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During T lymphocyte activation, triggering 
of the TCR stimulates phospholipase C (PLC)–
mediated hydrolysis of phosphatidylinositol-
4,5-bisphosphate to generate inositol-1,4,
5-trisphosphate (IP3) and polyunsaturated dia-
cylglycerol (DAG). IP3 initiates the release of 
Ca2+ from intracellular stores in the ER, 
which is followed by a sustained increase in 
intracellular Ca2+ concentration ([Ca2+]i) me-
diated by Ca2+ entry via membrane Ca2+ 
channels. The sustained elevation of [Ca2+]i is 
critical during the initial phases of T cell acti-
vation, particularly for the production of ef-
fector cytokines (1, 2). One mediator of Ca2+ 
signals in T cells is the phosphatase calcineu-
rin, which regulates NFAT transcription fac-
tors that control cytokine gene expression 
(2–6). Ca2+–calmodulin-dependent protein 
kinases such as CaM kinase II and IV also reg-
ulate cytokine genes but can have other func-
tions (e.g., link Ca2+ signals to microtubule 
dynamics; references 2, 7–9).

CaM kinase IV, which is potently activated 
by TCR triggering, is activated by upstream 
Ca2+–calmodulin-dependent protein kinase 
kinases (CaMKKs; references 10, 11). In this 

respect, recent studies have suggested that 
CaMKKs also have the potential to activate the 
AMP-activated protein kinase (AMPK), a pro-
tein kinase with a crucial role in maintaining 
cellular energy homeostasis (12–14). AMPK 
can be activated by an increased intracellular 
AMP/ATP ratio, which is a marker of falling 
cellular energy status, and acts to restore energy 
balance by inhibiting ATP-consuming pro-
cesses and stimulating ATP-generating path-
ways (15). The stimulation of AMPK by an 
increase in the AMP/ATP ratio requires the 
phosphorylation of Thr-172 by the kinase 
LKB1 (16, 17). However, an alternate pathway 
of AMPK regulation mediated by Ca2+–
CaMKK has recently been described in cells 
stimulated pharmacologically with Ca2+ iono-
phores and in rat cerebrocortical slices triggered 
by K+-induced depolarization (12–14). The 
physiological role of the Ca2+–CaMKK–
AMPK pathway outside of neural tissues is not 
known, but this is an interesting issue for T cell 
biology because T cell activation is mediated 
by Ca2+-dependent signaling pathways, and 
triggering of the TCR induces a rapid increase 
in [Ca2+]i and CaMKK activation. Whether 
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[Ca2+]i–CaMKK pathways regulate AMPK in T cells has not 
been examined, but it is an important question because of the 
key role for AMPK as a regulator of cellular energy balance. 
AMPK activation by the TCR would be a mechanism to 
stimulate the conservation and production of ATP in antici-
pation of the demand for ATP that is invariably initiated by 
Ca2+-mediated signaling pathways. In this context, a previ-
ous study has identifi ed phosphatidylinositol-3,4,5-bisphos-
phate (PIP3), the product of phosphatidylinositol 3-kinases 

(PI3Ks), and PIM serine kinases as important regulators of 
T lymphocyte metabolism (18). However, it is likely that 
T cells will need to use diverse mechanisms to cope with the 
energy demands of an immune response. This study shows 
that triggering of the TCR results in the rapid activation of 
AMPK via a Ca2+–CaMKK-dependent pathway. The data 
provide novel insight that Ca2+ signaling in T cells regulates 
an evolutionally conserved kinase that controls the conserva-
tion and production of ATP.

Figure 1.  Ca2+ activation of AMPK𝛂1 in T cells. (A) Mouse and 

human T cells express the AMPKα1 isoform. Data show Western blot (WB) 

analysis of cell lysates from mouse thymocytes or human and mouse T 

lymphoblasts probed with antisera specifi c for AMPKα1 and α2. Protein 

extracts corresponding to 10 and 20 million mouse thymocytes or 5, 10, 

and 20 million mouse and human T blast cells were loaded successively 

on the gel. Cell lysates prepared from mouse muscle extracts were used as 

a positive control for AMPKα2 expression. (B) Ionomycin but not phorbol 

ester induces AMPK Thr-172 phosphorylation in human T lymphocytes. 

