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The chances of restenosis are �40% with 
 balloon angioplasty and �25% after stenting. 
With the advent of “drug-eluting” stents the ex-
tent of restenosis can be reduced to 0–5% (1). 
Identifi cation of patients at risk for developing 
restenosis will lead to better patient treatment 
based on individual needs, and this has stimu-
lated a search for markers in addition to classical 
risk factors such as hypertension and diabetes (2).

A newly identifi ed plasma protein called fac-
tor VII–activating protease (FSAP) is known to 
activate prourokinase (pro-uPA) and is thus a 
new member of the fi brinolysis pathway (3). 
A polymorphism in FSAP gene, G534E, also 
called the Marburg I (MI) polymorphism, is 
found in �5% of the population, and it is asso-
ciated with atherosclerosis leading to carotid ste-
nosis (4) cardiovascular disease (5) and possibly 
thromboembolic disorders (6). MI-FSAP has a 
weaker pro-uPA activation potential than WT-
FSAP but seems to be equipotent with WT-FSAP 

with respect to factor VII activation (7). FSAP is 
present in atherosclerotic plaques (8), and it is a 
potent inhibitor of platelet-derived growth fac-
tor BB (PDGF-BB)–mediated vascular smooth 
muscle cell (VSMC) proliferation and migration 
in vitro (8). Here we demonstrate that FSAP is a 
potent inhibitor of neointima formation in vivo. 
Moreover, the MI isoform of FSAP is not active 
in this respect. Together with a mechanistic in-
sight into the inhibition of neointima formation, 
these results provide a clear rationale for using 
the MI-FSAP as a diagnostic tool to predict 
the development of postangioplasty restenosis. 
Application of FSAP may represent a novel 
therapeutic approach to prevent restenosis.

RESULTS AND DISCUSSION

Isolation and characterization of MI-FSAP 

and its comparison with WT-FSAP

The reduced ability of MI-FSAP to activate 
pro-uPA (7) was used to screen 1,000 subjects 
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for the homozygous MI genotype. Genomic DNA was se-
quenced to confi rm the MI homozygous genotype in a sin-
gular subject (Fig. S1, available at http://www.jem.org/cgi/
content/full/jem.20052546/DC1), and MI-FSAP was iso-
lated and compared with WT-FSAP prepared under identical 
conditions. The size and immunoreactivity of both isoforms 
were identical as was the autocatalytic conversion of the 
 single-chain form into the two-chain form (Fig. S2, available 
at http://www.jem.org/cgi/content/full/jem.20052546/DC1). 
Chymotrypsin digestion followed by matrix-assisted laser de-
sorption time of fl ight spectroscopy (MALDI-TOF) analysis 
showed that there was an alteration in the molecular weight 
of a peptide caused by the amino acid diff erence G534E 
(Fig. S3, available at http://www.jem.org/cgi/content/full/
jem.20052546/DC1). With purifi ed proteins we could con-
fi rm that MI-FSAP had reduced proteolytic activity toward 
its direct chromogenic substrate (Fig. 1 A). WT- and MI-
FSAP had a Vmax of 10,577 ± 2,103 and 3,917 ± 848 
μmole/min/mg enzyme and a Km of 40 ± 27 and 27 ± 4 μM, 
respectively. Pro-uPA activation was also weaker with MI-
FSAP compared with WT-FSAP (Fig. 1 B). Heparin and 
PDGF-BB binding characteristics were identical for WT- 
and MI-FSAP (Fig. 1, C and D). FSAP cleaved PDGF-BB, 
and this was observed only under reducing conditions but 
not under nonreducing conditions (Fig. 1 E). 125I–PDGF-BB 
was also cleaved by WT-FSAP to a limited extent, and under 
reducing conditions, smaller molecular weight bands were 
observed (Fig. 1 F). The rate of cleavage by WT-FSAP was 
much faster than by MI-FSAP (Fig. 1 F). Native PDGF-BB 
cleavage was observed after 15 min at a ratio of protease to 
PDGF-BB of 3:1 (Fig. S3). In our previous report, we only 
used nonreducing conditions and hence this cleavage was not 
observed (8). In conclusion, the alteration of an amino acid in 
the serine protease domain of MI-FSAP resulted in a loss of 
proteolytic activity, whereas the binding characteristics were 
unchanged. PDGF-BB is specifi cally cleaved and inactivated 
by WT-FSAP to a greater extent than by MI-FSAP.

