerance in the normal setting or might promote 
a more vigorous eff ector cell response from low affi  nity or 
weakly activated T cells. By studying tolerance models, direct 
assessment of PD-1 blockade on the antigen-specifi c T cells 
could be determined. The fi ndings reported herein demon-
strate a critical role for PD-1–PD-L1 interaction during the 
induction and maintenance of peripheral T cell tolerance 
in autoimmune diabetes. Blockade of the PD-1–PD-L1 
 pathway resulted in the proliferation and accumulation of 
 auto reactive T cells and rapid progression of diabetes. Most 
importantly, the PD-1–PD-L1 blockade reversed anergy in 
islet antigen–specifi c T cells, suggesting a direct eff ect of 
PD-1 on the pathogenic T cells in this setting.

This last point is supported by the observation that the 
PD-1–PD-L1 blockade was eff ective even in the absence of 
T reg cells, as we have performed transfers with CD4+CD25− 
(T reg cell–depleted) pathogenic T cells into T reg cell–
 defi cient hosts and still observed eff ective tolerance (Fig. S2 A). 
Moreover, we did not detect an increase of FoxP3+ TCR 
Tg+ T cells, indicating that antigen-SP tolerance did not in-
duce adaptive T reg cells (Fig. S2 B). These results suggest 
that the PD-1–PD-L1 pathway functions in an T eff  cell–

 intrinsic manner to modulate IFN-γ production and direct 
T cell function. In addition, these studies demonstrate that 
T reg cells function normally and prevent diabetes in the 
presence of PD-1 blockade, further suggesting a direct eff ect 
on the diabetogenic T cells.

It was surprising that the PD-1–PD-L1 interaction was not 
critical in the direct engagement of the activated T eff  cells and 
p31-SP ECDI-treated APCs given the integral role of this 
pathway in controlling T cell activation in several systems (9). 
Rather, the PD-1–PD-L1 pathway acts downstream of initial 
antigen encounter. Thus, the PD-1–PD-L1 pathway is not 
critical for induction but rather the maintenance of tolerance 
in the target tissue in both the antigen-coupled fi xed APCs 
and anti-CD3 models where antigen-specifi c T cells continue 
to reside in the target organ (although they are not pathogenic; 
reference 31). Therefore, we speculate that the PD-1–PD-L1 
interactions maintain tolerance in the local infi ltrated tissues. 
In this regard, we have observed that anti–PD-L1 treatment 
did not precipitate diabetes in models such as the NOD B7-
2KO, where there is no infi ltrate at the time of treatment (20) 
and, thus, the endogenous host CD4+ T cells were not able to 
induce disease when PD-1 was blocked. In contrast, blockade 
of PD-1 on the tolerized BDC2.5 T cells resulted in rapid re-
versal of anergy, including a dramatic increase in infl ammatory 
cytokines, indicating that induction of tolerance through 
TCR-mediated pathways  induces a state of T cell anergy that 
is maintained by PD-1–PD-L1 engagement.

CTLA-4 and PD-1 both inhibit T cell proliferation, cyto-
kine production, and proximal TCR signaling (for review see 
reference 9). Thus, it is critical to understand the apparent par-
adox that each molecule is both necessary yet not suffi  cient for 
tolerance. The data suggest this paradox can be best reconciled 
by proposing that the two negative regulatory pathways func-
tion at diff erent stages and sites during autoimmunity. For in-
stance, unlike PD-L1, which is highly expressed in islets and 
other stromal cells (32), expression of the CTLA-4 ligands B7-1 
and B7-2 is largely restricted to lymphoid tissues. Therefore, 
CTLA-4 may act proximal to initial T cell activation in the 
draining LNs after B7-1 and B7-2 engagement, whereas the 
PD-1–PD-L1 pathway may function within tissue sites distal 
to initial activation. Thus, PD-1 provides an additional oppor-
tunity to limit T cell function and prevent tissue damage 
downstream of CTLA-4. The data presented here support this 
model. Anti–CTLA-4 prevented the development of peri-
pheral tolerance but did not abrogate established peripheral 
tolerance. PD-1 blockade, however, reversed the maintenance 
of tolerance, thus supporting a linear model of T eff  cell inhibi-
tion with CTLA-4 acting early and PD-1 preventing diabeto-
genic T eff  cells late, perhaps directly within the target organ. 
Furthermore, CTLA-4 has been shown to inhibit T reg cell 
suppression (33), but PD-1 blockade did not. These distinct 
diff erences create a scenario in which both T eff  cells and T reg 
cells are inhibited by CTLA-4 signaling, perhaps early during 
the initiation of  immunity, but PD-1 signaling may selectively 
inhibit T eff  cells once they enter the target tissues. Thus, the 
use of PD-1 agonists locally in infl amed tissue may be eff ective 



