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Selective predisposition to bacterial 
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IRAK-4–dependent TLRs are otherwise 
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and plasmacytoid DCs (PDCs) express TLR1, 6, 7, 9, and 10 
( 19, 21 – 23 ). Monocyte-derived DCs (MDDCs) express TLR1, 
2, 3, 4, 5, 6, 8, 9, and 10, but hardly any TLR7 ( 24, 25 ). 
In  basophilic and eosinophilic granulocytes, substantial expres-
sion has been confi rmed only for TLR7 in eosinophils ( 26 ). 
In the lymphoid lineage, blood B cells express TLR1, 6, 7, 9, 
and 10 ( 20, 23, 27 ); NK cells express TLR1, 2, 3, 5, 6, 7, and 
8 ( 20 ); CD4  � / �  T cells express at least TLR1, 2, and 5 ( 28 ); 
and eff ector  � / �  CD8 T cells and  � / �  T cells express TLR3 
( 29, 30 ). In healthy controls, most subsets could be activated 
by the corresponding TLR agonists tested. In contrast, the range 
of blood cells in which TLR responses are aff ected by IRAK-4 
defi ciency remains unclear. 

 IRAK-4 defi ciency may have an even broader impact, 
given the well-established role of IRAK-4 downstream from 
multiple IL-1Rs ( 1, 31 ) and the recently proposed role of 
IRAK-4 in TCR signaling ( 32 ). It is thus surprising that the fi rst 
three patients identifi ed were alive and well and had experi-
enced only a few infectious diseases ( 1 ). To date, 21 IRAK-4 –
 defi cient patients have been reported in individual case reports 
or small series ( 1, 4 – 13, 33 – 36 ). Most presented with periph-
eral (e.g., pharyngotonsillitis, sinusitis, cellulitis, and endo-
phthalmitis) and/or invasive bacterial diseases (e.g., meningitis, 
arthritis, septicemia, and visceral abscess) caused mostly by 
 Streptococcus pneumoniae  and  Staphylococcus aureus  ( 1, 4 – 13, 33 – 36 ). 
Only seven patients also presented infectious disease caused 
by Gram-negative bacteria ( Pseudomonas aeruginosa  in most 
cases) ( 1, 4 – 6, 8, 13, 33, 36 ). Although IRAK-4 defi ciency 
appears to be more severe than initially thought ( 1 ), with seven 
reported deaths ( 5, 7 – 9, 13, 34, 36 ), the condition seems to 
improve with age, even without prophylaxis ( 4, 6, 36 ). The 
apparent broad resistance of IRAK-4 – defi cient patients chal-
lenges the prevailing view that TLRs are the principal sentinels 
of innate immunity ( 37 – 39 ). However, it has been diffi  cult to 
draw fi rm conclusions in the absence of a large series of patients. 
Moreover, the rarity of infections may refl ect the TLR-
dependent, yet IRAK-4 – independent, induction of certain cyto-
kines in specifi c leukocyte subsets. We thus investigated the 
contribution of human TLRs to host defense by documenting 