Endogenous FSAP in the injured vessels

In Western blots, an anti–mouse FSAP antibody could detect 
FSAP in mouse plasma in its single-chain form, FSAP inhibi-
tor complexes, and degradation products after autoactivation 
with polyanions (Fig. 2 A, left). These results indicate that 
there is a substantial amount of FSAP in mouse plasma. Mouse 
FSAP was also detected in 293 cells transfected with the active 
site mutant H399F-FSAP by Western blotting and by immu-
nocytochemistry (Fig. 2, A and B). Only a faint scattered 
staining was observed with an anti–mouse FSAP antibody in 

Figure 1. Enzymatic and binding properties of WT- and MI-FSAP. 

(A) WT- and MI-FSAP (0.33 μg/ml each) were incubated with increasing 

concentrations of the chromogenic substrate (H-D-Ile-Pro-Arg-pNA) in 

the presence of heparin (10 μg/ml), and the maximal velocity (MaxV) 

was measured in a kinetic plate reader (mean ± SD of triplicate wells).

(B) Pro-uPA activation (MaxV) was measured, as described previously (3), 

in the presence of increasing concentrations of WT- and MI-FSAP in the 

presence of heparin. (C) Indicated concentrations of FSAP were immobi-

lized, and biotinylated heparin-BSA (0.5 μg/ml) was used as a ligand and 

its binding was detected with streptavidin-coupled peroxidase (mean ± SD 

of triplicate wells). (D) PDGF-BB (1 μg/ml) was immobilized, and FSAP 

(0.5 μg/ml) was used as a ligand in the absence or presence of heparin 

(10 μg/ml) and its binding was detected with anti-FSAP antibody (mean 

± SD of triplicate wells). (E) Mixtures of FSAP (or PPACK-FSAP) (10 μg/ml), 

buffer control, heparin (10 μg/ml), PDGF-BB (1 μg/ml), and aprotinin 

(15 μg/ml) were incubated for 1 h at 37°C, and Western blot was performed 

with an anti–PDGF-BB antibody under reducing or nonreducing conditions. 

(F) 125I–PDGF-BB was incubated with WT- or MI-FSAP in the presence of 

heparin, and after SDS-PAGE under reducing conditions autoradiography 

was performed. The effect of different concentrations of FSAP was 

examined at the 60-min time point (top), and the time course (bottom) 

was analyzed at FSAP concentration of 1 μg/ml.
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the media of normal arteries (Fig. 2 C, top left). In the devel-
oping neointima of mechanically injured vessels, there was 
generally more staining (Fig. 2 C, bottom right). Under iden-
tical conditions, intense staining was observed in the liver, 
which is the primary source of FSAP expression in the mouse 
(Fig. 2 C, top right). No FSAP mRNA transcripts could be 
detected in femoral or carotid arteries, monocytes, or VSMCs, 
but high levels were found in mouse liver (Fig. S4, available at 
http://www.jem.org/cgi/content/full/jem.20052546/DC1). 
Hence, FSAP in the vasculature, when present, seems not to 
be produced locally but is derived from the circulation. In 
normal human arteries, there was no FSAP immunostaining; 
however, in human atherosclerotic plaques there were foci of 
FSAP immunostaining in regions of macrophage- and VSMC-
derived foam cells and less FSAP was present in medial VSMCs 
(8). Hence, there are some parallels but also diff erences in the 
staining pattern of FSAP in mouse and human arteries.

Application of exogenous human FSAP to the injured vessels

To investigate the eff ect of FSAP on neointima formation, it 
was applied to injured arteries in a gel to attain high, sustain-
able, local concentrations. Before application of FSAP in the 
thermosensitive pluronic F-127 gel to mechanically injured 
arteries, the stability and diff usibility of FSAP was analyzed in 
vitro and in vivo. There was a slow sustained release of intact 
FSAP from the pluronic F-127 gel over a period of 24 h in 
vitro (Fig. 2 D, supernatant). FSAP released from the gel was in 
the active two-chain form (Fig. S5, available at http://www.
jem.org/cgi/content/full/jem.20052546/DC1). Maximal re-
lease was at �24 h, a time frame where initiation of early 
events takes place that trigger the process of neointima for-
mation. When applied abluminally to mouse arteries in vivo, 
most of the FSAP was released from the gel within 1 h. No 
FSAP inhibitor complexes were observed in the gel in vivo 

Figure 2. Release, activation, and localization of exogenously 

applied human FSAP and endogenous mouse FSAP. (A) Mouse plasma 

with and without polyinosinic-polycytidylic acid (11) (50 μg/ml) (poly-

anions) was subjected to precipitation with acetic acid (left). HEK-293 

cells were transfected with vector (pIRESpuro3) alone or vector encoding 

mouse FSAP (H399F), and the conditioned medium was collected (right). 