2746 PD-L1 CONTROLS PERIPHERAL TOLERANCE AND DIABETES | Fife et al.

for maintaining tolerance when used in conjunction with a 
tolerogen such as anti-CD3 or antigen-coupled fi xed APCs. 
Moreover, local administration of anti–PD-1–PD-L1 antago-
nists in tumor settings where anergic T cells have been found 
in the infi ltrate (e.g., renal cancer) may be eff ective for pro-
moting tumor immunity (34). The distinct temporal and spa-
tial expression of the PD-1–PD-L1 inhibitory pathway off ers 
an attractive target for therapeutic intervention in transplanta-
tion, cancer therapy, and autoimmune disease settings.

MATERIALS AND METHODS
Mice. Female NOD mice were purchased from Taconic. NOD-BDC2.5 

TCR Tg+ mice (16) were provided by C. Benoist and D. Mathis (Harvard 

Medical School, Boston, MA). NOD.BDC2.5 TCR Tg+ mice were crossed 

to NOD.Thy1.1 mice to generate NOD.BDC2.5.Thy1.1 TCR Tg+ mice. 

C57BL/6 PD-L1 KO mice (15) were backcrossed 10 generations to NOD. 

NOD B7-2 KO mice were generated as described previously (19). NOD 

TCR-α KO and NOD RAG KO mice were purchased from The Jackson 

Laboratory. Mice were 3–10 wk old at the initiation of the experiments. All 

animal experiments were approved by the Institutional Animal Care and Use 

Committee of the University of California, San Francisco.

Antibodies. mAbs to murine CD4 FITC, CD4 APC-Cy7 (RM4-5), CD8a 

PerCP (Ly-2), CD25 PE, CD25 APC (7D4, PC61), CD62L FITC, CD62L 

APC (MEL14), CD69 PE (H1.2F3), CD90.1 APC, CD90.1 FITC (HIS51), 

Vβ4 PE (KT4), IFN-γ APC (XMG1.2), IL-2 PE (JES6-5H4), IL-4 PE 

(11B11), IL-10 APC (JES5-16E3), Armenian hamster IgG1 PE, Armenian 

hamster control IgG2 PE, CD152 PE (UC10-4F10), CD279 PE (J43), and 

isotype controls were purchased from BD Biosciences. Anti-FoxP3 PE 

(FJK-16s) was purchased from eBioscience. Anti–PD-1 (RMP1-14), anti–

PD-L1 (MIH5, MIH6), and anti–PD-L2 (TY25) were made as described 

previously (14, 35, 36). Anti-CD3 (145-2C11 or 2C11-IgG3) was made as 

described previously (37).

Antibody treatment. Mice were treated intraperitoneally with 500 μg 

anti–PD-1, anti–PD-L1, anti–PD-L2, or IgG on day 0 and with 250 μg on 

days 2, 4, 6, 8, and 10 unless otherwise noted. 250 μg anti-CD3 or hamster 

IgG was injected intraperitoneally at a low dose (days 0 and 2) or high dose 

(days 0, 2, 4, 5, and 7) as indicated.

Antigens. 1040-p31 peptide (Y V R P L W V R M E ) was purchased from Gen-

emed Synthesis Inc. The amino acid composition was verifi ed by mass spec-

trometry, and purity (>98%) was assessed by HPLC. Insulin was purchased 

from Novo Nordisk Pharmaceuticals Inc.

Activation of donor lymphocytes, cell culture, transfer, and induc-

tion of T cell tolerance. NOD.BDC2.5.Thy1.1 TCR Tg+ lymphocytes 

were harvested and pooled from brachial, axillary, peri-aortic and pLNs, and 

the spleen. Cells were activated in vitro in the presence of 0.5 μM 1040-p31 

peptide in complete DMEM containing 5 × 10−5 M 2-ME, 2 mM L-gluta-

mine, 100 U/ml penicillin/streptomycin, 0.1 M nonessential amino acids 

(Invitrogen), and 10% FCS (Hy-clone). Cells were incubated at 37°C in a 

humidifi ed atmosphere containing 5% CO2. The cells were harvested after 

96 h and washed, and 5 × 106 T cells were transferred i.v. to naive predia-

betic NOD or NOD.B7-2KO recipients. Tolerance was induced using i.v. 

injections of 50 × 106 chemically treated antigen-coupled syngeneic spleno-

cytes (p31 or SHAM control), as described previously (5). To achieve 100% 

tolerance in the BDC2.5 T cell transfer experiments, both the antigen and 

the number of antigen-coupled splenocytes were titered to identify the low-

est concentration of antigen and splenocytes required. Complete protection 

required 0.5 mg/ml antigen and 50 × 106 antigen-coupled splenocytes.

