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Thrombotic thrombocytopenic purpura (TTP) 
is a disorder characterized by thrombotic mi-
croangiopathy, thrombocytopenia, and micro-
vascular thrombosis that can cause various 
degrees of tissue ischemia and infarction. Clini-
cally, TTP patients are diagnosed by signs and 
symptoms such as thrombocytopenia, micro-
angiopathic hemolytic anemia, neurological abnor-
malities, renal failure, and fever (1, 2). In 1982, 
Moake et al. found ultra-large von Willebrand 
factor (UL-VWF) multimers in the plasma 
of patients with chronic relapsing TTP (3). 
Most patients suff ering from TTP are defi cient 
in a plasma metalloprotease that cleaves UL-
VWF (4–9). The protease belongs to the AD-
AMTS (a disintegrin-like and metalloprotease 
with thrombospondin type I repeats) family 
and is designated as ADAMTS13, a 190-kD 
glycosylated protein produced predominantly 
by the liver (10–12), specifi cally by hepatic 
stellate cells (13, 14). Mutations in the AD-
AMTS13 gene have been shown to cause fa-

milial TTP (10). Acquired TTP, often caused 
by autoantibodies inhibiting ADAMTS13 ac-
tivity, is a more common disorder that occurs 
in adults and older children and can recur at 
regular intervals in 11–36% of patients (4, 6). 
Nonneutralizing autoantibodies have been as-
sociated with acute acquired TTP (15). In most 
patients with familial or acquired TTP, plasma 
ADAMTS13 activity is absent or <5% of normal. 
Without treatment, the mortality rate exceeds 
90%, but plasma exchange therapy has reduced 
mortality to �20% (2).

VWF synthesized in megakaryocytes and 
endothelial cells is stored in platelet α-granules 
and Weibel-Palade bodies, respectively, as UL-
VWF (16). Once secreted from endothelial 
cells, these UL-VWF multimers are cleaved by 
ADAMTS13 in the circulation into a series 
of smaller multimers at specifi c cleavage sites 
within the VWF molecule (17–19). The prote-
ase cleaves at the Tyr842–Met843 bond in the 
central A2 domain of the mature VWF subunit 
(20) and requires zinc and calcium for activity. 
VWF exists in “ball of yarn” and fi lamentous 

<doi>10.1084/jem.20051732</doi><aid>20051732</aid>Systemic antithrombotic eff ects 
of ADAMTS13

Anil K. Chauhan,1,2 David G. Motto,3 Colin B. Lamb,1 
Wolfgang Bergmeier,1,2 Michael Dockal,5 Barbara Plaimauer,5 
Friedrich Scheifl inger,5 David Ginsburg,4 and Denisa D. Wagner1,2

1CBR Institute for Biomedical Research and 2Department of Pathology, Harvard Medical School, Boston, MA 02115
3Department of Pediatrics, University of Michigan, and 4Department of Internal Medicine, University of Michigan and 
Howard Hughes Medical Institute, Ann Arbor, MI 48109

5Baxter Bioscience, Vienna, A-1220 Austria

The metalloprotease ADAMTS13 (a disintegrin-like and metalloprotease with thrombospondin 
type I repeats 13) cleaves highly adhesive large von Willebrand factor (VWF) multimers 
after their release from the endothelium. ADAMTS13 defi ciency is linked to a life-
 threatening disorder, thrombotic thrombocytopenic purpura (TTP), characterized by platelet-
rich thrombi in the microvasculature. Here, we show spontaneous thrombus formation in 
activated microvenules of Adamts13−/− mice by intravital microscopy. Strikingly, we found 
that ADAMTS13 down-regulates both platelet adhesion to exposed subendothelium and 
thrombus formation in injured arterioles. An inhibitory antibody to ADAMTS13 infused in 
wild-type mice prolonged adhesion of platelets to endothelium and induced thrombi for-
mation with embolization in the activated microvenules. Absence of ADAMTS13 did not 
promote thrombi formation in 𝛂IIb𝛃3 integrin-inhibited blood. Recombinant ADAMTS13 
reduced platelet adhesion and aggregation in histamine-activated venules and promoted 
thrombus dissolution in injured arterioles. Our fi ndings reveal that ADAMTS13 has a power-
ful natural antithrombotic activity and recombinant ADAMTS13 could be used as an anti-
thrombotic agent.

CORRESPONDENCE
Denisa D. Wagner: 
wagner@cbr.med.harvard.edu

Abbreviations used: ADAMTS, 

a disintegrin-like and metallo-

protease with thrombospondin 

type I repeats; r-hu, recombi-

nant human; TTP, thrombotic 

thrombocytopenic purpura; 

UL-VWF, ultra-large VWF; 

VWF, von Willebrand factor.

The online version of this article contains supplemental material.