These samples were analyzed by Western blotting with an anti–mouse 

FSAP antibody. (B) For immunofl uorescence analysis HEK-293 cells were 

transfected with an empty vector or that encoding mouse FSAP and were 

stained with an anti–mouse FSAP antibody. (C) Mice were killed after 7 or 

21 d after wire-induced injury of the femoral artery. Contralateral vessel 

and liver were also excised for analysis. Immunofl uorescence analysis for 

mouse FSAP was performed with an anti–mouse FSAP antibody, and nu-

clei were stained with DAPI. There was no immunostaining reaction with 

the negative control antibody. (D) FSAP was added to pluronic F-127 gel 

in PBS at 4°C, and then the mixture was shifted to 37°C in order for it to 

gel, and it was covered with a buffer. The supernatants and the pluronic 

gels were removed at the indicated times and analyzed for human FSAP 

using a combination of mouse monoclonal antibodies against the light 

(mAb 677) and heavy chain (mAb 1189) of FSAP. Pluronic F-127 gel infl u-

ences the migration properties of proteins in SDS-PAGE and gives rise to 

artifacts as indicated in the fi gure. (E) FSAP (1 μg) was added to 100 μl 

pluronic F-127 gel in PBS at 4°C, and then the mixture was applied to a 

mouse artery in situ in vivo. At the indicated times, the pluronic gel was 

recovered and analyzed for the presence of human FSAP by Western blot-

ting using biotinylated mAb 1189. (F) After injury, 100 μl of pluronic F-127 

was applied, either with FSAP (1 μg) or buffer control. The mice were 

killed after 12 h, 48 h, or 21 d. Control sections were from the respective 

contralateral artery. Immunofl uorescence analysis for human FSAP was 

performed with directly labeled anti–human FSAP mAb 677.
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(Fig. 2 E). There was a complete resorption of the gel af-
ter 24–48 h. In contrast, application of intravenous FSAP 
lead to the formation of complexes with inhibitors present 
in the plasma (Fig. S6, available at http://www.jem.org/
cgi/ content/full/jem.20052546/DC1). Immunofl uorescence 
analysis of injured arteries indicated that the exogenously 
applied human FSAP was released from the gel and associated 
with the vasculature because there was increased FSAP im-
munoreactivity in vessels after 12 and 48 h. Nontreated vessels 
showed virtually no immunoreactivity (Fig. 2 F). The mono-
clonal antibody (mAb 677) used for these experiments did not 
cross-react with mouse FSAP. Hence, active two-chain FSAP 
was constantly released from the gel, and it was present at a 
crucial phase of the initiation of neointima formation (9). The 
abluminally applied exogenous FSAP may be more eff ective 
compared with its endogenous circulating counterpart, be-
cause it is relatively protected against endogenous protease 
inhibitors present in the plasma and may diff use more easily 
into the vessel wall.

Comparison of MI-FSAP and WT-FSAP in cell proliferation, 

p42/44 mitogen-activated protein kinase phosphorylation, 

and neointima formation

The infl uence of WT-FSAP on neointimal thickening, after 
direct application to the denuded artery in a thermosensitive 
gel, was determined 3 wk after injury. FSAP application led 
to a dose-dependent decrease in the intima to media ratio 
(Fig. 3 A), and maximal inhibition (�70%) was achieved at 
0.5–1 μg FSAP per mouse. FSAP application did not infl u-
ence the medial area, but only the intimal area was reduced 
(Fig. S7, available at http://www.jem.org/cgi/content/full/ 
jem.20052546/DC1). Because the in vitro inhibitory eff ect 
of FSAP on VSMCs was neutralized after protease inacti-
vation (8), we used the active site–inhibited Phe-Pro-Arg- 
chloromethylketone (PPACK)-FSAP (Fig. S8, available at 
http://www.jem.org/cgi/content/full/jem.20052546/DC1) 
for comparison. PPACK-FSAP did not inhibit neointima 
formation (Fig. 3 A). Because FSAP was applied locally to the 

Figure 3. Comparison of WT- and MI-FSAP on DNA synthesis, 

p42/p44 MAPK phosphorylation, and neointima formation. (A) After 

injury, 100 μl of pluronic F-127 was applied to each artery either containing 

human single-chain FSAP (0.2, 0.5, 1 μg), buffer, or PPACK–two-chain FSAP 

(1 μg). The intima to media ratio is indicated (mean ± SD, n = 6 mice).