 Inherited IL-1R – associated kinase 4 (IRAK-4) defi ciency is 
an autosomal recessive disorder that was fi rst described in three 
unrelated children ( 1 ). IRAK-4 – defi cient patients ’  fi broblasts 
and/or leukocytes show an impaired response to most Toll-
like receptor (TLR) and IL-1R agonists tested ( 1 – 12 ). Specifi -
cally, the patients ’  whole blood cells or PBMCs do not respond 
to IL-1 � , in terms of IL-6 secretion ( 1 ), or to IL-18, in terms 
of IFN- �  production ( 1, 4 ). Moreover, agonists of TLR1/2 
(Pam 3 CSK 4 ), TLR2/6 (Pam 2 CSK 4 ), TLR3 (poly(I:C)), TLR4 
(LPS), TLR5 (fl agellin), and TLR9 (CpG DNA), do not in-
duce the production of major infl ammatory cytokines (TNF- � , 
IL-6, and IL-12) and growth factors (G-CSF and GM-CSF) 
in whole blood cells and PBMCs ( 1 – 9, 11, 12 ). However, the 
patients ’  PBMCs do respond to the nonspecifi c TLR3 agonist 
poly(I:C) and the TLR4-specifi c agonist LPS by producing 
IFN- �  mRNA (for poly(I:C) and LPS) or IFN- �  protein (for 
poly(I:C) only) ( 13 ). Moreover, the patients ’  fi broblasts have 
been shown to respond to poly(I:C) by inducing IFN- � , IFN- � , 
and IL-6 ( 13 ). The human IRAK-4 – independent TLR3/4 
pathway is reminiscent of the mouse MyD88-independent, 
Toll/IL-1 receptor (TIR) domain – containing adaptor-inducing 
IFN- �  (TRIF) – dependent TLR3/4 pathway ( 14, 15 ), which 
also controls the induction of cytokines other than IFNs, at 
least for TLR3 ( 16, 17 ). Despite the lack of IL-6 and TNF- �  
induction in response to poly(I:C) in human IRAK-4 – defi cient 
whole blood cells ( 1 ), the normal induction of IFN- � , - � , 
and - �  in response to poly(I:C) and LPS ( 13 ) raises the pos-
sibility that IRAK-4 defi ciency may not prevent the induction 
of other cytokines in response to these two and possibly other 
TLR agonists. 

 The lack of response of IRAK-4 – defi cient whole blood 
cells and PBMCs to TLR and IL-1R agonists also does not 
exclude the possibility that individual leukocyte subsets may 
respond to at least some agonists. Several human leukocyte 
subsets produce TLR mRNAs and/or proteins. In the myeloid 
lineage, neutrophilic granulocytes express TLR1, 2, 4, 5, 6, 7, 8, 
and 10, as well as TLR9 upon induction with GM-CSF ( 18 ); 
monocytes express TLR1, 2, 4, 5, 6, 7, 8, and 9 ( 19 – 21 ); mye-
loid DCs (MDCs) express TLR1, 2, 3, 4, 5, 6, 7, 8, and 10 ( 22 ); 

Human interleukin (IL) 1 receptor–associated kinase 4 (IRAK-4) defi ciency is a recently discovered primary immuno-

defi ciency that impairs Toll/IL-1R immunity, except for the Toll-like receptor (TLR) 3– and TLR4–interferon (IFN)-��� 

pathways. The clinical and immunological phenotype remains largely unknown. We diagnosed up to 28 patients with 

IRAK-4 defi ciency, tested blood TLR responses for individual leukocyte subsets, and TLR responses for multiple cyto-

kines. The patients’ peripheral blood mononuclear cells (PBMCs) did not induce the 11 non-IFN cytokines tested upon 

activation with TLR agonists other than the nonspecifi c TLR3 agonist poly(I:C). The patients’ individual cell subsets 

from both myeloid (granulocytes, monocytes, monocyte-derived dendritic cells [MDDCs], myeloid DCs [MDCs], and 

plasmacytoid DCs) and lymphoid (B, T, and NK cells) lineages did not respond to the TLR agonists that stimulated 

control cells, with the exception of residual responses to poly(I:C) and lipopolysaccharide in MDCs and MDDCs. Most 

patients (22 out of 28; 79%) suffered from invasive pneumococcal disease, which was often recurrent (13 out of 22; 

59%). Other infections were rare, with the exception of severe staphylococcal disease (9 out of 28; 32%). Almost half 

of the patients died (12 out of 28; 43%). No death and no invasive infection occurred in patients older than 8 and 14 yr, 

respectively. The IRAK-4–dependent TLRs and IL-1Rs are therefore vital for childhood immunity to pyogenic bacteria, 

particularly Streptococcus pneumoniae. Conversely, IRAK-4–dependent human TLRs appear to play a redundant role in 