Human T cells were unstimulated or treated with 20 ng/ml PdBu or 0.5 

μg/ml ionomycin for the indicated time periods (given in minutes). 

(C) Ionomycin induces AMPK Thr-172 phosphorylation in mouse thymocytes. 

Mouse thymocytes were unstimulated or treated with 0.5 μg/ml ionomy-

cin in duplicate. (B and C) The data show Western blot analyses of cell 

lysates prepared from these cells with pThr-172–AMPK or AMPKα1 anti-

sera. (D) Ionomycin and thapsigargin induce AMPK Thr-172 phosphoryla-

tion in mouse and human T cells. Mouse and human T lymphocytes were 

unstimulated (in duplicate for mouse T cells and in triplicate for human 

cells) or treated with 0.5 μg/ml ionomycin or 500 nM thapsigargin (in 

duplicate in the case of human cells). Data show Western blot analyses 

with pThr-172–AMPK or AMPKα1 antisera. (E) Iomomycin but not phorbol 

ester induces phosphorylation of the AMPK substrate ACC. Human T cells 

were unstimulated or treated with 20 ng/ml PdBu or 0.5 μg/ml ionomycin 

in a duplicate experiment. Proteins were separated by SDS-PAGE and 

Western blotted using a pSer-79–ACC antibody. The quantity of ACC 

loaded on the gel was measured by its ability to bind streptavidin. West-

ern blots were analyzed by the Odyssey Infrared Imaging System (LI-COR 

Biosciences). Data show the ratio of phospho-ACC to the total ACC signal.
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RESULTS AND DISCUSSION

Ca2+ activation of AMPK𝛂1 in T cells

Fig. 1 A shows that mouse and human T cells express the 
AMPKα1 catalytic domain but do not express detectable lev-
els of AMPKα2. Pharmacological agents that elevate [Ca2+]i 
(e.g., Ca2+ ionophores) can mimic many aspects of antigen 
receptor triggering and are widely used to probe the Ca2+ 
signaling pathways in lymphocytes. Thus, to investigate the 
possible Ca2+ regulation of AMPK in T cells, primary human 
T lymphoblasts were stimulated with the Ca2+ ionophore 
ionomycin and monitored for the phosphorylation of Thr-
172 in the activation loop of AMPKα1, a marker of AMPK 
activation. The data show that ionomycin induced the rapid 
and sustained phosphorylation of AMPK Thr-172 (Fig. 1 B). 
Phosphorylation of Thr-172 was not induced when T cells 
were stimulated with the phorbol ester (phorbol 12,13-dibu-
tyrate [PdBu]), which mimics the action of DAG. Ionomycin-
induced Thr-172 phosphorylation was also seen in mouse 
thymocytes (Fig. 1 C) and peripheral T cells (Fig. 1 D). Thap-
sigargin, which inhibits the ER Ca2+-ATPase pump and, 
thereby, promotes Ca2+ release from the ER, also induced 
Thr-172 AMPK phosphorylation (Fig. 1 D). Further experi-
ments examined the impact of elevating intracellular Ca2+ 
levels on the phosphorylation of the AMPK substrate Ser-79 

in acetyl-CoA carboxylase (ACC). Fig. 1 E shows that iono-
mycin but not phorbol ester induced ACC phosphorylation. 
Phorbol esters induce a wide range of energy-consuming 
processes in lymphocytes, including changes in cell adhesion, 
motility, and gene expression. Accordingly, the failure of 
phorbol esters to induce AMPK or ACC phosphorylation in-
dicates that this is a selective response to the elevation of 
[Ca2+]i and is not a response to T cell activation per se.