*, P < 0.05; n.s., lack of signifi cant difference compared with control. (B) In 

the hematoxylin and eosin (H&E)-stained sections, an open arrow indicates 

the internal elastic lamina and a fi lled arrow indicates the external elastic 

lamina. The neointima is indicated with the character “N”. α-Smooth mus-

cle actin was detected with a directly Cy3-conjugated mAb (red) and vWF 

was stained with a FITC-conjugated secondary antibody (green), both with 

DAPI counterstaining. PCNA was stained brown with a biotin-streptavidin-

peroxidase system. (C) After injury, pluronic gel containing either buffer, 

WT-FSAP, or MI-FSAP (1 μg) was applied, and neointima formation was 

determined (mean ± SD, n = 6 mice). *, P < 0.05; n.s., lack of signifi cant 

difference compared with control. (D) DNA synthesis (depicted as absorb-

ance [mean ± SD of triplicate wells]) in VSMCs was analyzed in the ab-

sence (white bars) or presence (grey bars) of 20 ng/ml PDGF-BB and either 

control buffer, WT-FSAP, or MI- FSAP (10 μg/ml) in the presence of heparin 

(10 μg/ml). (E) Mixtures in the absence (−) or presence (+) of PDGF-BB 

(20 ng/ml) and either no further addition, buffer control, WT-FSAP, or 

MI-FSAP (10 μg/ml) in the presence of heparin (10 μg/ml) were preincubated 

for 1 h at 37°C in serum-free medium and then added to the cells for 15 min. 

Western blotting was performed to detect phosphorylated MAPK p42/p44 

(top) and total MAPK (middle). Optical density was determined to estimate 

the extent of p42/p44 MAPK phosphorylation expressed as a ratio of 

phosphorylated to nonphosphorylated MAPK (bottom).
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tions are further regulated by the local protease inhibitors. 
Active FSAP could inhibit VSMC proliferation and migration 
and vascular lesion formation by inhibiting the PDGF-BB. 
Several investigations have indicated that PDGF-BB inhibi-
tion alone may be suffi  cient to inhibit neointimal growth (13). 
Therapeutic application of FSAP may represent a novel ap-
proach to prevent vascular proliferative disease such as restenosis. 
The information that the MI isoform of FSAP exhibits altered 
proteolysis of PDGF-BB provides a direct mechanistic link 
to vascular lesion formation in patients that harbor this 
 polymorphism. Because MI polymorphism is present in 5% of 
the European population, our results provide a rationale for 
the development of MI as a risk predictor in restenosis.

MATERIAL AND METHODS
Materials. The isolation of FSAP from human plasma, polyclonal antibody, 

and monoclonal antibodies to human FSAP, preparation of active site–

inhibited PPACK-FSAP, and the conversion of single-chain latent FSAP into 

the two-chain active form and their characterization has been described pre-

viously (8). Rabbit polyclonal antibody to mouse FSAP was raised using the 

NH2-terminal peptide (S L M S F I A P P D C ) as an antigen. The species specifi city 

of anti–human FSAP and anti–mouse FSAP was determined by Western 

injured artery, we hypothesize that FSAP diff uses into the ar-
tery and thereby mediates its inhibitory eff ect rather than 
having a more systemic mode of action. This was investigated 
by applying FSAP to the contralateral uninjured artery and 
not directly to the denuded artery. Distant application of 
FSAP on the contralateral artery was ineff ective in reducing 
the intima to media ratio (Fig. S7), indicating a local mode of 
action of FSAP.

