
Proc. Natl. Acad. Sci. USA
Vol. 95, pp. 8945–8950, July 1998
Neurobiology

Spatiotemporal imaging of human brain activity using functional
MRI constrained magnetoencephalography data: Monte
Carlo simulations

(electroencephalographyybrain mappingyinverse problemybiomagnetic)

ARTHUR K. LIU, JOHN W. BELLIVEAU, AND ANDERS M. DALE*
Massachusetts General Hospital NMR Center, Building 149, Room 2301, 13th Street, Charlestown, MA 02129

Communicated by Marcus E. Raichle, Washington University School of Medicine, St. Louis, MO, May 6, 1998 (received for review
August 15, 1997)

ABSTRACT The goal of our research is to develop an
experimental and analytical framework for spatiotemporal
imaging of human brain function. Preliminary studies suggest
that noninvasive spatiotemporal maps of cerebral activity can
be produced by combining the high spatial resolution (milli-
meters) of functional MRI (fMRI) with the high temporal
resolution (milliseconds) of electroencephalography (EEG)
and magnetoencephalography (MEG). Although MEG and
EEG are sensitive to millisecond changes in mental activity,
the ability to resolve source localization and timing is limited
by the ill-posed ‘‘inverse’’ problem. We conducted Monte
Carlo simulations to evaluate the use of MRI constraints in a
linear estimation inverse procedure, where fMRI weighting,
cortical location and orientation, and sensor noise statistics
were realistically incorporated. An error metric was computed
to quantify the effects of fMRI invisible (‘‘missing’’) sources,
‘‘extra’’ fMRI sources, and cortical orientation errors. Our
simulation results demonstrate that prior anatomical and
functional information from MRI can be used to regularize
the EEGyMEG inverse problem, giving an improved solution
with high spatial and temporal resolution. An fMRI weighting
of approximately 90% was determined to provide the best
compromise between separation of activity from correctly
localized sources and minimization of error caused by missing
sources. The accuracy of the estimate was relatively indepen-
dent of the number and extent of the sources, allowing for
incorporation of physiologically realistic multiple distributed
sources. This linear estimation method provides an operator-
independent approach for combining information from fMRI,
MEG, and EEG and represents a significant advance over
traditional dipole modeling.

The ultimate goal of our research is to characterize in both
space and time areas of the brain participating in a given task
or behavior. The integration of the spatial and temporal
domains represents a unique challenge because of the exis-
tence of anatomically distinct processing regions that commu-
nicate across several time scales. Within the last decade, a
number of different techniques have been described for non-
invasively measuring human brain activity (1–8). These can be
broadly classified into either hemodynamicymetabolic or elec-
tromagnetic measurements. Current hemodynamic measure-
ments, particularly functional MRI (fMRI), provide excellent
spatial resolution (millimeters) but are temporally limited by
the latency of the hemodynamic response (seconds) (9, 10).
Conversely, electroencephalography (EEG) and magnetoen-
cephalography (MEG) provide excellent temporal resolution

(milliseconds) but uncertain spatial localization, as discussed
below (11, 12). Our hypothesis is that improved spatiotemporal
maps can be obtained by combining information from both
types of measurements (13–18). We previously have described
a general mathematical framework for combining EEGyMEG
with anatomical MRI and fMRI data (15). Here, Monte Carlo
simulation studies were used to evaluate the accuracy of this
method, under a variety of realistic conditions.

Localization of neuronal activity within the brain, based on
external measurement of the electric potential (EEG) andyor
the magnetic field (MEG), requires the solution of two sepa-
rate, but related, problems. The ‘‘forward problem’’ of calcu-
lating the electric potential and magnetic field outside the
head, given the conductive current source distribution within
the head and the individual conductive properties of the
tissues, is a well-defined problem, governed by the quasi-static
limit of Maxwell’s equations (11, 19, 20). In contrast, the
‘‘inverse problem’’ of determining the spatial distribution of
current sources inside the head, based solely on external
electric andyor magnetic measurements, is fundamentally ill-
posed (21). That is, for any set of instantaneous EEG andyor
MEG measurements, there are infinitely many current source
distributions within the head that are consistent with those
recordings. Thus, to solve the electromagnetic inverse problem
one must place some constraints on the otherwise infinite
solution space.

