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Legionella pneumophila is the causative agent of 
Legionnaires’s disease (1). The microorgan-
ism is a Gram-negative facultative intracellu-
lar bacterial pathogen that can grow in culture, 
as well as replicate within fresh water amoeba 
and mammalian cells (2). On internalization 
by macrophages or amoeba, L. pneumophila 
avoids fusion with the endocytic pathway and 
establishes a replication vacuole, which devel-
ops into a rough ER-like compartment (3–5). 
 Legionella replicates within this compartment 
for up to 24 h, at which time the vacuole fi lls 
the host cell cytoplasm before lysis and libera-
tion of intracellular bacteria.

Biogenesis of the L. pneumophila replication 
vacuole requires a functional Dot/Icm appara-
tus, which is similar to other type IV secretion 
systems that promote conjugative DNA trans-
fer and translocation of proteins into target host 
cells (6). In the absence of Dot/Icm, the bacte-
ria target into an endocytic compartment and 
fail to replicate (7, 8). Genetic and bioinfor-

matics strategies have identifi ed a large cadre of 
protein substrates that are translocated by this 
apparatus, and there appears to be considerable 
functional redundancy among these  translocated 
proteins in regards to supporting L. pneumophila 
intracellular growth (9–14).

Although there has been extensive work on 
the L. pneumophila–encoded proteins required 
for growth within macrophages, it is still un-
clear what host cell factors regulate L. pneu-
mophila growth. Several studies have identifi ed 
common and specifi c host cell responses after 
contact with other bacterial pathogens,  usually 
after challenging cells with bacteria at high 
multiplicities, to ensure the entire population 
of host cells contacts the pathogen (15–18). In 
the case of L. pneumophila, such a global analysis 
of gene expression patterns in the amoeba Dic-
tyostelium discoideum has been performed (19). 
Most of the transcriptional changes occurred at 
24 h after infection (hai), when L. pneumoph-
ila initiated replication in this study. Some of 
the major transcriptional changes reported in-
clude induction of heat shock proteins, tRNA 
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 synthetase genes, and repression of calcium-binding proteins 
involved in signal transduction (19). More directed analyses 
of cytokines and transporters produced by target host cells in 
response to L. pneumophila have been performed, and there is 
selective induction of TNF-α and IL-1α, IL-1β, and IL-6 in 
peritoneal A/J mouse macrophages (20). The transcriptional 
expression of another cytokine, IL-12, is variable and is prob-
ably dependent on specifi c experimental conditions (21, 22). 
In addition, one study identifi ed an amino acid transporter, 
slc1a5, whose expression is required for L. pneumophila growth 
within human monocytes (23).

To understand the macrophage signaling pathways im-
portant for L. pneumophila growth, we investigated the global 
transcriptional response of host cells harboring a single bacte-
rium. This highly sensitive approach allowed for maximum 
bacterial replication and minimized host cell cytotoxicity. 

We found that among the genes induced under these con-
ditions were ones that encode antiapoptotic proteins. The 
antiapoptotic response appeared tightly linked to NF-κB ac-
tivation, supporting a role for this regulator in L. pneumophila 
intracellular growth that involves the maintenance of host 
cell survival after challenge with low doses of bacteria.

RESULTS

Low-dose challenge with L. pneumophila and enrichment 

of infected macrophages

To identify host cell genes that may modulate intracellular 
growth of L. pneumophila, we compared the transcriptional 
profi le of U937 cells incubated with either WT L. pneumophila 
(Dot+) or a dotA− mutant lacking a functional Dot/Icm trans-
locator (24, 25). The isolation of a homogenously infected 
cell population was a prerequisite for this study. Unlike other 
pathogens, L. pneumophila causes rapid Dot/Icm-dependent 
cytotoxicity at the high multiplicities of infection (MOIs) (26) 
that are required to infect the majority of cells in the mono-
layer. To bypass cytotoxicity, all incubations were performed 
at MOI = 1 (one bacterium per macrophage), which results 
in a minority of the cultured cells having associated bacteria. 
To specifi cally analyze this population, U937 cells having as-
sociated bacteria were then sorted away from the vast excess 
of uninfected cells using the GFP marker (Fig. 1 A).

Samples were collected 1 or 8 hai and sorted for the cell 
population harboring GFP bacteria, and total RNA was iso-
lated from these sorted populations. These two time points 
were chosen because the Dot+ strain initiates biogenesis of 
the replication vacuole at 1 hai, with clear recruitment of 
ER-derived vesicles at this time point (5), and has completed 
one round of division by 8 hai (Fig. 1 B). In contrast, the type 
IV secretion–defective strain dotA−-GFP fails to establish 
an ER-like vacuole and to replicate. At each of these time 
points, bacterial multiplication was monitored by graphing 
the fl uorescence profi le of each sorted sample as a function of 
normalized cell number (% of max = percentage of cells rela-
tive to peak fraction of cells; Fig. 1, C and D). Between 1 and 
8 hai, the peak fl uorescence intensity of sorted GFP-positive 
cells increased from 40 to 80 fl uorescent units (Fig. 1 C), cor-
responding to two bacteria per phagosome being present in 
80% of the Dot+-infected cells (Fig. 1 B). In contrast, the 
peak fl uorescence intensity of dotA−-GFP did not change 
over this time period (Fig. 1 D), which is consistent with a 
lack of replication.

To confi rm that any changes in expression patterns were 
a result of a response to functions performed by the type IV 
translocation system, the mutant strain dimB− was included 
in this study. The dimB− mutant has an intact Dot/Icm trans-
locator and shows proper formation of a replication vacuole 
but is defective for intracellular growth and stalls after one 
intracellular doubling (unpublished data). The peak fl uores-
cence intensity of U937 cells infected with dimB−-GFP was 
identical to that observed for Dot+-GFP at 1 and 8 hai, as 
expected for a mutant that stalls after this time point (unpub-
lished data).