TCR activation of AMPK

Increased [Ca2+]i is an immediate response to TCR trigger-
ing. Fig. 2 A shows that TCR triggering of human T cells 
rapidly increased AMPK Thr-172 phosphorylation and in-
duced phosphorylation of the AMPK substrate ACC on Ser-
79 (Fig. 2 B). The human T leukemic cell line Jurkat has low 
basal levels of AMPK Thr-172 phosphorylation, but this is 

Figure 2.  TCR activation of AMPK in human T cells. (A) TCR stimu-

lation induces AMPK Thr-172 phosphorylation in human peripheral 

blood-derived T cells. Human T cells were unstimulated or treated with 

10 μg/ml of the CD3 antibody UCHT1 to cross-link the TCR for the indi-

cated time periods (given in minutes). The data show Western blot (WB) 

analyses of cell lysates prepared from these T cells with pThr-172–AMPK 

or AMPKα1 antisera. (B) TCR-stimulated phosphorylation of the AMPK 

substrate ACC. Human T cells were unstimulated or treated with 10 μg/ml 

UCHT1, a CD3 cross-linking antibody, for the indicated time periods (given 

in minutes). Proteins were separated by SDS-PAGE and Western blotted 

using the pSer79-ACC antibody. The quantity of ACC loaded on the gel 

was measured by its ability to bind streptavidin. Western blots were ana-

lyzed by the Odyssey Infrared Imaging System. Data show the ratio of 

phospho-ACC to the total ACC signal.

Figure 3.  Ca2+ and TCR activation of AMPK in Jurkat cells. 

(A) Ionomycin and thapsigargin induce AMPK Thr-172 phosphorylation in 

Jurkat cells. Jurkat cells were unstimulated or treated with 0.5 μg/ml 

ionomycin or 500 nM thapsigargin for the indicated time periods (given 

in minutes). (B) TCR stimulation of AMPK Thr-172 phosphorylation in 

Jurkat cells. Jurkat T cells were unstimulated or treated with 10 μg/ml of 

the CD3 antibody UCHT1 to cross-link the TCR for the indicated time peri-

ods (given in minutes). (C) TCR stimulation of AMPK Thr-172 phosphory-

lation is dependent on LAT and SLP76. Wild-type, Slp76-, or LAT-negative 

Jurkat cells were unstimulated or treated with 10 μg/ml of the CD3 anti-

body UCHT1 or 0.5 μg/ml ionomycin for 5 min. (A–C) The data show 

Western blot (WB) analyses of cell lysates prepared from these T cells with 

pThr-172–AMPK or AMPKα1 antisera. Black lines indicate that interven-

ing lanes have been spliced out.
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Figure 4.  The CaMKK inhibitor STO-609 inhibits TCR activation 

of AMPK. (A) AMP/ATP ratios in TCR-triggered T cells are comparable 

with those in unstimulated cells. Jurkat cells were unstimulated or treated 

with 10 μg/ml of the CD3 antibody UCHT1 or 50 mM 2-deoxyglucose for 

1 and 5 min. The data show the ratios of AMP and ATP intracellular con-

centrations over the indicated time periods (given in minutes) under dif-

ferent stimulation conditions. (B and C) The CaMKK inhibitor STO-609 

inhibits TCR-induced AMPK Thr-172 phosphorylation in human peripheral 

blood-derived T cells (B) and in Jurkat cells (C). Human T cells (B) and 

 Jurkat T cells (C) were pretreated with STO-609 at the indicated concen-

trations and were stimulated with the CD3 antibody UCHT1 for 5 min. The 

data show Western blot (WB) analyses of cell lysates prepared from these 

T cells with pThr-172–AMPK, AMPKα1 antisera, or pSer-916–PKD anti-

bodies. (D) The CaMKK inhibitor STO-609 inhibits TCR-dependent AMPK 

activation in human T cells. Human T cells were pretreated with 2.5 μM 

STO-609 and were stimulated with the CD3 antibody UCHT1 for 5 min. 