768 SYSTEMIC ANTITHROMBOTIC EFFECTS OF ADAMTS13 | Chauhan et al.

forms as seen by electron microscopy (21). Furthermore, 
atomic force microscopy confi rms that VWF exists in a glob-
ular conformation under static conditions and may unfold to 
a fi lamentous state after exposure to shear stress (22). This 
could occur also in vivo when one end of the VWF fi lament 
is anchored to a surface. UL-VWF multimers have high bio-
logical activity. They bind better to the extracellular matrix 
than regular multimers (23) and form higher strength bonds 
with platelet GPIb-IX than plasma VWF (24). It was demon-
strated in vitro that platelets align as beads on the released 
UL-VWF string on the endothelial surface. These strings are 
then cleaved by ADAMTS13 and released from the stimu-
lated endothelial cells (25). We have demonstrated in vivo 
that it is only in Adamts13−/− mice that strings of platelets re-
main intact after endothelial activation in veins (26). These 
strings attach at one end to endothelium and “wave” the 
other end in the blood stream.

Thrombi of TTP patients consist of a little fi brin but 
mainly of VWF and platelets, suggesting VWF-mediated 
platelet aggregation as a cause of thrombosis (27). We hy-
pothesized that endothelial activation resulting in elevation of 
hyperactive UL-VWF multimers in plasma could be associ-
ated with an increased risk of thrombosis in ADAMTS13-
defi cient animals. We investigated thrombosis in venules and 
arterioles of Adamts13−/− mice by intravital microscopy. 
Our fi ndings strongly suggest that ADAMTS13 has natural 
 antithrombotic activity and that recombinant human (r-hu) 

ADAMTS13 could be used to treat TTP and possibly other 
thrombotic conditions.

RESULTS
Endothelial activation results in thrombi formation 
in microvenules of Adamts13−/− mice
We have previously observed that platelet sticking/trans-
location in venules of 200–250 μm in diameter activated 
with calcium ionophore A23187 (a secretagogue of Weibel-
 Palade bodies) at low shear rate (�100 s−1) was prolonged in 
Adamts13−/− mice compared with Adamts13+/+ mice (26). We 
investigated whether activation of microvenule endothelium 
by A23187 (which does not denude the endothelium; 
<CIT>reference 28)</CIT> results in platelet aggregation and subsequent 
thrombus formation. The shear rate (200–250 s−1) and diam-
eter of all the microvenules (25–30 μm) studied were similar 
for Adamts13−/− and Adamts13+/+ mice (Table I).[ID]TBL1[/ID] In the mi-
crovenules of Adamts13−/− mice, platelet aggregation result-
ing in thrombus formation was observed from 45 s to 2 min 
after topical superfusion of A23187 (Fig. 1).[ID]FIG1[/ID] The thrombi 
were often unstable and fl ushed away, leading to frequent 
embolization and causing transient downstream occlusion 
usually only lasting 3–4 s. Thus, stimulation of Weibel-
Palade body secretion can lead to spontaneous thrombus for-
mation in Adamts13−/− mice in the absence of vascular injury. 
In Adamts13+/+ mice treated identically, platelet strings and 
very small platelet aggregates could be seen attached to the 

Figure 1. Thrombus formation in stimulated microvenules of 
 Adamts13−/− mice. Venules measuring �25–30-μm in diameter were 
visualized in the mesentery of live mice. 1 min after topical superfusion of 
calcium ionophore A23187, thrombus formation was observed in 

 Adamts13−/− mice (n = 5). No microthrombi formed in Adamts13+/+ 
mice treated identically (n = 5). Arrows indicate the microthrombi. See 
Video 1 (available at http://www.jem.org/cgi/content/full/jem.20051732/
DC1) for thrombi in the microvenules of Adamts13−/− mice.

Table I. Hemodynamic parameters were established before application of A23187 (Fig. 1) on venules and FeCl3 on arterioles (Fig. 5)
Genotype Vessel type Diameter (μm) Centerline velocity (mm/s) Shear rate (s−1)

Adamts13+/+ (n = 5) Venule 31.51 ± 1.79 1.43 ± 0.07 213 ± 14.10
Adamts13−/− (n = 5) Venule 26.36 ± 1.95 1.28 ± 0.13 244 ± 28.29
Adamts13+/+ (n = 12) Arteriole 103.91 ± 9.29 33.33 ± 1.72 1,688.16 ± 143.32
Adamts13−/− (n = 12) Arteriole 93.26 ± 10.48 28.05 ± 2.10 1,646.83 ± 157.16
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endothelium for 1–2 s, but thrombi did not form. These ob-
servations demonstrate that ADAMTS13 is active at low 
shear and, thus, inhibits platelet aggregation and prevents 
thrombus formation in the  microvenules. In addition, arteri-
oles (high shear) running parallel to the venules in either 
 Adamts13−/− or Adamts13+/+ mice did not show any platelet 
strings, platelet aggregation, or thrombus formation.