Figure 1. Use of fl ow cytometry to isolate U937 cells associated 

with L. pneumophila. L. pneumophila strains Dot+-GFP and dotA−-GFP 

were introduced onto U937 macrophage monolayers at MOI = 1, allowed 

to incubate for 1 or 8 h, and infected cells were isolated by fl uorescence 

sorting (Materials and methods). (A) Schematic diagram of sorting experi-

ment. (B) One bacterial division occurs during the 8-h incubation. For 

each sorted GFP+ fraction, the cells were plated on coverslips, and the 

number of bacteria per phagosome was determined by fl uorescence mi-

croscopy. (C and D) Examples of the fl uorescence profi le of sorted, unin-

fected macrophages (solid gray line); sorted, infected macrophages at 

1 hai (gray dashed line); or sorted, infected macrophages at 8 hai (black 

dashed line) for Dot+-GFP (C) or dotA−-GFP (D), respectively. The percent-

age of max (% of max) indicates the number of cells relative to the peak 

fraction of cells.
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Low-dose infection caused substantial changes 

in macrophage gene transcription

Total RNA from the enriched population of U937 cells 
harboring L. pneumophila was analyzed by probing oligonu-
cleotide microarrays representing 21,173 human genes (see 
Materials and methods). Diff erentially expressed genes were 
identifi ed and subjected to hierarchical clustering to reveal 
gene expression trends (see Materials and methods; Fig. 2; 
and Table S1, available at http://www.jem.org/cgi/content/
full/jem.20060766/DC1). We observed that U937 cells re-
sponded almost identically to the Dot+-GFP (WT) and the 
replication-defective dimB−-GFP strains, with only a small 
subset of genes diff erentially expressed in these two infec-
tions (Table S2, available at http://www.jem.org/cgi/con-
tent/full/jem.20060766/DC1). In contrast, there were large 
diff erences in gene expression patterns between dotA−-GFP–
infected and Dot+-GFP–infected U937 cells. We found that 
>200 genes were induced or repressed specifi cally by Dot+-
GFP and not by dotA−-GFP at 1 or 8 hai (Table S3, available 
at http://www.jem.org/cgi/content/full/jem.20060766/DC1). 
Several diff erentially expressed genes that were up-regulated 
in response to infection with Dot+-GFP, but not dotA−-GFP, 
were verifi ed by quantitative real-time PCR (qPCR; Fig. 3). 
qPCR revealed that the induction levels of some genes in
response to Dot+-GFP, including dusp1, dusp2, and ciap2, 
 appeared to be under estimated by the microarray analysis 
(Fig. 3), strengthening the signifi cance of the induction that 
was observed in the  microarray analysis.

Association of host cells with the Dot+ strain induces major 

changes in genes regulating immune response, heat shock, 

and vesicle traffi cking

By 8 hai, Dot+-GFP induced transcription of a subset of the 
proinfl ammatory cytokines tnfα, il1α, and il1β, as well as the 
chemokine il8. Expression of il8 was verifi ed by qPCR, and 
relative induction levels were similar to those found on the 
arrays (Fig. 3). As the dotA−-GFP strain did not seem to in-
duce the expression of many infl ammatory genes, we deter-
mined whether incubation of target cells with higher doses of 
the dotA− mutant could trigger induction of these genes. Mi-
croarray analysis of U937 cells infected with dotA−-GFP at 
MOI = 10 revealed Dot/Icm-independent induction of in-
fl ammatory genes such as il1β, tnfα, and il8 (Table I). There-
fore, use of a low MOI is critical to observe Dot/Icm-dependent 
events in gene expression.

We also observed induction of several heat shock genes 
(hsp40, hsdj2, hsph1, hsp72, and hsp90) in response to Dot+-GFP, 

Figure 2. Microarray analysis of infected cells shows induction of 

host cell genes in response to functional Dot/Icm secretion system. 

Pearson hierarchical cluster analysis of genes differentially expressed 

relative to uninfected, unsorted reference cells. 799 genes are displayed. 

Shown are mock (uninfected cells, sorted/reference), dotA−-GFP (MOI = 10; 

unsorted dotA−-GFP/reference), dotA−-GFP (MOI = 1; sorted dotA−-

GFP/reference), dimB−-GFP (sorted dimB−-GFP/reference), or Dot+-GFP 

(sorted Dot+-GFP/reference) at 1 and 8 hai. The same reference prepara-

tion of uninfected U937 cells was used for each comparison. Each condi-

tion is represented as the mean from three independent microarrays, 

each of which was performed on preparations of RNA from different 

infections. Genes were judged to be induced or repressed if they were 

twofold up- or down-regulated in comparison to unsorted, uninfected 

reference cells (P < 0.05 as determined by the t test). Green represents 

repressed genes (<1), black represents equally expressed genes (reference 

1), and red represents induced genes (>1) on a log scale of 0.1–10. The 

complete list of differentially expressed genes from the hierarchical clus-

ter is shown in Table S1. Microarray data has been deposited in the NCBI 

Gene Expression Omnibus under accession no. GSE5551.
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but not dotA−-GFP (Table I). Two were DnaJ chaperone 
family members (hsp40 and hsdj2). In addition to their roles 
in protein folding, Hsp72, Hsp90, Hsp40, and Hdj2 have 
roles in interfering with apoptosis (27), which plays a criti-
cal role in supporting L. pneumophila replication, as will be 
shown below.

Multiple genes encoding proteins involved in membrane 
vesicle interactions were induced in response to the strain 
with an intact Dot/Icm translocator (Table I). Induction of 
expression of the snap23, rab8b, and rab9 genes was verifi ed 
by qPCR to be dependent on an intact Dot/Icm translocator 
(Fig. 3), and the levels of induction were found to be similar 
to those observed on the arrays. This apparent selective in-
duction of proteins associated with late secretory and endo-
somal system will be treated further in the Discussion.

Activation of NF-𝛋B pathway and manipulation 

of host cell survival

The most striking result from the analysis of low MOI chal-
lenge was that genes regulated by the mitogen-activated pro-
tein (MAP) kinase and NF-κB signaling pathways showed 
intense levels of response to Dot+-GFP but not dotA−-GFP 
infection (Table II). Although induction of the MAP kinase 
and NF-κB signaling pathways has been observed to be a 
general response to bacterial components at high MOI (17), 
in this case the response is specifi c to strains having an intact 
Dot/Icm translocator.

Dual specifi city phosphatases 1, 2, and 6 (dusp1, 2, and 6), 
which down-modulate MAP kinase pathways, were among 
the most highly induced genes on arrays, and qPCR analysis 
showed even higher levels of up-regulation with 100-fold 
induction of dusp1 (Fig. 3). It would appear that induction 
of these specifi c Dusp proteins allows fi ne tuning and po-
tential inactivation of MAP kinase pathways in response to 

Figure 3. Induction of host genes after contact with Dot+-GFP 

predicted to be up-regulated. qPCR analysis was performed on infected 

U937 cells sorted 8 hai. Mock (sorted, uninfected); sorted, Dot+-GFP–

infected; and sorted, dotA−-GFP–infected cells are shown. Relative gene 

expression represents the normalized value of the denoted sorted cDNA 

versus unsorted, uninfected cDNA.