Historically, the most common approach to the inverse
problem has been to assume that the electric and magnetic
measurements are generated by a given (small) number of
focal sources, each of which can be modeled as a single fixed
or moving dipole. The locations, orientations, and strengths of
these ‘‘equivalent current dipoles’’ (ECDs) then can be esti-
mated by fitting these parameters using the electric andyor
magnetic measurements (22). This fitting involves a multidi-
mensional, nonlinear optimization. A disadvantage of this
approach is that the time required to solve this optimization
problem grows exponentially with the number of ECDs, and
thus the global optimum can be found only for models
involving a small number of ECDs. For models involving larger
numbers of ECDs, approximate techniques have to be used,
where the solution found depends on the initial estimate of the
locations and orientations of the dipoles. A potential problem
with all ECD-based methods is that the solution depends
strongly on the number of assumed dipoles. Although tech-
niques have been proposed for estimating the model order
(23–25), the actual number of dipoles generally cannot be
determined a priori.
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A number of other approaches have been proposed to
overcome the assumption of focal sources inherent in the
ECD-based methods. These take advantage of the fact that if
the locations of all possible sources are known a priori, the
problem of determining the strength of each dipole (or dipole
component) is a linear one. Because the number of possible
source locations is, in general, much larger than the number of
sensors, this is an underdetermined problem. One common
method for solving such underdetermined linear problems is to
choose the solution with the least power, also known as the
minimum-norm (Moore-Penrose pseudoinverse) solution
(26). These linear approaches have certain advantages, includ-
ing statistical properties that are well-known and easily char-
acterized. Importantly, the continuous current source model
readily allows for the incorporation of fMRI data and is more
biologically plausible than the discrete current dipole model.

Although mathematically convenient, the constraints im-
posed on the inverse solution by the above procedures are not
based on the actual underlying brain physiology and anatomy.
Fortunately, today a great deal is known about the anatomy
and functional properties of the brain. For example, empirical
and theoretical evidence suggests that the majority of the
observed electromagnetic signals arise from the cortical gray
matter, specifically the apical dendrites of the cortical pyra-
midal cells. These neurons have a columnar organization,
oriented perpendicular to the cortical sheet (11, 20). Thus, if
the shape of the cortical sheet is known, this information can
be used to constrain the locations and orientations of the
cortical sources. Furthermore, there is considerable evidence,
including optical experiments in monkeys (27) and direct
cortical grid mapping comparisons with fMRI in patients
(28–32), for a close coupling between local hemodynamic
response and the underlying neuronal activity. These findings
suggest the use of both anatomical information and functional
information from MRI as constraints on the bioelectromag-
netic inverse problem.

Modeling studies described herein provide a rational basis
for the proper inclusion of these MRI constraints. Our simu-
lations use an anatomically constrained linear estimation
approach that explicitly incorporates fMRI information as an
a priori spatial estimate of activity (15). An optimal linear
inverse operator is computed, which maps the external elec-
tromagnetic field measurements into an estimated distribution
of dipole strength across the cortical surface.

Although the MRI constraints have a sound physiological
basis, one can foresee situations in which the anatomic,
hemodynamic, and electromagnetic measurements might dif-
fer. These ‘‘mis-specifications’’ between EEGyMEG and MRI
measurements can be divided into two broad categories, which
we refer to as fundamental and experimental. Fundamental
mis-specifications can arise because EEGyMEG and fMRI
measure physically different aspects of brain function. There-
fore, it is possible that areas deemed active by fMRI produce
no observable electromagnetic signal (extra sources); con-
versely, some electromagnetically active sources might not be
detected by fMRI (missing sources). Additionally, the precise
location and extent of the observed fMRI areas might differ
from those of the corresponding electromagnetic sources.
Experimental mis-specifications refer to measurement or es-
timation errors that can be corrected, at least in theory. Such
errors might include misregistration between the EEGyMEG
and fMRI coordinate systems, incorrect estimates of the physical
parameters of the realistic head model used in the forward
solution, and errors in the reconstructed cortical surface.

Through the use of Monte Carlo simulations we have
investigated the effects of some of these potential mis-
specifications on our linear estimation inverse calculation.
Errors caused by possible fundamental mis-specifications are
of particular interest, because they cannot be corrected by
better measurement methods.