An antibody to ADAMTS13 prolongs adhesion of platelets 
to secreted VWF on the vessel wall of Adamts13+/+ mice
Previous studies have shown that most patients suff ering from 
the acquired form of TTP have autoimmune inhibitors to 
ADAMTS13 in plasma (4, 6). We infused a polyclonal anti–
human ADAMTS13 antibody in Adamts13+/+ mice 2 h 

 before surgical preparation for intravital microscopy. The anti-
body did not activate the endothelium as normal baseline 
platelet adhesion was found in Adamts13+/+ mice after its 
 infusion (Fig. 2).[ID]FIG2[/ID] After topical superfusion of A23187, many 
platelets stuck/translocated on the endothelium, reaching a 
peak of platelet adhesion from 45 s to 1 min that progres-
sively decreased with time. However, more platelet sticking 
was observed 4 min after the A23187 application in the 
 antibody-infused Adamts13+/+ as compared with control 
 Adamts13+/+ mice (control IgG [n = 2] or PBS [n = 5]) (Fig. 2). 
The phenomenon observed was similar to that observed
in Adamts13−/− mice (26). Strings of platelets were seen 
varying from 20 to 40 μm and attached at one end to the en-
dothelium and waving in the blood stream. These strings 

Figure 2. Antibody to ADAMTS13 increases platelet adhesion and 
string formation on activated vessel wall. Fluorescently labeled plate-
lets representing �2.5% of total platelets were observed in mesenteric 
venules (diameter: 200–250 μm) of live mice before (baseline) and after 
A23187 superfusion. Platelets began to adhere to the endothelium 30–45 s 
after superfusion. In Adamts13+/+ mice (infused with anti–human 

 ADAMTS13 Ab, n = 4), more platelets adhered to the vessel wall 4 min 
after stimulation compared with Adamts13+/+ control (n = 4). Arrows 
indicate the ≥20-μm strings of platelets attached at one end to the endo-
thelium and waving the other end in the blood stream. Inset time points 
in the lower right corner refer to the time after superfusion of A23187. 
The bar shown in the middle panel is �50 μm.

Figure 3. Thrombus formation in microvenules of Adamts13+/+ 
mice infused with an anti-ADAMTS13 antibody. Mesenteric venules 
of �25–30-μm in diameter were observed. 1 min after topical superfu-
sion with A23187, thrombus formation was observed in four out of six 

Adamts13+/+ mice infused with the anti-ADAMTS13 Ab. The microthrombi 
formation and embolization were similar to that seen in Adamts13−/− 
mice (Fig. 1). Arrows indicate a microthrombus. Microthrombi did not 
form in Adamts13+/+ control (n = 5).
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were either not seen or were very short lived (<2 s) in the 
Adamts13+/+ mice.

ADAMTS13 inhibitor induces thrombi formation 
in microvenules of Adamts13+/+ mice
In the Adamts13+/+ mice infused with anti–human  ADAMTS13 
antibody 2 h before surgical preparation, microthrombi formed 
on the vessel wall 45 s to 1 min after topical superfusion of 
A23187 in four out of six mice (Fig. 3).[ID]FIG3[/ID] The microthrombi 
appearance was similar to those seen in the Adamts13−/− mice 
(Fig. 1). In control Adamts13+/+ mice, short-lived platelet 
strings could be seen attached to the endothelium, but they did 
not result in thrombus formation (n = 5).

Histamine promotes platelet string formation 
in the venules of Adamts13−/− mice, a process 
inhibited by recombinant ADAMTS13
Histamine produced during infl ammation is a secretagogue 
of Weibel-Palade bodies and stimulates the endothelium (29). 
We investigated whether activation of venules by injecting 
histamine i.p. into Adamts13−/− mice could result in platelet 
strings. Endogenous platelets were labeled by infusing Rho-
damine 6G i.v. before surgery. Histamine was injected i.p. 15 
min before the surgical preparation into Adamts13−/− (n = 5) 
and Adamts13+/+ (n = 5) mice and venules at a shear rate 
of �100 s−1 were visualized. In the Adamts13+/+ mice, 
strings of platelets were not seen or were short lived (<5 s; 
Fig. 4 A), whereas, in the Adamts13−/− platelet strings, vary-
ing from 20 to 100 μm could be seen (Fig. 4 B) anchored to 
the endothelium for �1 min.[ID]FIG4[/ID] In some mice, the platelet 

strings persisted for up to 5 min. Some strings appeared to 
coalesce, forming aggregates (Fig. 4 C) that were later re-
leased into the blood stream. Infusion of r-hu ADAMTS13 
protein in the  Adamts13−/− mice (n = 4; 3 venules per 
mouse) inhibited platelet string formation in all venules 
 examined (Fig. 4 D), thus demonstrating the activity of 
 ADAMTS13 at low shear.