Table I. Dot+ induces a subset of infl ammatory, heat shock, and vesicle traffi cking genes

MOI = 10 MOI = 1

mock 1 hai 

dotA−
8 hai 

dotA−
1 hai 

dotA−
8 hai 

dotA−
1 hai 

dimB−
8 hai 

dimB−
1 hai 

Dot+
8 hai 

Dot+

Infl ammatory genes

 il1α (NM_000575) 1.3 0.9 1 1.2 1.4 1.4 10.1 1.1 7.6

 il1β (NM_ 000576) 1.8 4.8 3.7 2.1 4.6 2.4 46.7 1.4 60.1

 il8 (NM_000584) 1.3 8.1 8 2 3.5 1.8 25.3 1.4 17.2

 tnfα (NM_000594) 0.8 4.4 1 1.2 0.5 1.4 33.4 2.4 80.4

Heat shock genes

 hsdj2 (NM_005494) 1.4 1.7 1 2.2 2 2.3 6.1 2 7.6

 hsp40 (NM_006145) 1.3 1.3 1.7 1 1.2 1.1 11.1 1 9.7

 hsp72 (NM_005345) 1.9 1.2 1.1 1.6 2.2 1.5 19.2 1.6 19.3

 hsp90 (AK056446) 1.1 0.7 0.7 0.9 1.2 0.7 2.4 0.6 2.8

 hsph1 (NM_006644) 1.8 0.8 0.9 0.8 1.2 0.6 12.3 0.5 12.1

Vesicle traffi cking genes

 rab9a (BC017265) 1.6 1 1.3 1 0.9 1.2 5.4 1.6 4.2

 rab8b (AK001111) 1.3 2.7 1.3 1.4 2.6 1.2 2.7 1.2 2.3

 arl4 (NM_005738) 1.8 1 0.9 0.7 0.9 0.8 10.2 0.3 4.6

 snap23 (BC003686) 1 0.9 1.7 1.5 1.6 0.9 1.3 1.3 2

 stx11 (NM_003764) 1 NA 2.7 0.9 1.1 0.9 11.3 1.1 3.5

 stx6 (NM_005819) 1.5 0.8 1.5 1.1 1.3 0.4 7 1.5 2.5

 trip11 (NM_004239) 1.1 0.7 1 1.1 1.1 1.7 1.4 1.2 3.5

Genes in bold were considered to be induced or repressed if the expression was >2-fold higher or <0.5-fold lower in infected macrophage samples compared with the 

reference (P < 0.05, as determined by the Student’s t test). GenBank/EMBL/DDBJ accession numbers are shown in parentheses. NA, not available.
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L. pneumophila infection. Dusps also play a role in limiting 
c-Jun N-terminal kinase activation, thereby preventing host 
cell death (28). Even more striking was the induction of a large 
number of genes upstream and downstream of the NF-κB 
pathway (Table II). Genes that encode NF-κB activators, such 
as irak2, tab2, and malt1, were induced by 8 hai (29, 30). Also 
induced were genes that encode factors involved in down-
regulating NF-κB signaling, tnfaip3 (A20) and iκbα (31), and 
those encoding antiapoptotic proteins under transcriptional 
control of NF-κB subunit p65, such as ciap1, ciap2, pai-2, and 
bcl2a1 (32–34). These latter proteins inhibit apoptosis by either 
binding directly to caspases (Ciaps) (35) or blocking release of 
cytochrome c from mitochondria (Blc2a1) (36).

The NF-κB family includes fi ve transcription factors: 
p65 (RelA), p50, p52, Relb, and c-Rel. The subunits form 
homo- and heterodimers, and the canonical form is p50-p65. 
Translocation of these NF-κB dimers from the cytoplasm to 

the nucleus is necessary for activation of this signaling path-
way. Because p65 is known to regulate antiapoptotic gene 
expression (32, 34), we tested whether nuclear translocation 
of NF-κB p65 occurs in response to L. pneumophila. U937 
cells were infected at MOI = 1 with Dot+ or dotA− strains 
lacking the GFP plasmid, and the cells harboring bacteria 
were analyzed by immunofl uorescence microscopy for local-
ization of p65. The NF-κB subunit p65 was detected in the 
nucleus at 6 hai in individual cells associated with Dot+, 
whereas there was no substantial nuclear p65 staining in cells 
harboring dotA− at MOI = 1 (Fig. 4 A, top). A time course 
was conducted to determine the kinetics of NF-κB p65 acti-
vation in response to infection and the persistence of the pro-
tein in the nucleus (Fig. 4 B). p65 translocation was fi rst 
observed at 3 hai in U937 cells infected with Dot+. Between 
6 and 14 hai, �50% of Dot+-containing cells had nuclear p65 
staining. In contrast, the Dot/Icm defective strain dotA− did 

Table II. MAP kinase and NF-κB cascade genes are induced by Dot+ infection

MOI = 10 MOI = 1

mock 1 hai 

dotA−
8 hai 

dotA−
1 hai 

dotA−
8 hai 

dotA−
1 hai 

dimB−
8 hai 

dimB−
1 hai 

Dot+
8 hai 

Dot+

MAP kinase pathway

 dusp1 (NM_004417) 1.9 5.2 1 1.5 1.8 1.5 25.7 2.6 13.7

 dusp2 (NM_0044 18) 1 1.1 0.8 1.4 0.9 0.7 67.8 1.6 34.1

 dusp6 (NM_001946) 1.3 1 1.2 1.1 1.7 0.9 3.4 1.2 3

 map2k3 (NM_002756) 1.4 3.3 1.3 1.1 1.4 1 12 1.2 3.3

NF-κB pathway genes

 nfkb1 (NM_003998) 0.8 0.7 1 1.2 1.5 1.1 9.8 0.8 7.8

 nfkb2 (S76638) 0.7 1.1 1.3 0.8 0.8 1 2.8 1 2.2

 rel (NM_002908) 0.6 0.9 0.9 0.9 1.2 0.8 2.5 0.7 2.1

 relb (NM_006509) 1.2 0.9 1.7 1.3 2.6 1.1 8 1.4 6.9

Activators

 atp2c1 (AF189723) 1.5 0.9 0.9 1.7 0.8 0.8 4.4 1.7 2.6

 bcl10 (NM_003921) 1.4 1 1.6 1.2 1.6 0.7 2.1 1.8 2.3

 cl24751 (AF070530) 0.8 0.9 1.2 1 1 0.9 1.9 1.1 2.2

 ikbkb (AF080158) 1 1.1 0.6 1.3 1.5 1.9 1.9 0.8 2.3

 irak2 (NM_001570) 0.5 2.8 1.7 1.3 1 0.8 6.9 0.9 4.6

 malt1 (NM_006785) 1.5 1.1 1.1 1.3 1.5 2 4.8 1.8 2.8

 oprk1 (NM_000912) 0.9 0.7 0.1 1.1 0.7 1.4 3.1 2.7 1.7

 tab2 (AL117407) 1.3 2 0.9 0.9 0.8 1.1 4.9 1.6 2.3

Inhibitors

 nfkbia (NM_020529) 1.6 9.2 3.4 3.8 5.2 3.1 27.3 2.9 36

 nfkbie (NM_004556) 1 1.6 1.8 1.1 1.6 1.3 7.1 1.2 3.7

 tnfaip3 (A20) 