METHODS

Forward Solution. In the typical frequency range of neural
activity, the electric and magnetic fields of the brain can be
accounted for by the quasistatic limit (negligible inductive and
capacitive effects) of Maxwell’s equations (19, 20). This results
in a linear relationship between the electromagnetic record-
ings and the sources at any location in the brain. We can
express the forward solution in simple vector notation:

x 5 As 1 n, [1]

where x is the vector of instantaneous electric andyor magnetic
recordings, A is the so-called gain matrix (with each column
specifying the electric andyor magnetic forward solution for a
given dipole component), s is a vector of dipole component
strengths, and n is a vector specifying the noise at each
electrodeysensor. The elements of A are complicated nonlin-
ear functions of the sensor locations and the geometry and
conductive properties of the head. Historically, the gain matrix
has been calculated by assuming an idealized head shape,
typically multiple concentric spheres of different conductivi-
ties. However, recent advances in numerical techniques, com-
puter technology, and high-resolution MRI have made it
practical to compute the forward solution for a more realistic
nonspherical head that is customized to each individual sub-
ject’s anatomy.

In these model studies, we used conductivity boundaries and
cortical surfaces determined from the MRI anatomy of a
normal volunteer using the technique described by Dale and
Sereno (15). For calculation of the forward solution, the
cortical surface is tiled with approximately 5,600 vertices. The
standard sensor geometry of the 122-channel Neuromag (Hel-
sinki, Finland) MEG system (33) was used. We have adapted
a realistic boundary element method for calculating the for-
ward solutions (34, 35).

The EEG forward solution computation requires the spec-
ification of boundaries between brain cerebro spinal f luid and
skull, skull and scalp, and scalp and air, and the relative
conductivities of each of those regions. The MEG forward
solution, on the other hand, has been shown to require only the
inner skull boundary to achieve an accurate solution (12, 36).

In these model studies we evaluated the results only for the
MEG case. The biomagnetic sources were constrained to be
within the cortical gray matter. Each possible source location was
represented either by three orthogonal current dipoles placed at
that location (i.e., no cortical orientation constraint) or by a single
current dipole oriented normal to the cortical surface.

Inverse Solution. There are various derivations for the linear
inverse operator used here. Minimization of expected error
(37), Bayesian estimation (38), Tichonov regularization (39),
and the generalized Wiener filter (40) all result in an equiv-
alent inverse operator (W):

W 5 RAT~ARAT 1 C!21, [2]

where C is the covariance matrix of n, and R is the a priori
covariance matrix estimate for s from Eq. 1 (15). W is a linear
operator that maps a recording vector x into an estimated
solution vector ŝ. Note that if both C and R are set to a scalar
multiple of the identity matrix then this approach reduces to
the well-known minimum-norm solution (11, 26). This ap-
proach provides a convenient framework for incorporating
information from fMRI into the inverse problem.

Our working hypothesis is that there is a positive correlation
between local electricymagnetic activity and local hemody-
namic response over time. Because the diagonal elements of
the matrix R encode the prior estimates of dipole strength
variance (power) over time at each location i, that is, Rii 5 si

2,
we can incorporate this assumption by making each diagonal
element Rii a monotonically increasing function of the corre-
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sponding fMRI activation. Large values indicate those loca-
tions that are more likely to be active and small values indicate
locations that are less likely to be active. Setting Rii to zero
effectively precludes any activity at location i.

If one had knowledge of the correlation of activity between
different sources, say locations i and j, such information could
be incorporated through the off-diagonal elements of the R
matrix, by setting Rij 5 ^sisj& 5 sisjcorr(i,j).. Although not
considered in the present study, this would allow the imposi-
tion of a smoothness constraint on the inverse solution, as
suggested by the LORETA approach (41).

Once the optimal linear inverse estimator W is calculated the
estimated spatiotemporal pattern of electricymagnetic activity
(dipole strength) is calculated by using the simple expression:

ŝ~t! 5 Wx~t!, [3]

where ŝ(t) and x(t) are the estimated dipole strength and
recording vectors as a function of time, respectively. The
general approach used is shown in Fig. 1.