Platelet binding to subendothelium is increased 
in Adamts13−/− mice
Ferric chloride (FeCl3) injury leads to deendothelization and 
exposes subendothelium (30). Platelet subendothelial interac-
tions after injury at arterial shear are initiated by GPIb–VWF 
interaction and propagated by other receptors (30). In both 
Adamts13+/+ and Adamts13−/− mice, platelet–vessel wall 
 interaction started rapidly after FeCl3 application to the 
 arteriole. The number of animals in which >100 fl uorescent 
platelets were deposited 2–3 min after injury was higher in 
Adamts13−/− mice. In the Adamts13−/−, 7 out of 12 mice 
showed >100 platelets deposited on the vessel wall com-
pared with 3 out of 10 in the Adamts13+/+ mice (P < 0.05, 
Fig. 5 A).[ID]FIG5[/ID]

Thrombus formation is accelerated in injured arterioles 
of Adamts13−/− mice
After fi nding that ADAMTS13 negatively modulates resting 
platelet adhesion to both stimulated endothelium and sub-
endothelium, we asked whether the enzyme aff ects arte-
riolar  thrombus formation. This process requires platelet 
activation and employs several ligands aside from VWF (30). 
The shear rate and diameter of arterioles studied were simi-
lar for Adamts13−/− and Adamts13+/+ mice (Table I). In the 
Adamts13−/− mice, thrombi grew faster as thrombi >30 μm 
were seen at 6.64 ± 0.93 min compared with 10.78 ± 0.80 
min in the Adamts13+/+ mice (P < 0.005, Fig. 5 B). This 
suggests that cleavage of VWF multimers by ADAMTS13 
delays thrombus formation. The thrombi grew to occlusive 
size in 10.56 ± 0.72 min in Adamts13−/− mice, whereas in 
Adamts13+/+ mice all the vessels were still open at this time 
(Fig. 5, C and D). In the Adamts13+/+, the mean vessel oc-
clusion time was 16.69 ± 1.25 min after injury (P < 0.0005). 
All the vessels occluded at the site of injury. Of note, in ar-
terioles of Adamts13−/− mice, the mean time for formation 
of thrombi (>30 μm) as well as the mean occlusion time 
were less than that of any individual Adamts13+/+ mouse 
(Fig. 5, B and C).

ADAMTS13 defi ciency enhances thrombus growth 
in an 𝛂IIb𝛃3 integrin-dependent manner
To study the importance of integrin αIIbβ3 for thrombus 
formation in the absence of ADAMTS13, we performed in 
vitro fl ow chamber studies with whole blood in the presence 
or absence of a blocking antibody (JON/A) against αIIbβ3 
(31) (Fig. 6).[ID]FIG6[/ID] To quantify the size of the thrombi, the surface 
area covered by fl uorescently labeled platelets was deter-
mined. As expected, Adamts13−/− blood formed signifi cantly 

Figure 4. Recombinant ADAMTS13 inhibits platelet strings in 
 Adamts13−/− mice. Rhodamine 6G was used to label endogenous plate-
lets and leukocytes. Histamine was administered i.p. 15 min before sur-
gery and three mesenteric venules of �200–300 μm in diameter were 
visualized per mouse. (A) No platelet strings are seen in Adamts13+/+ 
mice (n = 5). (B) Platelet strings (indicated by arrows) are seen in the 
Adamts13−/− mice. Platelet strings anchor up to 1 min on the endothe-
lium (n = 5). (C) The platelet strings could form platelet aggregates in 
Adamts13−/− mice as indicated by arrow. (D) Infusion of r-hu ADAMTS13 
protein inhibits the platelet strings in Adamts13−/− mice (n = 4).
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larger thrombi than Adamts13+/+ when perfused over colla-
gen for 2 min at a shear rate of 1,500 s−1 (44.66 ± 3.63% vs. 
20.22 ± 3.88%; P < 0.0005), demonstrating again the key 
role of ADAMTS13 in limiting thrombus growth. In the 
presence of the blocking antibody to αIIbβ3, only single 
platelets adhered to the collagen surface and thrombus for-
mation was completely inhibited in both the Adamts13+/+ 
and Adamts13−/− blood (3.01 ± 0.97% vs. 2.82 ± 0.39%; 
P > 0.05).

In addition, we tested whether infusion of ADAMTS13 
inhibitory antibody into β3 integrin-defi cient mice (32) 
would induce thrombus formation after FeCl3 injury. We 
could not detect any thrombi in injured arterioles of β3−/− 
mice (three animals were evaluated) despite the pres-
ence of the anti-ADAMTS13 antibody (unpublished data). 
 Collectively, these results indicate that, at the arterial shear 
rates, UL-VWF enhances thrombus growth in an αIIbβ3-
dependent manner.

Infusion of r-hu ADAMTS13 into Adamts13−/− or wild-type 
(C57BL/6J) mice inhibits thrombus growth by destabilizing 
the platelet aggregate
In vitro, r-hu ADAMTS13 cleaves human VWF (18) and 
mouse plasma VWF into proteolytic fragments with the same 
effi  ciency (unpublished data). It has been demonstrated that 
r-hu ADAMTS13 corrects the VWF cleavage defect in he-
reditary TTP plasma (33). Because we observed accelerated 
growth of thrombi in Adamts13−/− mice, we hypothesized 
that ADAMTS13 negatively modulates thrombus growth and, 
therefore, infusion of r–hu ADAMTS13 could delay throm-
bus formation. We infused r-hu ADAMTS13 into mice and 
determined that the concentration of the circulating human 
protein was �8.8 U/ml at 17 min after infusion and 1.1 U/ml 
at 53 min after infusion. These times correspond approxi-
mately to the onset of FeCl3 injury and the termination of the 
experiment. We examined fi rst whether the prothrombotic 
phenotype of Adamts13−/− mice could be reversed. In 5 out 