protective immunity to most infections, at most limited to childhood immunity to some pyogenic bacteria.
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locus, and the genotyping of polymorphic markers showed that 
P2 was heterozygous for a large de novo deletion (designated 
BAC210N13del) encompassing  IRAK4  (Fig. S1, top, available 
at http://www.jem.org/cgi/content/full/jem.20070628/DC1; 
and not depicted). For P7, using the same BAC as for P2, 
fl uorescence in situ hybridization revealed two signals, consistent 
with homozygosity owing to segmental uniparental disomy or 
compound heterozygosity with an undetected deletion encom-
passing a fraction of  IRAK4  (Fig. S1, bottom; and not depicted). 
Not enough material was available to explore the  IRAK4  
locus in the deceased patients P11 and 12 from kindred I ( 8 ). 
3 out of the 14 mutant alleles identifi ed carried nonsense 
mutations (Y48X, Q293X, and E402X) ( 1, 3, 4, 6, 8, 9, 11, 36 ), 
3 carried large deletions ( 1-1096_40�23del ,  BAC210N13del , 
and  942-1481_1125�547del ), 2 carried splice mutations 
( 1188�520A 	 G  and  1189-1G 	 T ) ( 12 ), and 6 carried 
frameshift insertions and deletions ( 167_172insA ,  573delA , 
 620_621delAC ,  631delG ,  821delT , and  1240insA ) ( 1, 4, 7, 34 ) 
( Table I  and  Fig. 2 A ).  All mutations are predicted to be null, 
as they create a premature termination codon or delete a large 
segment of the gene. No missense mutation was found. The 14 
mutations were not found in 100 healthy controls sequenced. 

the clinical course of a large number of IRAK-4 – defi cient 
patients and testing the TLR responses of their PBMCs for 
multiple cytokines, as well as the TLR responses of their indi-
vidual leukocyte subsets. 

  RESULTS  

  IRAK4  mutations 

 We report 28 patients with IRAK-4 defi ciency. The patients 
originate from 18 unrelated kindreds and 11 countries ( Table I  
and  Fig. 1 ).  All  IRAK4  exons, fl anking intron regions, and, 
when appropriate, entire introns, were sequenced in 24 patients 
(P1 – 4, 6 – 13, 15, 17 – 20, and 22 – 28). IRAK-4 defi ciency was 
diagnosed on clinical grounds in four deceased relatives (P5, 
14, 16, and 21) for whom no biological material was available. 
The patients of 13 kindreds were apparently homozygous 
(kindreds A – C, E, F, H – L, and P – R), and those from 5 kindreds 
were compound heterozygous (D, G, and M – O) for  IRAK4  
mutations. However, four seemingly homozygous patients 
from three unrelated families (P2 from kindred B, P7 from 
kindred F, and P11 and 12 from kindred I) had one parent 
who did not carry the mutant allele. Fluorescence in situ 
hybridization with BAC210N13, which covers the entire  IRAK4  

 Figure 1.   Pedigree of the 18 kindreds identifi ed with IRAK-4 defi ciency. Each kindred is designated by a capital letter (A – R), each generation is 

designated by a Roman numeral (I – IV), and each individual is designated by an Arabic numeral (from left to right). IRAK-4 – defi cient patients with a clini-

cal phenotype are represented as closed symbols. P20, the only patient with confi rmed IRAK-4 defi ciency but no known clinical phenotype, is represented 

with an open square divided by a black line. In each family, the proband is indicated by an arrow. Individuals whose genetic status could not be evaluated 

are indicated by  “ E? ” ; they include four individuals (P5, 14, 16, and 21) thought to be IRAK-4 defi cient based on their clinical phenotypes.   
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Q293X), P8 (mutations  1188+520A 	 G  and  1189-1G 	 T ), P13 
(mutation E402X), P19 (mutation  167_172insA ), and P22 
(mutation Q293X/ 620-621del ) had low levels of detectable 
full-length  IRAK4  mRNA. We then assessed IRAK-4 protein 
levels in B-EBVs ( Fig. 2 C ). No IRAK-4 protein was detected 
in any of the patients tested, even in P7, 8, 13, 19, and 22, 
all of whom had detectable full-length mRNAs, excluding 
a potential role of IRAK-4 as a scaff old protein in our 
patients ( 40, 41 ). Finally, we assessed the functional impact of 
 IRAK4  mutations. B-EBVs bearing mutations  821delT  (P1), 
Q293X (P2, 3, and 7),  1188�520A 	 G/1189-1G 	 T  (P8), 
E402X (P13), and  1-1096_40�23del  (P15) did not respond 
to TLR7 and 8 agonists, as measured by TNF- �  production 
( Fig. 3 A ).  SV40-transformed fi broblasts (SV40-fi broblasts) 