Monte Carlo Simulations. To simulate fMRI areas of
activation, either 5, 10, or 20 sources were randomly located on
the folded cortical surface, each with varying volumetric extent
(point source, 1-cm or 2-cm diameter). The random selection
ensures no systemic location bias in these model studies. The
numbers and extents of sources chosen represent experimen-
tally realistic fMRI data. Although point sources are not
physiologically realistic, they were included in our simulations
to allow comparison with standard ECD models. The diagonal
elements of R corresponding to fMRI visible areas of activa-
tion were set to 1. The a priori variance estimates, or weighting,
at other locations not visible by fMRI (missing locations) were
varied between si

2 5 0, 0.01, 0.1, or 1. This corresponds to 100,
99, 90, and 0% relative fMRI weighting, respectively. The
classical minimum norm solution is equivalent to a relative

fMRI weighting of 0%. We made no a priori assumptions about
source correlation. Therefore, the off-diagonal elements of R
were set to zero. It should be noted that this does not force the
sources to be uncorrelated or orthogonal in time. Noise was
assumed to be additive, Gaussian, uniform, and spatially
uncorrelated. Here, we assumed a conservative signal-to-noise
ratio (SNR) of 10, which is consistent with typical MEG
experiments. In actual experiments, the noise is usually spa-
tially correlated, and thus the off-diagonal elements of C are
typically nonzero. In practice, the entire C matrix can be
estimated from the experimental MEGyEEG data (see, e.g.
ref. 11).

The estimated source strength (ŝi) at each location i can be
written as a weighted sum of the actual source strengths at all
locations, plus a noise contribution. More formally,

ŝ i 5 wix [4]

5 wi~As 1 n! [5]

5 wiS O
j

ajsj 1 nD [6]

5 O
j

~wiaj!sj 1 win, [7]

where wi is the ith row of W, and aj is the jth column of A. Note
that the first term in Eq. 7 is the sum of the activity (sj) at every
location j, weighted by the scalar wiaj. The second term reflects
the noise contribution to the estimated activity at location i.

Our primary goal is to obtain accurate estimates of the
temporal activity withinybetween fMRI visible regions. There-
fore, we would like an explicit expression for the relative
sensitivity of our estimate at a given location to activity coming
from other locations. We define a ‘‘crosstalk’’ metric (jij),
similar to the averaging kernel of the Backus–Gilbert method
(42, 43) as follows:

jij
2 5

u~WA!iju2

u~WA!iiu2
5

uwiaju2

uwiaiu2
, [8]

where WA is the resolution matrix (44, 45) or resolution field
(46).

By comparing Eqs. 7 and 8, we see that the crosstalk metric
jij describes the sensitivity (or weighting) of the estimate at
location i to activity at location j, relative to activity at location
i, and provides a measurement of the distortion caused by
location j.

A crosstalk value of 0% means that the estimated activity at
location i is completely insensitive to activity at location j. A
crosstalk value of 100% means that the estimated activity at
location i is equally sensitive to activity at locations i and j. For
each location, the crosstalk from all other locations can be
calculated. This computation shows the spatial spread of the
estimate at each location. Thus, those locations with small
spatial spread will have more accurate localizations than those
locations with large spatial spread. We note that such a
crosstalk map depends on the individual brain anatomy and
recording geometry of the MEG sensor array.

Two different types of crosstalk were calculated: (i) fMRI
visible crosstalk between two fMRI sources, and (ii) fMRI
invisible crosstalk from a missing fMRI source (fMRI invisible
or fMRI missing location) onto an fMRI source. The random
fMRI source placement was repeated 10 times, and the
crosstalk metrics were averaged, depending on the conditions
being examined. For each random source placement, 100
fMRI missing locations were randomly selected.

FIG. 1. Spatiotemporal imaging of brain activity. The linear esti-
mation approach for combining electromagnetic measurements with
anatomical MRI and fMRI information is illustrated schematically.
The inverse operator (W) is computed from anatomical information in
the forward solution (A), fMRI information in the estimated source
covariance matrix (R), and the sensor noise covariance matrix (C) from
the MEG measurements. Applying the inverse operator to the MEG
measurements [x(t)] yields movies of estimated cortical source acti-
vation over time [ŝ(t)]. The movies depict spatiotemporal estimates of
the orchestration of cortical activation during a given task or behavior.
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RESULTS

Several studies have used fMRI or positron emission tomog-
raphy (PET) activation data as a prior constraint on the inverse
solution. In one such approach, single ECDs are placed at the
center-of-mass of fMRI (47) or PET (17, 18) defined regions
of cortical activation. A refinement of this approach uses a
continuous source model (16). In the linear estimation framework
presented here, these cases correspond to setting the fMRI
weighting to 100%, assuming an infinite SNR, and either point
or extended source models. Here, cortical areas of fMRI
activation are tiled uniformly with dipoles. By either fixing the
dipole orientation (e.g., using anatomical information), or
allowing the ECDs to freely rotate over time, the estimated
time courses of these fMRI-defined sources then can be
determined by using a standard pseudoinverse technique.