Figure 5. Quantitative analysis of platelet adhesion and thrombi 
formation in FeCl3-injured arterioles of Adamts13+/+ and 
 Adamts13−/− mice. (A) The number of fl uorescent platelets deposited 
per minute was determined in the interval 2–3 min after injury. Absence 
of ADAMTS13 in the plasma signifi cantly increases early platelet interac-
tion with the subendothelium (P < 0.05). (B) Thrombi (>30 μm) appeared 
sooner in Adamts13−/− mice compared with Adamts13+/+ (P < 0.005). 
(C) The occlusion time (blood fl ow completely stopped for 10 s) was de-
termined. Both Adamts13+/+ and Adamts13−/− mice occluded at the site 
of injury; however, in Adamts13−/− mice, occlusion time was shorter as 

compared with Adamts13+/+ mice (P < 0.0005). (D) Fluorescently labeled 
platelets representing �2.5% of total platelets were observed in mesen-
teric arterioles of live mice after FeCl3 injury. Single adherent platelets are 
seen in the arteriole at 4 min after injury in the Adamts13+/+ mouse, 
whereas a thrombus (�30 μm) can already be seen in the Adamts13−/− 
mouse at the same time point. The vessel was occluded at 10 min at the 
site of injury in the Adamts13−/− mouse, whereas the Adamts13+/+ 
mouse arteriole remained opened at that time. Representative fi gures are 
shown. Blood fl ow was from left to right.
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of 13 Adamts13−/− mice infused with r-hu ADAMTS13, in-
jured arterioles did not occlude for up to 40 min when the ex-
periment was terminated (Fig. 7 A).[ID]FIG7[/ID] The eff ect of the infused 
r-hu ADAMTS13 was more than that of endogenous AD-
AMTS13 in Adamts13+/+ mice; as in this injury model, all Ad-
amts13+/+ vessels occluded at <24 min (Fig. 5 C). The mean 
occlusion time was signifi cantly prolonged in comparison
with the control mice infused with buff er (P < 0.0005).
In all the mice whose arterioles did not occlude, thrombi 
formed but were unstable and dissolved (Fig. 7 C). This phe-
nomenon of thrombi formation and destabilization was pres-
ent during the entire period of observation.

To examine whether r-hu ADAMTS13 could delay oc-
clusion in injured arterioles of mice with normal levels of the 
endogenous ADAMTS13 protein, we infused the recom-
binant protein in C57BL/6J wild-type mice before injury. 
The  infused protein caused signifi cant delay in occlusion time 

with half of the arterioles not occluding by 40 min, whereas 
all  arterioles of wild-type mice infused with vehicle occluded 
by 15 min (Fig. 7 B, P < 0.008). Thus, ADAMTS13 appears 
to have a signifi cant antithrombotic potential even in wild-
type animals.

D I S C U S S I O N 
The studies presented here have defi ned a key role for 
 ADAMTS13 in preventing thrombi formation in activated 
microvenules and excessive thrombus formation in the injured 
arterioles of mice. Our in vivo fi ndings of microvascular 
thrombosis caused by stimulated release of VWF are consistent 
with the observation that patients suff ering from TTP have 
thrombi rich in platelet aggregates and VWF (27). It was sug-
gested that, in the development of TTP, microvascular endo-
thelial activation could be the primary event initiating platelet 
aggregation in the arterioles and capillaries (2). Various agents, 
including viruses, bacterial shiga toxins, drugs such as ticlopi-
dine and clopidogrel, antibodies, and immune complexes, can 
trigger vascular activation (34), perhaps inducing Weibel-
 Palade body release. We did not see thrombi in the arterioles 
(which have higher shear stress) treated identically with 
A23187. This is because either Weibel-Palade bodies were not 
released in these vessels or, more likely, VWF is washed too 
quickly from the endothelial surface to promote platelet adhe-
sion. Venous thrombosis is not generally recognized as a patho-
logic characteristic of TTP in human patients and was also not 
a prominent feature of spontaneous or shigatoxin-induced 
TTP in the Adamts13−/− mouse (26). These observations sug-
gest that formation of platelet-rich microthrombi in the ve-
nous circulation in the setting of acute TTP is either subclinical 
or transient, or counterbalanced by other regulatory processes 
that are not as eff ective in the arteriolar vasculature.