The Q293X mutant allele was found in homozygotes from 
six kindreds (C, H, K, P, Q, and R) and compound hetero-
zygotes from four kindreds (B, D, M, and possibly F). The 
recurrence of this mutation may refl ect a mutational hotspot, 
a founder eff ect, or both (unpublished data). 

 IRAK-4 expression and function 

 We assessed  IRAK4  mRNA levels in EBV-transformed B 
lymphocyte cell lines (B-EBVs;  Fig. 2 B ) derived from most 
patients and a healthy control by RT-PCR. The two patients 
carrying the  573delA  mutation died before cell lines could be 
established ( 34 ). Most other patients lacked detectable full-
length  IRAK4  mRNAs species, presumably because of non-
sense-mediated mRNA degradation. However, P7 (mutation 

  Table I.    Genotypes, origin, and clinical phenotypes of IRAK-4 – defi cient patients 

Kindred Patient Mutation Origin Follow-up Age Pathogens causing  

 severe Gram-positive  

 infections

Pathogens causing  

 severe Gram-negative  

 infections

References

A P1 (II-4)  821delT KSA deceased 7 yr Sp, Sa  – ( 1, 13 )

B P2 (II-2) Q293X /  

 BAC210N13del 

Portugal alive 14 yr Sp, Sa  – ( 1, 10, 13 )

C P3 (II-1) Q293X USA alive 11 yr Sp, Sa Ec ( 1, 3, 33 )

D P4 (II-1) Q293X /  

 620-621delAC 

USA alive 24 yr Sp, Cs Nm ( 2, 4, 35 )

E P5 (II-1) ND Turkey deceased 16 mo Sp, Spa  – ( 34 )

E P6 (II-4)  573delA Turkey deceased 2 mo Sp  – ( 34 )

F P7 (II-2) Q293X UK alive 32 yr Sp Ss ( 6, 10, 13 )

G P8 (II-1)  1188�520A 	 G/  

 1189-1G 	 T 

Hungary alive 9 yr Sp  – ( 10, 12, 13 )

H P9 (II-1) Q293X Canada deceased 6 yr Sp Pa ( 5, 9, 13 )

H P10 (II-4) Q293X Canada alive 7 yr Sp  – ( 5, 9, 13 )

I P11 (III-1) E402X Spain deceased 2 yr Sa Pa ( 8, 13 )

I P12 (III-4) E402X Spain deceased 8 mo Sp Pa ( 8, 13 )

I P13 (IV-1) E402X Spain alive 9 yr Sp  – ( 8, 10, 13 )

J P14 (II-2) ND Israel deceased 3 mo Sm  – ( 13 )

J P15 (II-3)  1-1096_40�23del Israel alive 9 yr Sp  – ( 10, 13 )

K P16 (II-1) ND Canada deceased 5 mo Sa  – ( 13, 36 )

K P17 (II-2) Q293X Canada alive 27 yr Sp Pa ( 13, 36 )

K P18 (II-3) Q293X Canada alive 27 yr Sp  – ( 13, 36 )

L P19 (II-1)  167_172insA Japan deceased 2 yr Sp  – ( 7 )

L P20 (II-2)  167_172insA Japan alive 24 mo  –  – ( 7) 