( NM_006290)

0.8 2.7 2.7 2.3 4.3 2 40.4 2.1 23.2

Antiapoptotic

 bcl2a1 (NM_004049) 1 1.2 1.3 1.5 1.5 1.6 2.7 1.2 2.6

 ciap1 (NM_001166) 1.5 0.7 0.9 1.2 2.2 0.9 1.8 1.6 3.7

 ciap2 (AF070674) 1 0.5 2.2 0.9 1.8 5.9 32.8 1.4 14.2

 ier3 (NM_052815) 1 4.8 1.7 1.1 0.8 1.3 6.2 1.3 3.8

 pai-2 (NM_002575) 1.5 4.4 2.2 0.8 2.7 0.8 7.4 0.7 7.8

Genes in bold were considered to be induced or repressed if the expression was >2-fold higher or <0.5-fold lower in infected macrophage samples compared with the 

reference (P < 0.05, as determined by the Student’s t test). GenBank/EMBL/DDBJ accession numbers are shown in parentheses.
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not notably activate NF-κB p65 at any time point tested. 
Only when dotA− was added at MOI = 10 was NF-κB 
translocation observed by this assay (Fig. 4 B). This is consis-
tent with the microarray analysis in which we did not ob-
serve activation of the NF-κB cascade at MOI = 1, but we 
did observe a subset of NF-κB genes induced with dotA−-
GFP at MOI = 10 (Table II).

To further analyze the response of NF-κB to L. pneu-
mophila in primary macrophages, p65 translocation was eval-
uated in BM macrophages from A/J mice (see Materials and 
methods). In general, the response of these mouse macro-
phages was more rapid than that observed in U937 cells, with 
50% and 80% of the cells harboring Dot+ showing NF-κB 
nuclear staining by 1 and 14 hai, respectively (Fig. 4, A 

and C). In contrast to U937 cells, we observed some NF-κB 
translocation in BM macrophages harboring dotA− at MOI = 
1 (Fig. 4 C). Consistent with what we observed in U937 cells, 
increasing the bacterial dose to MOI = 10 resulted in NF-κB 
translocation in nearly 100% of dotA−-infected macrophages 
shortly after infection (Fig. 4 C). Therefore, dependence of 
NF-κB translocation on a functional type IV secretion sys-
tem required low MOI conditions, indicating that there are 
mechanistic diff erences in the pathways promoted by these 
two strains that lead to the NF-κB response.

As is true of mutations in most dot/icm genes, lesions in 
dotA prevent function of the type IV complex. The absence 
of the IcmS chaperone, however, allows Dot/Icm function 
but causes defective translocation of a subset of substrates 

Figure 4. NF-𝛋B p65 translocation is dependent on functional 

type IV secretion system. (A) U937 macrophages (top) or A/J BM macro-

phages (bottom) were incubated with Dot+ or dotA− at MOI = 1 for 6 h. 

NF-κB p65 localization and L. pneumophila (Lp) were visualized by immuno-

fl uorescence microscopy after probing with anti–L. pneumophila (red) or 

anti-p65 (green). Arrowheads point to bacteria, and arrows point to mac-

rophages with associated bacteria. Bar, 10 μm. Time course of NF-κB p65 

translocation in infected U937 cells (B and D) or A/J BM macrophages 

(C and E). Each graph shows the percentage of cells with nuclear p65 stain-

ing. (B and C) The following incubations were analyzed: uninfected cells, 

cells harboring Dot+, cells harboring dotA−, and cells harboring dotA− 

introduced at MOI = 10. (D and E) The following incubations were ana-

lyzed: uninfected cells, cells harboring Dot+ pMMB207, cells harboring 

dotA− pMMB207, cells harboring icmS− pMMB207, and cells harboring 

icmS−/pMMB207icmS+. Means + SE from three coverslips from a repre-

sentative experiment are displayed. A total of 100 infected cells were 

counted per coverslip.
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(13, 37). To determine if these substrates were required for 
NF-κB translocation, p65 nuclear localization was analyzed 
during an icmS− infection. Nuclear localization of p65 was 
partly dependent on icmS in U937 cells at early time points 
(Fig. 4 D), with NF-κB translocation observed in only 30–
40% of icmS−-infected cells at 4 hai (Fig. 4 D). Any defect in 
activation could be complemented by icmS located in trans 
on a plasmid. In contrast, after contact of the icmS− mutant 
with A/J BM macrophages, there was very little defect in 
NF-κB translocation during the fi rst 8 h of incubation, al-
though by 15 hai there were clearly lowered levels of nuclear 
NF-κB (Fig. 4 E). This late decrease is likely caused by the 
restriction of icmS− growth and consequent degradation of 
bacteria rather than the loss of specifi c eff ectors of the NF-
κB response. Therefore, most of the p65 nuclear localiza-
tion observed was either a result of Dot/Icm substrates that 
do not require IcmS for their deposition into host cells or 
because of direct interaction of the type IV secretion system 
with target cells.

NF-𝛋B translocation is necessary to promote host cell 

survival after L. pneumophila infection

NF-κB nuclear translocation may be required for host cell 
survival during L. pneumophila infection to maintain a niche 
for L. pneumophila replication. To address this possibility, 
the overexpression of the dominant-negative form of IκB, 
IκBDN, was used to inhibit NF-κB translocation (38). Spe-
cifi cally, BM macrophages from A/J mice were transduced 
with a retrovirus expressing either GFP alone or IκBDN-
IRES-GFP followed by infection with Dot+ or dotA− at 
MOI = 1. At 2 hai, nuclear localization of NF-κB p65 
was detected in �70% of the GFP-producing cells harboring 
Dot+ bacteria, whereas NF-κB translocation was almost 
completely inhibited in infected macrophages expressing 
IκBDN (Figs. 5, A and B). A microscopic assay was then used 
to examine the consequence of NF-κB inhibition on cell 
survival after L. pneumophila infection. A hallmark of apop-
totic cell death is the condensation of the cell nucleus, and 
cell death was quantitated in infected cells using Hoechst dye 
to analyze nuclear morphology (Fig. 5 A). By 6 hai, �45% of 
pIκBDN-producing macrophages harboring Dot+ had con-
densed nuclei, which is indicative of cell death (Fig. 5, A and 
C), whereas there was only 10% cell death in GFP-producing 
macrophages harboring Dot+. In contrast, no more than 5% 
of macrophages harboring the dotA− showed evidence of cell 
death in either GFP- or IκBDN- producing cells (Fig. 5 C). 
This is consistent with model that NF-κB translocation is 
necessary for host cell survival after L. pneumophila infection.