Autoantibodies neutralizing human ADAMTS13 are 
the major cause of acquired TTP. Various epitopes of the 
ADAMTS13 protein are recognized by the autoantibodies 
(35, 36). Infusion of anti-ADAMTS13 antibody in the 
 Adamts13+/+ mice resulted in prolonged adhesion of platelets 
to secreted VWF and platelet string formation on the stimu-
lated endothelium (Fig. 2) that was similar to that seen in the 
Adamts13−/− mice (26). It was shown that P-selectin may 
anchor the newly released UL-VWF multimers in vitro (37); 
however, this remains to be confi rmed in vivo. Platelet strings 
and aggregates were frequently seen in the Adamts13−/− mice 
when challenged with Weibel-Palade body secretagogues 
(unpublished data) such as histamine (38), the infl ammatory 
cytokine TNF-α (39), or activated platelets (40). This sug-
gests that in patients lacking functional ADAMTS13, TTP 
could be precipitated by infl ammation, by allergic responses, 
or by situations leading to platelet activation. Infusion of anti-
ADAMTS13 antibody into Adamts13+/+ mice with activated 
microvenules resulted in platelet aggregation and thrombi 
formation (Fig. 3). However, these thrombi embolized rap-
idly, similar to those in the Adamts13−/− mice. Thus, the 
mouse infused with anti-ADAMTS13 antibody represents a 
new animal model for acquired TTP.

Figure 6. Inhibition of integrin 𝛂IIb𝛃3 blocks thrombus formation 
of ADAMTS13−/− platelets on collagen under arterial shear rate 
conditions. Adamts13+/+ or Adamts13−/− whole blood was perfused for 
2 min over a collagen surface at a shear rate of 1, 500 s−1. (A) Representa-
tive images are shown. (top) Untreated whole blood; (bottom) whole blood 
pretreated with blocking antibody against αIIbβ3 (JON/A). (B) Quantifi ca-
tion of the surface area covered by platelets after 2 min of perfusion. Four 
frames from different areas of the fl ow chamber were analyzed for each 
blood sample. Data represent the mean percentage of surface area cov-
ered by fl uorescent platelets ± SEM (n = 3–4).
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Our observations that endothelial activation of micro-
venules results in thrombi in the Adamts13−/− mice led to 
the hypothesis that ADAMTS13 defi ciency might accelerate 
thrombus formation in injured arterioles. Indeed, the absence 
of ADAMTS13 promoted all aspects of thrombus growth. 
Unexpectedly, even more platelets were deposited on the de-
nuded vessel wall after 2–3 min of injury in the Adamts13−/− 
mice as compared with Adamts13+/+ (Fig. 5 A). Because 
early platelet deposition in arterioles is VWF dependent (30), 
it means that either plasma ADAMTS13 reduces VWF in-
corporation into the basement membrane when it is exposed 
to blood or that it digests VWF already present in the extra-
cellular matrix. The rapid thrombus growth and occlusion in 
Adamts13−/− mice indicates that ADAMTS13 might cleave 
VWF multimers incorporated in the thrombus. It has been 
suggested that cleavage of VWF domain A2 by ADAMTS13 
is facilitated by the binding of VWF to GPIbα (41). Thus, 
the VWF–GPIb interaction within the thrombus may nega-
tively regulate thrombus growth. Thrombus formation under 
venous and arterial fl ow conditions also depends on major 
integrin αIIbβ3 (42, 43). Our studies at arteriolar shear rates 
show that ADAMTS13 modulates the growing thrombus 
only when platelets in the thrombus express an active β3 inte-
grin. Under our in vitro and in vivo experimental conditions, 
ADAMTS13 defi ciency did not promote thrombus growth if 
the major platelet integrin was absent or inhibited (Fig. 6).

To inhibit the fast thrombus growth seen in the Adamts13−/− 
mice, we infused r-hu ADAMTS13 into the Adamts13−/− 

and wild-type mice before injury. The antithrombotic eff ect 
of the r-hu ADAMTS13, although highly statistically signifi -
cant, varied among the animals (Fig. 7). Some mice did not 
respond to r-hu ADAMTS13 treatment. It is possible that in 
these mice r-hu ADAMTS13 was proteolytically inactivated 
by thrombin and plasmin (44) produced at the sites of vascular  
injury. IL-6 (39) and high amounts of VWF released after 
infl ammation (45) or injury could also reduce ADAMTS13 
activity. Infusion of the r-hu ADAMTS13 protein into the 
histamine-challenged Adamts13−/− mice inhibited platelet 
string and aggregate formation in the activated venules. In 
vivo, similar to in vitro (46), ADAMTS13 appears to inter-
act with endothelial UL-VWF. Collectively, our fi ndings 
suggest that ADAMTS13 could have both antithrombotic 
as well as thrombo- destabilizing activity. In the thrombus, 
 ADAMTS13 could be cleaving the UL-VWF multimers 
released from platelets into less adhesive smaller fragments 
and/or directly cleaving the VWF molecules bridging the 
platelets. However, we also cannot exclude the possibility 
that there may be another substrate for ADAMTS13 that is 
important in thrombus formation.