The immunofl uorescence staining of α-smooth muscle 
actin (Fig. 3 B, red) was signifi cantly reduced in FSAP-treated 
vessels compared with controls. The extent of staining cor-
related with the degree of neointimal thickening, indicat-
ing that FSAP inhibits the accumulation of VSMCs in the 
neointima. Reendothelialization of vessels after injury was 
not infl uenced by FSAP (Fig. 3 B, green; Fig. S7 D). FSAP 
signifi cantly reduced the number of proliferating cell nuclear 
antigen (PCNA; or Ki76)-positive cells in the neointima and 
media by 70% (Fig. 3 B, brown; Fig. S7 D). Injury-induced 
apoptosis was not modulated by FSAP (Fig. S9, available at 
http://www.jem.org/cgi/content/full/jem.20052546/DC1). 
Hence, the proteolytic activity of FSAP is required for in-
hibition of cell proliferation in vivo and the associated neo-
intima formation.

In the vascular injury model, there was no substantial in-
hibition of neointima formation with MI-FSAP (Fig. 3 C). 
In vitro, PDGF-stimulated DNA synthesis was inhibited 
strongly by WT-FSAP, but the inhibition by MI-FSAP was 
much weaker (Fig. 3 D). Similarly, PDGF-BB–stimulated 
phosphorylation of p42/p44 mitogen-activated protein  kinase 
(MAPK) (extracellular signal-regulated kinase) was inhibited 
by WT-FSAP but not by MI-FSAP (Fig. 3 E). The residual 
proteolytic activity in MI-FSAP accounts for the partial inhi-
bition of PDGF-BB in very sensitive assays such as DNA 
synthesis and MAPK phosphorylation (Fig. 3 D, and E), but the 
consequences of this proteolysis are not apparent in the 
relatively insensitive neointima formation model (Fig. 3 C). 
Hence, only WT-FSAP but not MI-FSAP seems to inhibit 
VSMC activation and neointima formation.

FSAP did not inhibit DNA synthesis or phosphorylation 
of p42/p44 MAPK induced by insulin-like growth factor 
(IGF)-1, thrombin, sphingosine-1-phosphate (S1P), TGF-β, 
basic fi broblast growth factor (bFGF), or hepatocyte growth 
factor (HGF) (Fig. 4). If at all, the eff ect of some of these 
growth factors was stronger in the presence of FSAP in ac-
cordance with previously published results on fi broblasts (10). 
Thus, PDGF-BB is the only growth regulator that is specifi -
cally cleaved and inhibited by WT-FSAP but not MI-FSAP. 
Hence, this diff erence might be central to their distinct ef-
fects on VSMC proliferation and neointima formation.

Conclusions

FSAP is not produced locally in the vasculature but is taken 
up from the circulation. The inactive zymogen is activated by 
polyanions such as heparin, hyaluronans, and nucleic acids 
(11) that are released as a consequence of vascular injury or 
during the process of remodeling (12). Once activated, its ac-

Figure 4. Effect of FSAP on growth factor–induced DNA synthesis 

and phosphorylation of MAPK in VSMCs. (A) PDGF-BB (20 ng/ml), IGF-1 

(100 ng/ml), thrombin (1 U/ml), S1P (200 nM), TGF-β (20 ng/ml), bFGF 

(50 ng/ml), and FCS (10% vol/vol) were preincubated with single-chain 

FSAP (10 μg/ml) (hatched bars) or vehicle (dotted bars) in the presence of 

heparin (25 μg/ml) for 60 min at 37°C and then added to serum-starved 

VSMCs. The extent of DNA synthesis was determined (mean ± SD of trip-

licate wells). (B) PDGF-BB, bFGF, IGF-1, TGF-β, bFGF, S1P, and HGF (20 ng/ml) 

were preincubated with FSAP (10 μg/ml) in the presence of heparin 

(25 μg/ml) for 60 min at 37°C and then added to serum-starved VSMCs 

for 15 min. The extent of phosphorylation of p42/p44 MAPK was deter-

mined by Western blotting. The top panel represents phosphorylated 

MAPK, and the bottom panel represents total MAPK.
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blotting and immunofl uorescence analysis of human-FSAP– and mouse-

FSAP–transfected 293 cells. Pluronic F-127 was from Sigma-Aldrich.

Mouse femoral artery injury model of neointimal hyperplasia. 