To investigate whether lack of NF-κB translocation in-
hibits intracellular growth of L. pneumophila, cultures were 
treated with caff eic acid phenethyl ester (CAPE), which is 
known to block translocation of NF-κB (39). This assay is 
not only an independent measure of the consequences of 
NF-κB inhibition, but it also allowed us to evaluate a larger 
number of infected cells in the monolayer than we could 
with IκBDN transduction assay. A/J BM macrophages were 

Figure 5. NF-𝛋B activation is required for host cell survival after 

L. pneumophila infection. A/J BM macrophages were transduced with 

retroviruses expressing either GFP or the dominant negative IκBDN-IRES-

GFP construct (reference 38). Transduced A/J macrophages were then 

incubated with the Dot+ or dotA− strains at MOI = 1, and NF-κB p65 

translocation and bacteria were visualized by immunofl uorescence micro-

scopy at 2 and 6 hai. (A) Images are examples of transduced macrophages 

harboring bacteria at 6 hai. NF-κB p65 and L. pnenumophila (Lp) were 

stained with same fl our. Bacteria are marked with arrowheads, and cell nu-

clei are marked with arrows. Nuclear morphology was observed by Hoechst 

DNA staining. Bar, 10 μm. (B) NF-κB p65 translocation and (C) cell death 

(condensed nuclei) were observed by immunofl uorescence microscopy and 

quantitated. Means + SE from three independent experiments are  explained. 

A total of 100 cells harboring bacteria were counted per experiment.
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 pretreated with CAPE at 10 μg/ml for 2 h and incubated 
with Dot+ or dotA− as described above, and NF-κB translo-
cation, cell death, and bacterial replication were determined. 
Translocation of p65 was effi  ciently inhibited by CAPE in 
Dot+-infected macrophages at both 1 and 6 hai (Fig. 6, A 
and B). Similar to what was observed in the IκBDN-express-
ing macrophages, 50% of the CAPE-treated macrophages 
harboring the Dot+ strain had condensed nuclei by 6 hai 
(Fig. 6, A and B), and by 15 hai 80% of the cells with associ-
ated bacteria had condensed nuclei-based Hoechst staining 
(Fig. 6 C). In contrast, the nuclear morphology of neighbor-
ing uninfected cells or cells harboring the dotA− strain were 
normal (Fig. 6, B and C), with punctate nucleoli visible 
(Fig. 6 A). Furthermore, the CAPE-treated macrophages un-
dergoing apoptosis were not permissive for growth of the 
Dot+ L. pneumophila strain. Replication of the Dot+ strain 
was inhibited in CAPE-treated macrophages, as almost all of 
the cells at 15 hai contained 1 bacterium per phagosome, 
whereas 60% of the untreated cells had >10 bacteria per 
phagosome (Fig. 6 D).

Many of the NF-κB–regulated antiapoptotic proteins 
identifi ed in the arrays could contribute to protecting from 
host cell death after L. pneumophila infection (Table II). To 
address whether a single antiapoptotic protein among this 
group contributed to host cell survival, we used BM macro-
phages derived from a plasminogen activator inhibitor–2 
(PAI-2)–defi cient C57BL/6 mouse, which has been shown 
to be more susceptible to LPS-stimulated cell death (33). To 
determine if this protein contributes to host cell survival in 
response to L. pneumophila, macrophages were isolated from 
the C57BL/6 pai-2−/− mouse strain and challenged with 
L. pneumophila fl aA−, which has been shown to grow in the 
normally restrictive C57BL/6 background (40, 41). By 6 hai, 
we observed a 2.5-fold increase in cell death in PAI-2–
 defi cient macrophages compared with the C57BL/6 control 
(P < 0.0005, determined by the Student’s t test; Fig. 7 A). 
Therefore, NF-κB–regulated antiapoptotic genes directly con-
tribute to host cell survival.

Dot+ NF-𝛋B activation is independent of MyD88 and Nod1

Toll-like receptors (TLRs) have been shown to activate 
NF-κB transcription factors in response to bacterial macro-
molecules. In several experiments, engagement of a variety 
of TLRs results in signaling that is mediated at least in part by 
the adaptor molecule MyD88 (42). To determine whether the 

Figure 6. NF-𝛋B translocation is necessary for host cell survival 

and bacterial replication. A/J BM macrophages were pretreated for 2 h 

in the presence or absence of CAPE at 10 μg/ml (reference 39). Cells were 

incubated with the Dot+ or dotA− strains at MOI = 1, and NF-κB p65 

translocation and bacteria were visualized by immunofl uorescence 

 microscopy at 1 and 6 hai. Nuclear morphology was observed by Hoechst 

DNA staining. (A) Examples of p65 staining and nuclear morphology at 

6 hai. Bar, 10 μm. (B) NF-κB p65 translocation and cell death (condensed 

nuclei) were quantitated at 1 or 6 hai. (C) Percentage of condensed nuclei 

at 15 hai. (D) Bacterial replication at 15 hai. The percentage of cells hav-

ing phagosomes bearing the denoted number of bacteria is shown. The 

only cells counted were those harboring bacteria. Means + SE of three 

coverslips from a representative experiment are given. U, uninfected cells; 

−, untreated cells; +, cells treated with CAPE.
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observed NF-κB activation is dependent on MyD88 signaling, 
BM macrophages from MyD88-defi cient and C57BL/6 con-
trol mice were used for L. pneumophila  infections.  Consistent 

with previous experiments, NF-κB translocation was read-
ily observed in macrophages infected by dotA− at MOI = 5 
but only marginally at MOI = 1 in the control C57BL/6 
BM macrophages (Fig. 7 B, shaded bars). The observed NF-
κB translocation by this dotA− strain required the presence 
of MyD88 (Fig. 7 B, open bars). In contrast, the type IV 
secretion–competent strains Dot+ and Dot+-fl aA− were still 
able to activate NF-κB in macrophages defi cient for MyD88 
(Fig. 7 B). Thus, L. pneumophila appeared to trigger two path-
ways resulting in NF-κB translocation; one bypasses MyD88 
and requires the Dot/Icm system, whereas the other requires 
MyD88 and can be detected in the absence of the type IV 
secretion system when using  elevated MOIs.