Cells were lysed, and the AMPKα1 subunits were immunoprecipitated both 

from stimulated and unstimulated cells. Data show the catalytic activity 

of the immunoprecipitated AMPK in nanomoles/minute/nanogram pro-

tein units (mean ± SEM [error bars]; n = 3). (E) The CaMKK inhibitor STO-

609 does not inhibit TCR or ionomycin-induced increases in intracellular 

Ca2+ concentration. Jurkat T cells were labeled with 4.5 μM Indo-1 and 

treated with 2.5 μM STO-609 as indicated and were stimulated with 

10 μg/ml of the CD3 antibody UCHT1 or 0.5 μg/ml ionomycin for the 

indicated times. [Ca2+]i was then analyzed by fl ow cytometry. Data show 

[Ca2+]i over the indicated time periods under different stimulation con-

ditions. (F) 2-deoxyglucose–induced AMPK Thr-172 phosphorylation is 

resistant to STO-609. Untreated and STO-609–pretreated Jurkat cells were 

stimulated with 50 mM 2-deoxyglucose or 500 nM thapsigargin for the 

indicated time periods (given in minutes). Data show Western blot analy-

ses of cell lysates prepared from these T cells with pThr-172–AMPK or 

AMPKα1 antisera.
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readily induced when cells are stimulated with ionomycin, 
thapsigargin, or via the TCR (Fig. 3, A and B). To probe the 
signaling pathways used by the TCR to regulate AMPK, we 
examined AMPK activity in Jurkat cells that lack expression 
of the adapters LAT or SLP76. These molecules coordinate 
the assembly of the PLCγ1 signaling complex and are re-
quired for the TCR to increase [Ca2+]i (19, 20). Fig. 3 C 
shows that TCR ligation does not induce the phosphoryla-
tion of AMPK on Thr-172 in SLP76- or LAT-defi cient 
 Jurkat cells, whereas ionomycin activated AMPK in both cell 
clones. The failure of TCR activation of AMPK in Jurkat 
cells with defective TCR-mediated Ca2+ fl ux is consistent 
with a model whereby the TCR regulates AMPK via a Ca2+-
regulated mechanism. An alternative possibility is that TCR 
activates AMPK because it increases cellular AMP/ATP ratios. 
To address this possibility, we directly measured cellular 
ATP and AMP concentrations in T cells stimulated via TCR. 
Fig. 4 A shows that 2-deoxyglucose, which is known to de-
plete cellular ATP, rapidly increases the cellular AMP/ATP 
ratio in T cells, whereas triggering of the TCR complex did 
not. AMPK can thus be activated by energy stress that causes 
ATP depletion, but the ability of TCR to activate AMPK is 
not secondary to ATP depletion.

The CaMKK inhibitor STO-609 inhibits TCR activation 

of AMPK

To examine the role of CaMKK in AMPK regulation in 
T cells, experiments with the CaMKK selective inhibitor STO-
609 were performed. Fig. 4 (B–D) shows that STO-609 pre-
vents TCR-mediated increases in AMPK activity. STO-609 
did not prevent the TCR-induced activation of protein ki-
nase D (PKD; Fig. 4 B). PKD activation is absolutely depen-
dent on PLCγ-mediated increases in intracellular DAG, and 
an intact PKD response demonstrates that STO-609 does not 
aff ect PLC regulation. Similarly, the data in Fig. 4 E show 
that STO-609 did not prevent TCR-mediated increases in 
[Ca2+]i. STO-609 also had no eff ect on the activation of 

AMPK induced by 2-deoxyglucose, which regulates AMPK 
via LKB1 (Fig. 4 F).