M P21 (II-2) ND USA deceased 4 mo bacterial meningitis  – this study

M P22 (II-3) Q293X /  

 620-621delAC 

USA alive 10 yr Sp, Sa  – this study

N P23 (II-1) Y48X /  

 631delG 

Canada alive 2 yr Sa  – this study

O P24 (II-1)  1240insA/  

  942-1481_1125�547del 

Canada alive 16 yr Sp, Sa  – this study

P P25 (II-1) Q293X Australia deceased 4 mo Sp  – this study

P P25 (II-5) Q293X Australia deceased 6 mo Sp, Sa  – this study

Q P27 (II-2) Q293X USA alive 11 yr Sp  – this study

R P28 (II-1) Q293X USA alive 6 yr Sp  – ( 11 )

Cs,  Clostridium septicum ; Ec,  E. coli ; KSA, Kingdom of Saudi Arabia; Nm,  N. meningitidis ; Pa,  P. aeruginosa ; Sa,  S. aureus ; Sm,  S. milleri ; Sp,  S. pneumoniae ; Spa,  S. parasanguis ; 

Ss,  S. sonnei .
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IgG levels were normal in seven and high in four (P7, 8, 11, 
and 17) patients, and IgM levels were normal in seven, high in 
three (P7, 11, and 19), and low in one (P2) patients. IgE levels 
were high in 8 (P1, 7, 8, 11, 13, 15, 17, and 23) out of the 
11 patients evaluated (Table S2). Antibody responses to protein 
antigens were normal in all but two patients, who had slightly 
low titers (P7 and 15); however, the date of recall vaccination 
before serological testing was unknown. The antibody response 
to glycans was impaired in some (P2, 8, 17, 18, and 29) but not 
all patients, and in response to some but not all pneumococcal 
and erythrocyte AB antigens (Table S2 and unpublished data) 
( 11, 12, 33 ). Finally, the surface expression of CD16 and CD56 
on NK cells was normal (Table S1). IFN- �  secretion and sur-
face expression of CD107 (degranulation) by the patients ’  NK 
cells were normal (unpublished data). Overall, there seemed 
to be no overt defect of leukocyte development in IRAK-4 –
 defi cient patients. Thus, antigen-specifi c T and B cell responses 
seemed to be normal, except for an impaired glycan-specifi c 
antibody response in at least some patients and against some 
glycans, and except for an overproduction of IgE in most of 
the patients tested. 

 Impaired production of multiple cytokines by blood 

mononuclear leukocytes 

 We previously reported that IRAK-4 – defi cient whole blood 
cells and PBMCs produce only very small amounts of TNF- � , 

bearing mutations  821delT  (P1), Q293X (P2 and 3),   1188�
520A 	 G/1189-1G 	 T    (P8), E402X (PI3),   1-1096_40�23del  
(P15), Y48X/ 631delG  (P23), and  1240insA/942-1481_1125�
547del  (P24) did not respond to IL-1 � , as assessed by measur-
ing IL-6 production. However, IRAK-4 – defi cient SV40-
 fi broblasts did produce IL-6 upon activation by poly(I:C) 
( Fig. 3 B ) ( 13 ). Thus, all patients had complete IRAK-4 defi -
ciency and a complete absence of IRAK-4 – dependent TIR 
signaling, owing to the inheritance of two loss-of-expression, 
loss-of-function  IRAK4  alleles. 

 Development and function of blood leukocyte subsets 

 We analyzed blood leukocyte subsets in 12 IRAK-4 – defi cient 
patients. We previously showed that granulocytes, CD14 � , 
CD16 � , and CD14 � /CD16 �  monocyte subsets, and MDCs and 
PDCs, were present in normal numbers in three patients ( 13 ). 
We now report that T cell subsets, including CD4 �  and CD8 � , 
and CD45RA �  and CD45RO �  T cells, are also present in nor-
mal numbers (Table S1, available at http://www.jem.org/cgi/
content/full/jem.20070628/DC1), with the possible exception 
of normal to low levels of T cells in P17 and 18 ( 36 ). T cells 
proliferated normally in response to the mitogen PHA, CD3, 
and recall antigens in vitro (Table S2). B cells and memory B 
cells (CD27 � ) were also present in normal numbers (Table S1). 
Serum Ig levels for IgA were normal in fi ve, high in two 
(P8 and 11), and low in four (P1, 2, 17, and 18) patients ( 36 ). 