A pathway exists for NF-κB activation via the cyto-
solic sensor Nod, which recognizes intracellularly localized 
 peptidoglycan products (43). There is evidence that pepti-
doglycan products are delivered across the plasma membrane 
by the Helicobacter pylori type IV secretion system, promot-
ing Nod1-dependent NF-κB activation, so it is possible 
that Dot/Icm uses a similar strategy to promote transloca-
tion of p65 (44). To determine if activation of NF-κB by 
the Dot/Icm system is dependent on Nod1, we compared 
Nod1-defi cient C57BL/6 BM macrophages with a hetero-
zygous littermate control. L. pneumophila incubation with 
macrophages derived from the two mouse strains showed 
no considerable diff erence in p65 translocation (Fig. 7 C), 
indicating that NF-κB activation in this system was inde-
pendent of Nod1.

DISCUSSION

In this paper we analyzed the gene expression patterns of 
host cells harboring a single bacterium after incubation with 
diff erent L. pneumophila strains. This strategy allowed us to 
identify >200 genes that were diff erentially expressed in re-
sponse to events promoted by the L. pneumophila Dot/Icm 
secretion system. Most striking among the panel of diff er-
entially expressed genes was the induction of antiapoptotic 
genes, many of which are positively regulated by transcrip-
tion factor NF-κB p65 (32, 34).

It has been reported that L. pneumophila strain AA100 can 
induce apoptosis in U937 cells at high doses of bacteria (45). 
We found that the L. pneumophila Philadelphia 1 strain only 
causes small increases in cell death at low MOIs and instead 
stimulates an antiapoptotic response (46). Inducing apoptosis 
with staurosporine or TNF-α has been shown to be restric-
tive for L. pneumophila replication (46). Thus, interference 
with cell death is critical for optimal growth of the L. pneu-
mophila and, based on our experiments, is dependent on NF-
κB p65 translocation, at least in mouse BM macrophages. 
The importance of this response was emphasized by the fact 
that blocking NF-κB translocation by CAPE or expression of 
dominant-negative IκB resulted in premature cell death in 
BM macrophages incubated with the Dot+ strain. Both the 
activation of the NF-κB cell survival pathway and stimula-
tion of cell death in the absence of NF-κB translocation were 
dependent on a functional type IV secretion system, as the 

Figure 7. PAI-2–dependent and MyD88/Nod1-independent effects 

associated with L. pneumophila control of NF-𝛋B translocation. 

(A) BM macrophages derived from C57BL/6 or C57BL/6 pai-2−/− mice were 

incubated with L. pneumophila Dot+-fl aA− at MOI = 1 for the indicated 

times. Nuclear morphology was observed by Hoechst DNA staining, and 

the percentage of infected cells with condensed nuclei was quantitated. 

**, P < 0.0005 as determined by the Student’s t test. (B) BM macrophages 

from C57BL/6 and C57BL/6 myd88−/− mice were incubated with the 

Dot+, Dot+-fl aA−, or dotA− strains at MOI = 1 or 5 for the noted times. 

The percentage of infected cells with NF-κB p65 staining in the nucleus 

was quantitated by immunofl uorescence microscopy. (C) BM macro-

phages from C57BL/6 nod1+/− heterozygous or C57BL/6 nod1−/− homo-

zygous mice were incubated with the Dot+, Dot+-fl aA−, or dotA− strains 

at MOI = 1 for the noted times, and nuclear p65 was determined as in B. 

Means + SE from three independent experiments are shown.
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dotA− strain did not induce cell death under any condition 
used in this study.

Several intracellular pathogens have been shown to acti-
vate the NF-κB–antiapoptotic pathway. For instance, host 
cell survival after infection with parasites such as Toxoplasma 
gondii (47) or bacteria such as Rickettsia ricketsii (48) is associ-
ated with NF-κB translocation. NF-κB can be activated by 
engagement of TLRs at the host cell surface in response to 
microbial molecules that are present on both pathogens and 
nonpathogens (43, 49). TLR2 and TLR5, in fact, are en-
gaged by surface-exposed L. pneumophila LPS and fl agellum, 
respectively (50, 51), but at low bacterial doses it seems un-
likely that these common TLR ligands activate NF-κB trans-
location. Under conditions in which translocation of NF-κB 
was dependent on the Dot/Icm system, we observed nuclear 
localization of this protein in both the absence of MyD88 and 
with strains lacking the fl agellin protein, arguing against acti-
vation occurring via TLR2 or TLR5. The dependence on 
the type IV system for nuclear localization of NF-κB, how-
ever, could be bypassed by challenging macrophages with the 
dotA− strain at high MOIs. Under this condition, elevated 
MOIs allowed signaling through the adaptor MyD88 to pro-
mote nuclear localization of NF-κB.

One route for bypass of the MyD88 adaptor occurs via 
the intracellular signaling molecules Nod1 and Nod2, which 
are involved in recognition of bacterial peptidoglycan (43). It 
has been suggested that the extracellular pathogen H. pylori 
activates NF-κB via Nod1 by translocating peptidoglycan 
into the host cell through its type IV secretion system (44). In 
contrast, we observed that NF-κB translocation after L. pneu-
mophila challenge occurred independently of Nod1, which is 
consistent with a model in which protein substrates of the 
Dot/Icm system stimulate this event and promote host cell 
survival. In the absence of Nod1, however, Nod2 may still 
sense peptidoglycan released through L. pneumophila’s type 
IV secretion system, so this experiment does not totally elim-
inate the possibility that a substrate other than protein is the 
inducer of NF-κB translocation. If a protein is an inducer, 
then it must be transferred in a process that is largely indepen-
dent of the L. pneumophila IcmS/IcmW chaperone, which is 
involved in the egress of a subset of the type IV secretion sub-
strates (13). Alternatively, the observed nuclear localization 
of p65 could be a direct result of contact of the Dot/Icm ap-
paratus with the host cell.

In addition to activating antiapoptotic pathways, the NF-
κB family of transcription factors is known to control many 
proinfl ammatory processes. We observed selective strong in-
duction of proinfl ammatory cytokines TNF-α, IL-1α, and 
IL-1β, which is consistent with previous observations (20), 
as well as the induction of the chemokine IL-8. These 
 infl ammatory genes all are activated in part by NF-κB (52). 
In general, however, there was a lack of response of type I 
IFN–regulated genes. It has been recently reported that IL-6 
and IFN-β are highly induced by opsonized L. pneumophila 
in restrictive C57BL/6 MyD88/Trif double knockout mac-
rophages (53). The discrepancy in these results may be caused 

by the fact that our analysis used conditions that favored in-
tracellular growth rather than restriction. Furthermore, the 
host and bacterial strains that were analyzed in our experi-
ments were diff erent from those used in this previous study 
(53). When we directly assayed for secretion of IL-6 using 
BM macrophages from A/J mice and the Dot+ bacterial strain 
used in our experiments, IL-6 production was not apparent 
until 13 hai, a time at which the intracellular replication cycle 
is close to being completed and bacteria liberated from host 
cells begin to appear in the culture (unpublished data).