In summary, our results suggest that in vivo ADAMTS13 
is active at both low venous and high arterial shear stress con-
ditions. It cleaves platelet strings and regulates platelet inter-
action with the “activated” vessel wall in the venules, prevents 
thrombi in activated microvenules, and modulates the throm-
botic response in injured arterioles. The antithrombotic  eff ect 
of ADAMTS13 suggests that in addition to TTP,  recombinant 

Figure 7. Infusion of r-hu ADAMTS13 inhibits thrombus growth. 
r-hu ADAMTS13 was infused i.v. into the Adamts13−/− mice 15 min 
before the FeCl3 injury. The occlusion time (blood fl ow completely 
stopped for 10 s) was determined. (A) 5 out of 13 Adamts13−/− mice 
infused with r-hu ADAMTS13 did not occlude in the arteriole at up to 
40 min of observation time (mean occlusion time = 23.80 ± 3.71 min), 
whereas all 10 Adamts13−/− mice infused with recombinant buffer 
occluded (mean occlusion time = 11.17 ± 0.87 min, P = 0.005). 

(B) Occlusion time in injured arterioles of WT (C57BL/6J) mice infused 
either with r-hu ADAMTS13 (mean occlusion time = 27.99 ± 4.72 min) 
or buffer (mean occlusion time = 13.12 ± 0.55 min) alone. (C) Repre-
sentative fl uorescent images of an injured arteriole of an Adamts13−/− 
mouse treated with r-hu ADAMTS13 are shown. Arrows indicate a 
 dissolving thrombus. See Video 2 (available at http://www.jem.org/cgi/
content/full/jem.20051732/DC1) for the effect of r-hu ADAMTS13 on 
thrombus growth.
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ADAMTS13 could also be used to treat patients suff ering 
from thrombotic disorders as a result of other hereditary de-
fects, infl ammatory disease, or septic conditions.

MATERIALS AND METHODS
Animals. Mice used in this study were siblings obtained from crosses of 

 Adamts13+/− mice on C57BL/6J/129Sv background (26). The mice of pure 

C57BL/6J background were purchased from The Jackson Laboratory and 

β3 integrin−/− mice (32) on BALB/c background were a gift from R. Hynes 

(Massachusetts Institute of Technology, Cambridge, MA). The mice used 

for intravital microscopy were young mice (�4 wk old), both male and 

 female, weighing 14–18 g. Infused platelets were isolated from 4–6-mo-old 

mice of the same genotype. Animals were bred and housed at the CBR 

 Institute for Biomedical Research and all experimental procedures were ap-

proved by its Animal Care and Use Committee.

Blood sampling and platelet preparation. Blood was harvested from the 

retro-orbital venous plexus by puncture and collected in 1.5-ml polypropyl-

ene tubes containing 300 μl of heparin (30 U/ml). Platelet-rich plasma was 

obtained by centrifugation at 1,200 revolutions/min for 5 min. The plasma 

and buff y coat containing some RBCs were gently transferred to fresh poly-

propylene tubes and recentrifuged at 1,200 revolutions/min for 5 min. The 

platelet-rich plasma was transferred to fresh tubes containing 2 μl of PGI2 

(2 μg/ml) and incubated at 37°C for 5 min. After centrifugation at 2,800 

revolutions/min, pellets were resuspended in 1 ml of modifi ed Tyrode-

Hepes buff er (137 mM NaCl, 0.3 mM Na2HPO4, 2 mM KCl, 12 mM 

NaHCO3, 5 mM Hepes, 5 mM glucose, 0.35% BSA) containing 2 μl of 

PGI2 and incubated at 37°C for 5 min. The suspended pellet was centrifuged 

at 2,800 revolutions/min for 5 min. To remove PGI2, the washing step was 

repeated twice and platelets were fl uorescently labeled with calcein AM 

2.5 μg/ml (Invitrogen) for 10 min at room temperature.

Polyclonal anti-ADAMTS13 production and purifi cation. Polyclonal 

rabbit anti–human ADAMTS13 IgG was produced by Baxter Bioscience. 

The antibody was obtained by immunization of New Zealand white rabbits 

with purifi ed r-hu ADAMTS13, COOH-terminally tagged with six His 

residues. Two rabbits were immunized by injection of 20 μg of r-hu 

 ADAMTS13 (6-His) in 200 μl of complete Freund’s adjuvant. The animals 

were boostered after 2, 4, and 6 wk by injecting 20 μg of r-hu ADAMTS-13 

(6-His) in 200 μl of incomplete Freund’s adjuvant. After 8 wk, the rabbits 

were killed and bled. IgG antibodies were purifi ed by protein G affi  nity 

chromatography (HiTrap protein G HP column; GE Healthcare) and for-

mulated in PBS.

Thrombosis in microvenules. Intravital microscopy was as performed as 

described previously (47). In brief, mice were anesthetized with 2.5% tribro-

moethanol (0.15 ml/10 g) and an incision was made through the abdominal 

wall to expose the mesentery and a mesenteric venule of 25–30-μm diame-

ter was studied. Exposed mesentery was kept moist by periodic superfusion 

using PBS (without Ca2+ or Mg2+) warmed to 37°C. The shear rate was cal-

culated using an optical Doppler velocity meter (48). Venules were visual-

ized using an Axiovert 135 inverted microscope (objectives: 10× and 32×; 

Carl Zeiss MicroImaging, Inc.) connected to an SVHS video recorder 

(AG-6730; Panasonic). One venule was chosen per mouse and fi lmed for 

3 min for the baseline before the A23187 superfusion (30 μl of a 10 μmol/L 

solution) and monitored for 10 min.