Experiments were performed on C57/BL6 mice (six mice per treatment 

group) according to local ethical guidelines based on procedures described 

by Sata et al. (9). Immediately after dilatation, the artery was covered in 100 μl 

of a thermosensitive polymer (pluronic F-127 gel; Sigma-Aldrich) contain-

ing the test substances. The mice were killed by intraperitoneal administra-

tion of an overdose of Nembutal at the time points indicated (after 12 h, 

48 h, or 3 wk). At death, the mice were perfused via the left ventricle with 

0.9% (wt/vol) NaCl solution followed by perfusion fi xation with 2% (wt/

vol) paraformaldehyde in PBS (pH 7.4). The femoral artery was excised, 

postfi xed in 2% (wt/vol) paraformaldehyde for 30 min, and embedded in 

Tissue Tek OCT embedding medium (Miles Laboratories), snap frozen, and 

stored at −80°C.

Immunohistochemistry and morphometry. The whole artery was cut 

in 6-μm serial sections, and six sections per artery from regular intervals 

were fi xed with acetone and stained with hematoxylin and eosin. For 

 morphometric analysis, KS300 software (Carl Zeiss MicroImaging, Inc.) was 

used to measure external elastic lamina, internal elastic lamina, lumen cir-

cumference, and medial and neointimal area. For immunohistochemistry, 

slides were fi xed in acetone (except for mouse FSAP analysis where paraform-

aldehyde was used), preincubated with 10% normal goat serum, and then 

 incubated with antibodies against von Willebrand factor (vWF;  Dako) or 

mouse FSAP. Ensuing incubations were performed with Cy5- or Cy3-

coupled secondary antibodies. Monoclonal antibodies to human FSAP (mAb 

677) and smooth muscle α-actin (Dako) were labeled directly with Alexa 

488 or Cy3, respectively (Molecular Probes). Immunostaining for PCNA 

was performed by using a PCNA staining kit (Zymed Laboratories) with 

nuclear DAPI (Linaris) counterstain and analyzed under fl uorescence/light 

microscopy. Negative controls were conducted by substituting the primary 

antibody through an appropriate species and isotype-matched control anti-

body. Reendothelialization (luminal circumference staining positive for 

vWF) was quantifi ed using a scale from 0 (no staining) to 6 (complete stain-

ing of luminal circumference). Six sections per artery from regular intervals 

were evaluated from six mice per group.

Identifi cation of a subject with MI homozygote genotype, isolation, 

and characterization of FSAP. Because MI-FSAP has reduced ability to 

activate pro-uPA, we used an ELISA to screen for reduced FSAP activity in 

plasma. Activity was determined with the direct chromogenic substrate 

H-D-Ile-Pro-Arg-pNA (Chromogenix) and pro-uPA activation with the 

chromogenic substrate pyro-Glu-Gly-Arg-pNA (Chromogenix) and FSAP 

antigen levels described previously (7). From the pool of 1,000 subjects, a 

45-yr-old female with a history of bleeding tendency was found to have 

normal FSAP antigen levels but no pro-uPA–activating potential. The 

bleeding tendency was likely to be caused by a concomitant vWF defect. 

Sequencing of the exon XIII of FSAP from the genomic DNA indicated 

that the subject was homozygous for the MI genotype. With respect to the 

second single nucleotide polymorphism, Q379E, the subject was heterozy-

gous (7). Plasma from this subject was purifi ed over an anti-FSAP antibody 

column, and the purifi ed protein was analyzed by electrophoresis, Western 

blotting, pro-uPA activation tests, enzymatic activity assays, peptide fi nger 

printing, and MALDI-TOF.

Western blotting and immunofl uorescence analysis of mouse and 

human FSAP. Single-chain FSAP (10 μg/ml) and 25% (wt/vol) pluronic 

127 gel were allowed to solidify for 30 min at 37°C. Thereafter, an equal 

volume of serum-free DMEM was added to the solidifi ed gel. At the indi-

cated times (5 s to 24 h), the buff er and the solidifi ed gel were separated and 

mixed with SDS sample buff er and boiled. For the analysis of FSAP the samples 

were either nonreduced or reduced with β-mercaptoethanol (10%, vol/vol). 

For Western blot analysis of human FSAP a mixture of two monoclonal 

 antibodies, raised against FSAP (mAb677 against the light chain and mAb1189 

against the heavy chain), was used as described previously (8). In vivo  analysis 

of FSAP release from gel was investigated by placing the FSAP gel mix 

 directly on the arteries in situ for the indicated times.

Mouse plasma with and without activation by polyanions and superna-

tants from HEK-293 cells transfected with an empty vector (pIRESpuro3) 

or that encoding mouse FSAP (H399F) was analyzed by Western blotting 

using the mouse-FSAP–specifi c antibody after euglobin precipitation with 

acetic acid (10 mM). For immunofl uorescence analysis HEK-293 cells were 

transfected and after 48 h cells were fi xed with paraformaldehyde, permeabi-

lized, and stained with a mouse FSAP-specifi c antibody.