Heat shock genes were induced in host cells at 8 hai in 
response to a strain encoding an intact Dot/Icm translocator. 
Heat shock genes were also shown to be induced in Dictyoste-
lium discoideum in response to L. pneumophila infection (19) 
and may be playing similar roles in both host cell types. 
L. pneumophila eff ector proteins are deposited across the trans-
location channel, presumably in either an unfolded or partially 
folded form, which may induce the heat shock response and 
potentially facilitate the folding of translocated eff ectors. In 
addition, Hsps are known to play a role in preventing apop-
tosis (27), and their induction may support L. pneumophila 
replication in a manner similar to that proposed for NF-κB.

The L. pneumophila replication vacuole intercepts vesicles 
derived from the ER and destined for the cis-Golgi, yet the 
Golgi remains intact throughout the intracellular replication 
cycle (54). To compensate for perturbation caused by the for-
mation of the replication vacuole, it might have been pre-
dicted that the cell would up-regulate components involved 
in ER to Golgi traffi  c, but we found no evidence for this 
occurring at the transcriptional level. Instead, there was in-
duction of a distinct subset of genes encoding proteins that 
appeared to participate in traffi  c between the trans-Golgi net-
work and either the plasma membrane or various endocytic 
compartments (Fig. S1, available at http://www.jem.org/cgi/
content/full/jem.20060766/DC1). These may be involved in 
maintaining Golgi integrity via a retrograde pathway. Alterna-
tively, these proteins may facilitate cytokine secretion, as the 
soluble NSF attachment protein syntaxin 6 (stx6) is involved 
in the secretion of TNF-α (55), and both stx6 and tnfα were 
found to be induced after L. pneumophila infection (Table I).

In conclusion, we have performed a global screen for host 
cell genes diff erentially expressed during L. pneumophila in-
fection at a low infectious dose, with unexpected fi ndings. 
We have shown that NF-κB translocation is stimulated by 
the L. pneumophila virulence system and is required to sup-
port bacterial intracellular growth within mouse macro-
phages. Therefore, the NF-κB signaling pathway is likely to 
be a major target for manipulation by the L. pneumophila type 
IV secretion system. Continued research on this signaling 
will help to uncover the mechanism used by L. pneumophila 
to regulate this pathway and control intracellular growth.

MATERIALS AND METHODS
Bacterial strains and media. L. pneumophila philadelphia 1 strains Lp02 

(thyA, referred to as Dot+) and Lp03 (dotA−, referred to as dotA−) are 

 derivatives of Lp01 (hsdR rpsL) (56). The dimB− mutant (Lp02 dimB) has 
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the kanamycin resistance transposon miniTn10(kan) in the open reading frame 

Lpg2815. The icmS mutant was generated as previously described (37), and 

the icmS complementing plasmid pMMB207icmS+ (pCR43) was provided 

by Craig Roy (Yale University School of Medicine, New Haven, CT) (37). 

Lp02-fl aA− (referred to as Dot+-fl aA−) was provided by Tao Ren and 

 William Dietrich (Harvard Medical School, Boston, MA). L. pneumophila 

strains carrying GFP on an isopropyl-β-D-thiogalactopyranoside (IPTG)–

inducible plasmid have been described previously (57). L. pneumophila 

strains were maintained on buff ered charcoal yeast extract solid medium and 

ACES-buff ered yeast extract broth culture media (58–60). GFP strains were 

maintained on medium containing 100 μg thymidine/ml and 5 μg chloram-

phenicol/ml and grown in liquid culture containing 100 μg/ml thymidine 

and 1 mM IPTG.

Cell culture. U937 cells (American Type Culture Collection) were grown 

in RPMI 1640 (Irvine) supplemented with 10% heat-inactivated fetal bovine 

serum (Hyclone) and 1 mM glutamine (Invitrogen). 5 × 107 U937 cells 

were diff erentiated using 10 ng/ml 12-tetradecanoyl phorbol 13-acetate 

(TPA) for 48 h in a T175 tissue culture fl ask, after which cells were washed, 

replated with fresh media in the absence of TPA, and used for incubations 

with L. pneumophila �16 h later. A/J and C57BL/6 BM-derived macro-

phages were isolated from the femurs of 6–8-wk-old female mice and pre-

pared by standard procedures (58). C57BL/6 myd88−/− femurs were 

provided by Sarah Stanley in the laboratory of Jeff rey Cox (University of 

California, San Francisco, San Francisco, CA), and permission to use these 

mice in our study was granted by Shizuo Akira (Osaka University, Osaka, 

Japan). Femurs from C57BL/6 pai2−/− mice were provided by Randal 

Westrick in the laboratory of David Ginsburg (University of Michigan Med-

ical School, Ann Arbor, MI). Femurs from nod1+/− and nod1−/− littermates 

were provided by Mary O’Riordan (University of Michigan Medical School, 

Ann Arbor, MI).  Macrophages were isolated from femurs and diff erentiated 

for 7 d, collected, and frozen for use in multiple experiments in media con-

taining 20% serum, 10% DMSO. Macrophages were replated in RPMI me-

dium supplemented with 10% heat-inactivated fetal bovine serum and 1 mM 

glutamine for use.

Flow cytometry sorting. 5 × 107 TPA-diff erentiated U937 cells were 

replated in 10 cm tissue culture dishes in RPMI medium containing 10% 

FBS, 200 μg/ml thymidine, and 1 mM IPTG. After �16 h of incubation 

at 37°C, the U937 cells were infected with L. pneumophila grown in AYE 

broth medium to a post-exponential phase (A600, OD 3.5–4), as judged by 

the presence of motility in at least 50% of the bacteria observed in 40× fi elds 

(61). Individual plates were infected with Dot+-GFP (Lp02), dimB−-GFP, 

or dotA−-GFP adjusted to MOI = 1 bacterium/macrophage, assuming that 

109 bacteria is equivalent to A600 = 1. Bacteria were then pelleted onto the 

monolayers by a 5-min centrifugation at 1,000 rpm in a tabletop centrifuge 

fi tted with tissue culture plate carriers to synchronize infections, incubated 

at 37°C, 5% C02 for 1 h, and then washed three times before adding fresh 

medium. 1 or 8 h after centrifugation, uninfected (mock) or L. pneumophila-

infected U937 cells were lifted by washing the monolayer once with PBS + 

0.1 mM EDTA and then treating with 0.05% Trypsin-EDTA solution (Invi-

trogen) for 1 min. Complete RPMI/10% FBS medium was added back im-

mediately, and cells were collected by centrifugation at 1,000 RPM. U937 

cells were then resuspended in <1 ml of media to concentrate the suspen-

sion. Cells were sorted at Tufts Laser Cytometry facility (http://www.tufts.

edu/med/research/TLC.html) using a FACS (MoFlo; DakoCytomation), 

and appropriate gates were collected for further analysis. For each sample, 

1–2 × 106 GFP-positive cells and mock uninfected cells were sorted.