TCR activation of AMPK is not PI3K dependent

Jurkat cells do not express PTEN (phosphatase and tensin 
homologue deleted on chromosome 10) and have high basal 
levels of PIP3 and constitutive activation of PKB–Akt. PI3K-
mediated signaling pathways, specifi cally PKB–Akt, regulate 
T cell metabolism (21, 22), but the low basal activity of 
AMPK in Jurkat cells argues that the elevation of PIP3 is not 
suffi  cient to activate this kinase (Fig. 3, A and B). Fig. 5 also 
shows that TCR-induced phosphorylation of AMPK Thr-
172 was not sensitive to the PI3K inhibitor LY294002, 
whereas this inhibitor did suppress the TCR-induced phos-
phorylation of FOXO3A on the PKB–Akt site Thr-32. 
Conversely, STO-609 treatment, which inhibited the TCR-
induced phosphorylation of AMPK, did not block the TCR-
mediated phosphorylation of FOXO3A. The PI3K 
insensitivity of AMPK activation in T cells argues that the 
activation of AMPK via TCR is a primary response to T cell 
activation and is not an indirect response to TCR-induced 
energy depletion.

In summary, in T lymphocytes, triggering of TCR acti-
vates AMPK, a key regulator of cellular energy homeostasis. 
TCR regulation of AMPK is mediated via a [Ca2+]i–CaMKK 
pathway and is not a response to energy stress. Thus, in T 
cells, AMPK does not function solely to restore energy bal-
ance after the depletion of energy stores. Rather, increases in 
[Ca2+]i that activate CaMKKs stimulate AMPK to promote 
the conservation and accelerated production of ATP in an-
ticipation of energy supplies becoming depleted. The ability 
to anticipate energy-intensive processes would be advanta-
geous for cells that need to rapidly respond to an increased 
demand for ATP. In this context, triggering of the TCR ini-
tiates an energy-demanding program that is only successful 
when cellular energy production satisfi es the biosynthetic 
 demands of an immune response. T cells will need to use 
 diverse mechanisms to cope with the energy demands of 
an immune stimulus, and Ca2+ activation of AMPK would 
allow a rapid activation of ATP production before the onset 
of cell proliferation and diff erentiation.

MATERIALS AND METHODS
Reagents and antibodies. STO-609 was purchased from Tocris, 

LY294002 was obtained from Promega, ionomycin and PdBu were pur-

chased from Calbiochem, and thapsigargin was obtained from Sigma-

 Aldrich. AMPK antibodies (α1, α2, and pT172), pSer-79 of ACC, and 

pSer-916 of PKD were described previously (23–25). Phospho-Thr24/

Thr32-FOXO1/3 antibody was obtained from Cell Signaling Technology.

Cells and stimulation. Mouse thymocytes were isolated from 6–8-wk-old 

C57/BL6/J mice. Human peripheral blood-derived T lymphoblasts and 

C57/BL6/J splenic mouse T lymphoblasts were generated and maintained as 

described previously (26, 27). LAT- or SLP76-null Jurkat mutants have been 

described previously (19, 20). For stimulations, T cells at 5 × 106/ml in 

RPMI supplemented with 1% FCS were treated with one of the following 

stimuli: 20 ng/ml PdBu, 0.5 μg/ml ionomycin, 500 nM thapsigargin, or 

10 μg/ml of the CD3 antibody UCHT1. Western blot analyses and AMPK 

Figure 5. TCR-induced phosphorylation of AMPK Thr-172 is not 

prevented by Ly294002. Human T cells were pretreated with either 2.5 

μM STO-609 or 10 μM Ly294002 and were stimulated with the CD3 anti-

body UCHT1 for 5 min. Data show Western blot analyses of cell lysates 

prepared from these T cells with pThr-172–AMPK, AMPKα1, or phospho-

Thr24/Thr32-FOXO1/3 antisera.
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catalytic assays were performed as described previously (17, 25). Nucleotide 

ratios were determined after perchloric acid extraction (28) of Jurkat cells us-

ing capillary electrophoresis (29). Ca2+ fl ux analysis used standard protocols 

with Indo-1 and an LSR fl ow cytometer (Becton Dickinson; reference 30). 

All data shown are representative of at least three independent experiments.
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