Assessment of diabetes and insulitis. Blood glucose levels were mea-

sured from female NOD mice with an Accu-Chek glucose meter (Roche). 

Mice were determined diabetic with two consecutive readings of >250 mg/dL. 

For histological analysis, the pancreas was formalin fi xed in 10% buff ered 

formalin. Multiple 5-μm sections were stained with hematoxylin and eosin 

and scored blindly for severity of insulitis (Score: 0, no infi ltrate; 1, peri-

 insulitis present; 2, 25>50%; 3, >50% of the islet is infi ltrated; reference 20). 

The average insulitis percentages shown were determined from at least 100 

islets from at least fi ve mice per group.

In vitro T cell proliferation assays. Cells were cultured in 96-well mi-

crotiter plates (Corning) at 5 × 105 cells/well in complete DMEM. Cells 

were pulsed with 1 μCi of 3H-TdR (MP Radiochemicals) during the 

last 8 h of a 96-h culture, and 3H-TdR uptake was detected using a Packard 

Topcount microplate scintillation counter (Packard Instrument Co.). The 

average proliferation in triplicate ± SEM is shown.

Flow cytometry. For assessment of surface molecule and intracellular pro-

tein expression, cells were labeled with predetermined optimal antibody 

concentrations according to the manufacturer’s staining protocol and 0.5 × 106 

cells in the CD4 gate were acquired, as described previously (38, 39). Data 

acquisition was performed on an LSRII fl ow cytometer and analyzed using 

FACSDiva software (Becton Dickinson).

ELISA. Assessment of cytokine production was tested for IL-2, IL-4, IL-10, and 

IFN-γ by commercial ELISA kits according to the manufacturer’s  recommended 

protocol (Endogen). Plates were developed using strepavidin-peroxidase (Zymed 

Laboratories) and OPD substrate (Sigma-Aldrich), and absorbance was read at 

405 nm using a Vmax kinetic microplate reader (Molecular Devices).

Cell sorting. NOD.BDC2.5 LN and splenic cells were stained with anti-

CD4 FITC, anti-CD25 PE, and anti-CD62L APC. CD4+CD62L+CD25− 

(T eff  cells) and CD4+CD62L+CD25+ (T reg cells) T cells were sorted using 

a MoFlo cytometer high speed cell sorter (DakoCytomation). All sorted 

populations had ≥98% cell purity.

Statistical analysis. The statistical signifi cance of cytokine levels, thymi-

dine incorporation, and disease incidence was analyzed using the two-tailed 

Student’s t test for comparisons of two means. Diabetes incidence statistical 

signifi cance was analyzed using a nonparametric Wilcoxon signed rank test. 

Values of P ≤ 0.05 were considered signifi cant.

Online supplemental material. Fig. S1 shows (A) changes in the 

percentages of CD4+CD90.1+ BDC2.5 T cells 4 wk after Ag-SP or 

SHAM-SP therapy and (B) the average percentage of BDC2.5 cells ± 

SEM from pLNs, peripheral LNs, and spleens from p31-SP (black bars) 

or SHAM-SP (grey bars; three mice per group). Fig. S2 shows (A) that 

p31-SP therapy induced tolerance and prevented diabetes (●; n = 4)

compared with SHAM-SP control (○; n = 3) when NOD BDC2.5 

CD4+CD25− (T reg cell–depleted) pathogenic T cells were transferred 

to NOD.TCRα KO T reg cell–defi cient hosts in the presence of NOD.

CD4+CD25− (T reg cell–depleted) polyclonal T cells to prevent lympho-

penic-driven proliferation, and (B) the lack of induced adaptive T reg 

cells after p31-SP therapy based on staining for FoxP3, CD4, and Vβ4 to 

enumerate T reg cells. Figs. S1 and S2 are available at http://www.jem.

org/cgi/content/full/jem.20061577/DC1.
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