Microarray analysis. QIAGEN oligonucleotide microarrays (Human 

v2.1.2) were printed by and purchased from Tufts University Expression 

Analysis Core facility (TEAC; http://www.tufts.edu/med/teac/index.html). 

According to TEAC-provided protocols, 10–20 μg of total RNA was

isolated from U937 cells using an RNAeasy kit (QIAGEN) according 

to the manufacturer’s instructions. Total RNA was reverse transcribed 

with superscript II RT (Invitrogen) to incorporate the modifi ed nucleotide 

5-( 3-aminoallyl)-dUTP (Ambion) into cDNA. The resulting reactions 

were purifi ed on GFX columns (Cyscribe; GE Healthcare) and coupled 

with  either Cy3 or Cy5 normal human serum ester dye (GE Healthcare) in 

50 mM NaHC03 (pH 9). As a reference, cDNA isolated from uninfected, 

unsorted U937 cells were always labeled with Cy3, and the sorted sample or 

high MOI sample was always labeled with Cy5. CyDye-labeled cDNA was 

purifi ed on the Cyscribe GFX column, and incorporation of CyDye was 

quantitated spectrophotometrically to normalize each sample set. Reference 

Cy3- and Cy5-labeled cDNAs were hybridized in 1× GE Healthcare hy-

bridization buff er and 10% formamide in a Corning hybridization chamber 

for 48 h at 42°C. Glass slides were washed with increasing stringency in 1 × 

SSC, 0.2% SDS, followed by 0.1 × SSC, 0.2% SDS, and 0.1 × SSC buff ers. 

The glass microarrays were spun dry and scanned immediately (ScanArray 

4000; Packard Instrument Co.). Microarray accession data are provided in 

Tables I and II and Table S1.

Microarray data analysis. Hybridization levels were measured using 

analysis software (Imagene; Biodiscovery). Exported raw gene expression 

data was imported into a microarray program (Genespring; Agilent Tech-

nologies) for further analysis. The mean of expression levels for individual 

genes from three independent microarrays performed on cells isolated from 

three independent infections were used to identify diff erentially expressed 

genes. Genes were considered to be induced or repressed when the ratio 

of sorted sample/reference (unsorted and uninfected) was >2 or <0.5 on 

a log scale of normalized intensities (lowest intensity dependent on nor-

malization) and generated a p-value < 0.05 by the Student’s t test. The 

one-way analysis of variance test was used to select diff erentially expressed 

genes comparing U937 cells incubated with Dot+-GFP, dimB−-GFP, 

dotA−-GFP (all at MOI = 1), dotA−-GFP (at MOI = 10), or mock infec-

tions.  Hierarchical clustering to identify gene expression trends was per-

formed using Pearson correlation.

qPCR. 1 μg of total RNA from sorted cell samples and references was fi rst 

reverse transcribed using superscript II RT (Invitrogen) in a total  reaction 

volume of 60 μl containing DNase/Rnase-free water and a buff er suggested 

by the manufacturer. 1 μl of the resulting cDNA reaction mix was then 

used for qPCR analysis. qPCR was then performed using the  GenAmp5700 

system with the SYBR green PCR reagent (Applied Biosystems). Primer se-

quences are available on request. For each quantifi cation, three reactions were 

performed in parallel, results were normalized based on a β-actin mRNA 

control, and mean values were calculated. Real-time PCR reactions were 

performed in duplicate, and all results were found to be highly reproducible.

Retroviral transduction. pCLXSN-IκBDN-IRES-GFP and pCLXSN-

GFP vectors were provided by James B. Bliska (State University of New 

York at Stony Brook, Stony Brook, NY). Retroviral transductions were 

performed as previously described (38, 62), with the following modifi ca-

tions. A/J BM macrophages grown for 7–8 d were used for transductions. 

Macrophages were cultured on glass coverslips in fresh retroviral 293T su-

pernatant for 48 h using 24-well plates. The transduced macrophages were 

than washed with fresh media containing 200 μg/ml thymidine and incu-

bated with bacteria 30 min later.

NF-𝛋B translocation assay. For immunofl uorescence analyses, mamma-

lian cells (either U937 cells or BM macrophages) were plated at a density of 

2–3 × 105 cells per well with 200 μg/ ml thymidine on coverslips placed in 

24-well dishes. For incubations with host cells, Dot+, dotA−, or Dot+-fl aA 

were grown to the post-exponential phase, and cell monolayers were 

 infected as previously described (10). Cells were allowed to continue to in-

cubate in fresh RPMI/FBS medium for the times noted in the fi gures and 

were then fi xed with 3.7% paraformaldehyde in PBS for 20 min at room 

temperature. Fixed cells were permeabilized with 0.1% Triton X-100 

in PBS for 10–20 min at room temperature, blocked in PBS contain-

ing 4% goat serum (Invitrogen) for 30 min, stained with primary rat 
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anti–L. pneumophila serum (1:10,000) and rabbit anti-p65 (1:1,000; Santa 

Cruz Biotechnology, Inc.) in PBS containing 4% goat serum overnight at 

4°C. Appropriate secondary antibodies were used, either goat anti–rat IgG 

conjugated to Texas red ( Invitrogen), donkey anti–rabbit IgG conjugated to 

FITC (Jackson Immuno Research Laboratories), and/or goat anti–rabbit IgG 

conjugated to AlexaFluor 594 (Invitrogen). Nuclei were stained using 

Hoechst DNA dye (1:10,000; Invitrogen). Microscope images were taken 

using a 100× 1.4 NA lens on a microscope (IM200; Carl Zeiss  MicroImaging, 

Inc.). Contrast and brightness of individual channels were adjusted linearly 

in Photoshop (Adobe).

Online supplemental material. Table S1 contains the complete list of 

diff erentially expressed genes from the hierarchical cluster shown in Fig. 2. 

Table S2 lists the human genes that were induced or repressed in re sponse 

to the dimB−-GFP strain and not other strains. Table S3 lists the human 

genes that were induced or repressed in response to Dot+-GFP but not 

by dotA−-GFP at MOI = 1. Fig. S1 is a diagram of the vesicle traffi  ck-

ing pathways aff ected by the genes induced in response to Dot+-GFP 

at 8 hai. Online supplemental material is available at http://www.jem.

org/cgi/content/full/jem.20060766/DC1.
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