In our first simulation study, we examined the sensitivity of
these proposed methods to the potential presence of fMRI
invisible (missing) sources as a function of assumed sensor
SNR in the noise covariance matrix C. The potential benefits
of including an orientation constraint (in addition to the fMRI
weighting) also were evaluated in these simulations. Using
100% fMRI weighting, Fig. 2 shows that the crosstalk from
fMRI visible sources is quite small (,21%), but the crosstalk
from fMRI invisible sources is potentially quite large, partic-
ularly for the extended source model. It should be noted that
assuming infinite signal-to-noise is equivalent to using the
Moore–Penrose pseudoinverse as the inverse operator. Im-
portantly, the data further indicate that allowing for finite
signal-to-noise greatly reduces the predicted distortion from
fMRI invisible sources. However, the crosstalk remains high,
and thus the presence of fMRI invisible sources could still be
quite problematic.

Based on the above results, we explored the effect of varying
the degree of fMRI weighting. We calculated the crosstalk
from both fMRI visible and fMRI invisible locations, of
varying source extents. Fig. 3 shows the results for two
different source sizes: point sources and extended sources of
2-cm diameter. The point source (although physiologically
unrealistic) typically is used in ECD modeling, whereas the
2-cm extended source is representative of the extent of con-
tiguous activation typically observed with fMRI.

For a given fMRI visible source, Fig. 3 shows that with
increasing relative fMRI weighting, the crosstalk from other
fMRI visible locations decreases, whereas the crosstalk from
fMRI invisible locations increases. The use of the cortical
orientation constraint reduces crosstalk from both fMRI vis-
ible and invisible sources. With no fMRI weighting (0%),
crosstalk from both fMRI visible and invisible sources is
identical, as would be expected. This corresponds to the
well-known minimum norm solution. At this limit, a substan-
tial crosstalk of 28% and 15% is predicted for the anatomically

unconstrained and anatomically constrained cases, respec-
tively. At the other limit of 100% fMRI weighting, the crosstalk
from fMRI visible sources is minimized (,8%); however, the
crosstalk from invisible sources is greatly increased (.40%).
Thus, unless the coupling between neuronal and hemodynamic
activity is perfect, and unless fMRI and MEG were both
entirely accurate in detecting each form of activity, the use of
100% fMRI weighting is not optimal.

One would like to select a weighting that results in accept-
ably low distortion between fMRI visible locations while
achieving reasonable levels of distortion from the fMRI in-
visible locations. Inspection of the results in Fig. 3 B and D (for
the realistic extended source case) indicates that most of the
benefit of fMRI weighting is achieved at a level of 90%.
Although this weighting does not minimize the crosstalk from
other visible sources, the improvement of going to 99% or even
100% fMRI weighting is small. More importantly, the data
indicate that 90% fMRI weighting does not significantly
increase crosstalk from invisible sources. In other words, 90%
fMRI weighting is a reasonable compromise for typically sized
extended source distributions. Therefore, we report here only
the results from 90% fMRI weighting in our remaining
simulation data. We note that the general pattern of results is
similar for other fMRI weightings.

In a typical fMRI experiment, a number of discrete regions
of activation are observed. Any inverse procedure that is
applied to this type of data will have to handle multiple,
extended sources. Fig. 4 shows that the crosstalk from both
fMRI visible and invisible sources is relatively independent of
the number and the spatial extent of the sources, within the
realistic range plotted. Importantly, using the orientation
constraint consistently results in very small crosstalk (,10%)
from the fMRI visible sources, whereas the crosstalk from
potential fMRI invisible sources remains moderate (,21%).
This demonstrates the ability of this linear approach to cope

FIG. 2. Crosstalk versus assumed SNR. Crosstalk is shown for 10
sources (point and 2 cm in diameter), with and without orientation
constraint. The assumed SNR was either 1, 10, 100, or infinite. A
relative fMRI weighting of 100% was used. The results indicate that
allowing for finite SNR greatly reduces the predicted distortion from
fMRI invisible sources. The extremely large amount of distortion from
fMRI invisible sources, observed when assuming infinite SNR, dem-
onstrates a potential problem with an fMRI-constrained pseudoin-
verse solution (which implicitly assumes infinite SNR).