DNA synthesis assay. DNA synthesis assays were based on the uptake of 

BrdU during S-phase and quantitative binding of a monoclonal anti-BrdU 

antibody (Roche Diagnostics). Mouse VSMCs were cultivated for 2 d in a 

96-well microtiterplate (Nunc). Subsequently, the cells were cultivated in 

serum-free medium for 1 d. Thereafter, the medium was exchanged against 

serum-free DMEM containing 0.1% FCS (vol/vol), and test substances were 

added as indicated in the Fig. 3 D and Fig. 4 A legends and the incorporation 

of BrdU was determined.

Phosphorylation of MAPK p42/p44. VSMCs were prepared as for DNA 

synthesis assays and then stimulated for 15 min with the appropriate agonist 

mixture. The experiments were stopped by adding SDS sample buff er con-

taining 1 mM orthovanadate, and the samples were processed for Western 

blotting. Detection of the phosphorylated forms of MAPK p42 and p44 

(MAPK-p42/p44) was performed with an antibody against MAPK-p42/p44 

(New England Biolabs, Inc.). Total MAPK was also determined to show no 

quantitative changes in the amount of total cellular MAPK (New England 

Biolabs, Inc.).

Cleavage of PDGF-BB by FSAP and binding of FSAP to heparin 

or PDGF-BB. PDGF-BB (1 μg/ml) was incubated with FSAP (10 μg/ml) 

or PPACK-FSAP or control buff er in Tris, pH 7.4, 100 mM NaCl, 2 mM 

CaCl2 for 1 h at 37°C in the absence or presence of heparin (10 μg/ml) or 

aprotinin (10 μg/ml) as indicated in Fig. 1 E, and the reaction was stopped 

with SDS sample buff er. Western blots were performed under reducing 

(β-mercaptoethanol, 10%, vol/vol) or nonreducing conditions, and PDGF-

BB was detected. Alternatively, experiments were performed with 125I–

PDGF-BB (GE Healthcare), and cleavage was followed by SDS-PAGE and 

autoradiography. PDGF-BB was immobilized in a Maxisorp microtiter 96-

well plate (Nunc) at a concentration of 1 μg/ml (50 μl solution) overnight 

at 4°C in 50 mM NaHCO3 buff er, pH 9.6. The plate was blocked with 3% 

(wt/vol) BSA in Tris, pH 7.4, 100 mM NaCl. FSAP (0.5 μg/ml) in the 

presence or absence of heparin (10 μg/ml) was added to the wells with 0.3% 

(wt/vol) BSA for 2 h at 22°C. After extensive washing, bound FSAP was de-

tected with a mAb followed by peroxidase-linked secondary antibody. 

Binding of biotinylated heparin-albumin conjugate to immobilized FSAP 

was performed in a similar manner. The binding of ligands to BSA-coated 

wells was used as a blank in all the experiments and was subtracted to obtain 

specifi c binding.

Statistical analysis. For the studies with experimental animals the data be-

tween the study groups were analyzed by ANOVA followed by pair-wise 

comparison with Fisher’s least signifi cant diff erence test. All calculations 

were made with the Statgraphics plus statistical package (Manugistics).

Online supplemental material. Fig. S1 shows the determination of the 

genotype of diff erent subjects with respect to the single nucleotide polymor-

phism G534E. Fig. 2 shows a biophysical characterization of purifi ed WT- 

and MI-FSAP. Fig. 3 shows a characterization of FSAP-mediated cleavage of 

PDGF-BB. Fig. 4 displays an analysis of FSAP mRNA by RT-PCR in 

mouse vascular cells and tissue. Fig. 5 displays the release and activation of 

FSAP from pluronic gel. Fig. 6 shows a characterization of human FSAP 

in mouse plasma. Fig. 7 shows the infl uence of FSAP on neointima forma-

tion in the mouse femoral artery after wire-induced injury. Fig. 8 shows a 
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 characterization of PPACK-FSAP. Fig. 9 displays the infl uence of FSAP on 

apoptosis in the mouse femoral artery after wire-induced injury. Figs. S1–S9 

are available at http://www.jem.org/cgi/content/full/jem.20052546/DC1.
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