 Figure 2.   IRAK-4 defi ciency. (A) Schematic representation of  IRAK4  with all identifi ed mutations. The gene is composed of 12 exons, with exon 1 and 

a part of exon 12 noncoding. The N-terminal death domain (DD) and C-terminal kinase domain (KD) are shown in light gray. (B) RT-PCR of the full-length 

 IRAK4  and  GAPDH  genes in B-EBVs from a healthy control (C) and nine IRAK-4 – defi cient patients. (C) IRAK-4 and GAPDH protein levels in B-EBVs from a 

healthy control and nine IRAK-4 – defi cient patients, as shown by Western blotting. White lines indicate that intervening lanes have been spliced out.   
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at http://www.jem.org/cgi/content/full/jem.20070628/DC1). 
IL-7 induction was abolished in the patients, whereas other 
cytokines were not induced in controls. The patients ’  PBMCs 
showed detectable IL-8 and MIP-1 �  (an IFN-inducible 
cytokine) responses to LPS, but these responses were weaker 
than those of healthy controls ( Fig. 4 ). The other cytokines 
were not induced in the patients. These data are reminiscent 
of our previous observation that IRAK-4 – defi cient PBMCs 
respond to poly(I:C) by producing IFN- �  protein, and to 
poly(I:C) and LPS by producing IFN- �  mRNA ( 13 ). How-
ever, whereas LPS responses can be specifi cally ascribed to 
TLR4, we recently showed, in TLR3-defi cient patients, that 
the poly(I:C) responses of PBMCs are TLR3-independent 
( 42 ). These data indicate a broad immunological impact of 
IRAK-4 defi ciency, as the production of 11 key cytokines 
was completely impaired in response to all TLR agonists, 
with the exception of a couple of cytokines in response to 
poly(I:C) and LPS. 

 TLR responses of individual myeloid subsets 

 We then assessed the role of IRAK-4 in TLR signaling path-
ways in discrete leukocyte cell populations. Cell subsets other 

IL-6, IL-12, G-CSF, GM-CSF, and IFN- �  in vitro in response 
to all IL-1R and TLR agonists tested ( 1 – 9, 11, 12 ). We won-
dered whether the induction of other cytokines, chemokines, 
IFNs, and growth factors was also dependent on IRAK-4 
 after TLR stimulation. We therefore activated PBMCs from 
IRAK-4 – defi cient patients with Pam 3 CSK 4  (TLR1/2), 
Pam 2 CSK 4  (TLR2/6), poly(I:C) (a nonspecifi c TLR3 agonist), 
LPS (TLR4), fl agellin (TLR5), 3M-13 (TLR7), 3M-2 (TLR8), 
R-848 (TLR7 and 8), and CpG (TLR9) for 24 h. We did 
not assess TLR10 responses, as there is no known agonist for 
this receptor ( 23 ). Cytokine secretion into the supernatant 
was assessed using a multiplex cytometry-based system. 11 out 
of the 25 cytokines assayed were induced and detectable 
after TLR stimulation in healthy controls. IRAK-4 – defi cient 
cells did not respond to seven out of nine agonists for all 
cytokines tested ( Fig. 4 ).  Upon activation with poly(I:C), the 
patients ’  PBMCs displayed induction of IL-12, monocyte 
chemoattractant protein 1, and macrophage infl ammatory 
protein 1 �  (MIP-1 � ) to levels similar to those in healthy 
controls, as well as some induction of IFN-inducible protein 
10 ( Fig. 4 ). However, the induction of IL-12 and MIP-1 �  was 
weak in both patients and healthy controls (Fig. S2, available 