FIG. 3. Crosstalk versus relative fMRI weighting. Crosstalk is
shown for 10 sources (point and 2 cm in diameter), with and without
orientation constraint. The relative fMRI weighting was either 0%,
90%, 99%, or 100%. The optimal fMRI weighting requires a com-
promise between resolving fMRI visible sources (i.e., higher fMRI
weighting) and minimizing distortion from fMRI invisible sources (i.e.,
lower fMRI weighting). The results indicate that a 90% fMRI weight-
ing greatly reduces the crosstalk from fMRI visible sources, while only
slightly increasing the crosstalk from fMRI invisible sources.

FIG. 4. Crosstalk versus extent and number of sources. Crosstalk
is shown for a variety of extents and numbers of sources. The extent
of sources was either point, 1 cm or 2 cm in diameter, and the number
of sources was 5, 10, or 20 (indicated by different gray scale). A partial
fMRI weighting of 90% was used in these simulations. The results
indicate that the crosstalk is relatively independent of source extent
and number. This demonstrates that the proposed linear estimation
method is appropriate for modeling multiple, extended areas of activa-
tion, as typically encountered in functional neuroimaging studies.
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with physiologically realistic source distributions, even in the
presence of fMRI invisible (missing) sources. Obviously, be-
cause the crosstalk is substantially higher for fMRI invisible
sources than for fMRI visible sources, the accuracy of the
source activity estimates deteriorates with increasing neuronal
activity from fMRI invisible locations.

The above simulation results demonstrate that constraining
activity to the cortical surface greatly reduces the predicted
crosstalk from both fMRI visible and invisible sources. Obvi-
ously, the usefulness of this anatomic constraint depends on
the accuracy of the anatomic information. In general, both
errors in the cortical location and orientation will affect the
solution, with orientation errors the more problematic of the
two. We therefore examined the effect of cortical orientation
errors on the accuracy of the inverse solutions. Orientation
errors were simulated by randomly perturbing the assumed
cortical orientation by 6 30° about the correct orientation, a
range presumably exceeding our true measurement error.
Angle errors were drawn from a uniform distribution. The
crosstalk metric was computed to provide a quantitative
measure of sensitivity to orientation error. Comparison of
these crosstalk values to those in Fig. 4 revealed very little
difference, with only a slight increase in distortion averaging
2%. We conclude that orientation errors within this range
would not significantly affect the accuracy of our localization.

All cortical locations may potentially contribute to the
estimated activity at any given location (see Eq. 7). The
computed crosstalk for two locations is shown in Fig. 5 on the
normal and inflated cortical surfaces. The cortical inflation
process allows for visualization of the entire cortical surface,
including areas buried within deep sulci (15, 48, 49). The maps
indicate the relative weighting of activity at each and every
location (j) contributing to the estimated activity at the indi-
cated locations (i, white arrow). These crosstalk maps were
calculated by using the cortical location constraint and no
fMRI constraint (equivalent to 0% relative fMRI weighting).
The superficial location on top of the gyrus (Fig. 5, Left) clearly

shows much less sensitivity to activity at other locations, and
consequently intrinsically higher spatial resolution, than the
deeper location at the bottom of the nearby sulcus (Fig. 5,
Right). The example further suggests that deep sources poten-
tially benefit most from the additional inclusion of the fMRI
constraint.

This type of spatial crosstalk information can show which
regions of the brain are intrinsically less sensitive to localiza-
tion error. In addition, such crosstalk maps can directly address
the issue of mislocalized activity between two or more areas of
fMRI activation. If there is little overlap between the crosstalk
maps of those areas, one can be confident that the localization
at one area is unaffected by activity at the other area.
Conversely, if the spatial crosstalk map of one region of fMRI
activity encompasses another region of fMRI activity, this
particular method would not be able to accurately separate the
activity from those two areas. Individual crosstalk maps po-
tentially can be used to place some confidence limits on the
interpretation of the estimated time courses.