Platelet adhesion in large venules. Intravital microscopy was performed 

as described previously (28), except mesenteric venules of 200–300-μm di-

ameters were studied. Fluorescent platelets (1.25 × 109 platelets/kg) were in-

fused through the tail vein. One venule per animal was fi lmed for 3 min for 

the baseline before the A23187 superfusion (30 μl of a 10 μmol/L solution) 

and fi lming continued until after the platelet sticking and rolling returned 

to baseline. Purifi ed rabbit polyclonal anti–human ADAMTS13 antibody 

(5 mg/kg mouse) was dissolved in PBS. Control rabbit IgG (Sigma-Aldrich) 

was dissolved in PBS. 200 μl of 1 mM histamine (Sigma-Aldrich) was in-

jected i.p. to stimulate the endothelium. 100 μl (0.2 mg/ml) of Rhodamine 

6G (Sigma-Aldrich) was injected i.v. to label the endogenous platelets and 

leukocytes before surgery and imaging.

Thrombus in arterioles. A previously described model was used with 

slight modifi cations (30). In brief, mice were anesthetized with 2.5% tribro-

moethanol (0.15 ml/10 g) and fl uorescent platelets (1.25 × 109 platelets/kg) 

were infused through the retro-orbital plexus of the eye. An incision was 

made through the abdominal wall to expose the mesentery, and arterioles of 

�100 μm diameter were studied. The shear rate was calculated as described 

previously (48). Arterioles were visualized using the aforementioned micro-

scope, equipped with a 100-W HBO fl uorescent lamp source (Optic Quip). 

Whatman paper saturated with FeCl3 (10%) solution was applied topically 

for 5 min, which induced denudation of the endothelium, and the vessel was 

monitored for 40 min after injury or until occlusion. One arteriole was cho-

sen per mouse.

Quantitative analysis of arteriolar thrombus. Analysis of the recorded 

tape was performed blinded to the genotype. We evaluated (1) single plate-

let–vessel wall interaction determined as the number of fl uorescent platelets 

that deposited on the 250 μm vessel wall segment during 1 min (2–3 min af-

ter injury). Quantitative analysis was performed using the following factors: 

platelet counts >100 were counted as 100 for statistics, (2) the time required 

for formation of a thrombus >30 μm, (3) thrombus stability by determining 

the number of thrombi of diameter >30 μm embolizing before vessel occlu-

sion, (4) occlusion time of the vessel, that is, time required for blood to stop 

fl owing for 10 s, and (5) site of vessel occlusion, that is, at the site of injury 

or downstream.

r-hu ADAMTS13 infusion. r-hu ADAMTS13 protein was dissolved in 150 

mmol NaCl/20 mmol histidin/2% sucrose/0.05% Crillet 4HP, Tween 80, 

pH 7.4 (Baxter Bioscience). r-hu ADAMTS13 (3,460 U/kg mouse) was injected 

i.v. Levels of human ADAMTS13 antigen were determined by a slight modifi ca-

tion of the ELISA method described by Rieger et al. (49) and r-hu ADAMTS13 

activity was determined according to Gerristen et al. (50). 1 U corresponds to the 

level of ADAMTS13 activity in pooled normal human plasma.

Flow chamber studies. Flow chamber studies were performed as described 

previously (51). In brief, platelets were isolated from heparinized whole blood, 

washed in modifi ed Tyrode-Hepes buff er, and labeled with 2.5 μg/ml calcein.  

Platelet-poor whole blood was reconstituted with labeled platelets before 

 perfusion in a parallel-plate fl ow chamber system coated with 100 μg/ml col-

lagen Horm (NYCOMED) for 1 h at room temperature. Where indicated, 

samples were pretreated with 30 μg/ml JON/A (emfret Analytics) (31) for 

10 min before perfusion. Platelet adhesion was visualized with an Axiovert 135 

inverted microscope (Carl Zeiss MicroImaging, Inc.). The percentage of sur-

face area covered by fl uorescent platelets was analyzed using National Insti-

tutes of Health Image 1.61 software by an individual blinded to genotypes.

Statistical analysis. Results are reported as the mean ± SEM. The statisti-

cal signifi cance of the diff erence between means was assessed by the  Student’s 

t test.

Online supplemental material. Video 1 shows stimulated release of 

 Weibel-Palade bodies in a microvenule of an ADAMTS13−/− mouse leads 

to rapid formation of thrombi that embolize downstream. Video 2 depicts 

arteriolar injury in an ADAMTS13−/− mouse that results in rapid vessel oc-

clusion and infusion of r-hu ADAMTS13 inhibits thrombus growth.  Online 

supplemental material is available at http://www.jem.org/cgi/content/

full/jem.20051732/DC1.
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