DISCUSSION

Our simulation results demonstrate that the use of anatomical
MRI and fMRI information can significantly improve the
accuracy of spatiotemporal estimates of dynamic human brain
activity. In the ideal case, where all neuronal source activity is
accurately detected by fMRI (no missing or fMRI invisible
sources), the properly fMRI weighted and noise regularized
linear inverse produces source time-course estimates that
should accurately reflect the true neuronal activity within the
cortex. Happily, this holds true even for multiple and extended
sources, as are typically encountered in human fMRI data.
Additionally, the simulations demonstrate that the use of an
orientation constraint consistently improves the accuracy of
source estimates. Perhaps surprisingly, we found that errors in
the specified cortical orientation, over a rather large range
(encompassing any realistic error), produce very little distor-
tion in the estimates.

Our data indicate that a fMRI weighting of approximately
90% is a reasonable compromise between sensitivity to
crosstalk from fMRI visible and invisible sources. The optimal
fMRI weighting, which depends on the confidence in the
hypothesis that neuronal and hemodynamic activity are tightly
coupled, currently cannot be determined a priori. However,
even if this hypothesis is strictly correct, the hemodynamic
response caused by a given neuronal source may be too small
to be detected, given finite fMRI SNR. Therefore, some
intermediate level of fMRI weighting is required to properly
account for potential fMRI invisible sources.

In addition, EEGyMEG-averaged data always contain some
finite residual noise caused by spontaneous brain activity (i.e.,
activity not time-locked to the stimulus). It is therefore essen-
tial to allow for a finite amount of additive noise. Sensitivity to
such noise can be minimized by its proper estimation and
inclusion within the noise covariance matrix C in the linear
inverse operator. As shown in Fig. 2, decreasing the assumed
EEGyMEG SNR (in the C matrix) also has the effect of
reducing the effect of missing sources. However, such model-
ing errors are more properly accounted for by judicious fMRI
weighting (in the R matrix). Experimentally, the C matrix can
and should be computed from the actual EEGyMEG mea-
surement data. We note that our studies also made assump-
tions about noise (Gaussian, uncorrelated) that possibly will
not be strictly valid. Although the general conclusions reached
here are likely to remain true, more realistic noise assumptions
will be examined in future studies.

The distortion between fMRI visible locations is quite small
and is further reduced by incorporating an orientation con-
straint. We note that extra sources do not result in additional
crosstalk at other fMRI visible locations, because the crosstalk

FIG. 5. Crosstalk maps of a superficial and a deep source location.
Maps of the crosstalk metric (jij) for two different locations i (see arrows)
were computed for all locations j, shown in folded (Upper) and inflated
(Lower) cortical surface views. Surface curvature is represented in gray
scale (light and dark gray corresponding to gyri and sulci, respectively).
The crosstalk represents the relative sensitivity of the dipole strength
estimate at a given location to activity at other locations [shown in
color, ranging from 0 (gray) to 10 (yellow)]. Note the greater spread
of the crosstalk for the deep location (Right) relative to the superficial
location (Left), reflecting different intrinsic spatial resolution for these
locations, when only anatomical constraints are used.
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from fMRI visible sources has little dependence on the
number of sources. In comparison, fMRI invisible sources
(electromagnetic generators that are not detected by fMRI)
are still problematic.

The crosstalk metric also has uses beyond these modeling
studies. For a given experimental setup, the crosstalk metric
can be calculated over the entire cortical surface. This spatial
crosstalk map provides one measurement of the spatial reso-
lution of the linear estimation method. Using the spatial
crosstalk map potentially provides a principled argument for
determining which brain regions can be well localized with this
technique.

In conclusion, we have simulated the use of structural MRI
and fMRI data to constrain the biomagnetic inverse problem.
We have examined the expected accuracy of our estimations
given several possible types of model mis-specification, includ-
ing missing (fMRI invisible) sources, and orientation con-
straint errors. Future studies will investigate other possible
types of mis-specification, including errors in the forward
solution caused by incorrect head model parameters, and
misregistration between fMRIyEEGyMEG coordinate sys-
tems. Overall, we find that with proper fMRI weighting and
noise regularization, the MRI constraints improve the accu-
racy of the computed source time courses. This represents a
major advance over simple dipole modeling of complicated
brain activation data. This linear estimation approach provides
an operator-independent method for combining information
from fMRI, MEG, and EEG, to produce high-resolution
spatiotemporal estimates of human brain activity.
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