 Figure 3.   Impaired cellular responses to TIR agonists in IRAK-4 – defi cient cell lines. (A) TNF- �  production by B-EBVs from a healthy control (C) 

and seven IRAK-4 – defi cient patients 24 h after stimulation with various TLR agonists and PMA/ionomycin. (B) IL-6 production by SV40-fi broblasts from a 

healthy control and eight IRAK-4 – defi cient patients after 24 h of stimulation with IL-1 � , TNF- � , poly(I:C), and PMA/ionomycin. Mean values and SDs are 

shown for triplicates of a single experiment.   
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IFN-inducible surface-expressed CD40, CD80, and CD86 
by in vitro MDDCs, which respond to poly(I:C) in a TLR3-
dependent manner ( 42 ). MDDCs from healthy controls re-
sponded normally to the TLR agonists Pam 3 CSK 4 , Pam 2 CSK 4 , 
poly(I:C), LPS, fl agellin, and 3M-2. In contrast, the patients ’  
MDDCs did not respond to Pam 3 CSK 4 , Pam 2 CSK 4 , fl agellin, 
and 3M-2. However, IRAK-4 – defi cient MDDCs showed 
a weak but not abolished TNF- �  response and normal 
induction of CD40, CD80, and CD86 upon activation with 
poly(I:C) (TLR3). Normal induction of CD40, CD80, and 
CD86 was also observed upon activation with LPS (TLR4) 
( Fig. 5, G and H ). These data indicate that the IRAK-4 –
 defi cient individual myeloid cell subsets tested displayed no 
response to most TLR agonists, with the exception of nor-
mal responses to poly(I:C) and LPS detected in MDCs for 
MIP-1 � , an IFN type I – inducible cytokine, and in MDDCs 
for CD40, CD80, and CD86, which are induced by type I IFNs 
and TNF- � . 

 TLR responses of individual lymphoid subsets 

 We then tested the TLR responses of the B, T, and NK lym-
phoid cell subsets. The subsets were purifi ed by cell sorting 
(purity  	 99.5%). CD19 �  B cells were activated by incubation 
with the TLR agonists Pam 3 CSK 4 , Pam 2 CSK 4 , poly(I:C), LPS, 
fl agellin, 3M-13, 3M-2, R-848, and CpG for 24 h, and their 
response was measured by assessing IL-10 production. Highly 
purifi ed control B cells showed a unique pattern of activation, 
with no response to agonists of TLR1/2, TLR2/6, TLR3, TLR4, 
TLR5, and TLR8, and only weak IL-10 production in response 
to TLR7, TLR7 and TLR8, and TLR9 agonists ( Fig. 6 A  and 
not depicted).  In contrast, no response to these TLR agonists 

than granulocytes and DCs were purified by cell sorting 
(purity  	 99.5%). More than 95% of the granulocytes purifi ed on 
Ficoll were CD15 + . The response of DCs (MDCs and PDCs) 
was tested in PBMCs. We assessed the CD62L shedding of 
granulocytes from four healthy controls and four IRAK-4 –
 defi cient patients after activation with Pam 3 CSK 4 , Pam 2 CSK 4 , 
LPS, fl agellin, 3M-13, 3M-2, R-848, and TNF- �  ( 10 ). The 
response to all TLR agonists was impaired in the granulo-
cytes of all four patients tested ( Fig. 5 A ).  CD14 �  monocytes 
from healthy controls responded to TLR1 – 8 agonists but not 
to TLR9 agonists. The monocytes of IRAK-4 – defi cient patients 
did not respond to these agonists, with the possible exception 
of very weak TNF- �  production upon LPS stimulation 
( Fig. 5 B ). Finally, we tested MDCs and PDCs by stimulating 
PBMCs from seven healthy donors and three IRAK-4 – defi -
cient patients with the TLR agonists Pam 3 CSK 4 , Pam 2 CSK 4 , 
poly(I:C), LPS, fl agellin, 3M-13, 3M-2, R-848, and CpG 
for 3 h. We assessed TNF- �  and MIP-1 �  production for 
MDCs (Lin-1  −  , HLA-DR � , and CD123 low ) and PDCs (Lin-1  −  , 
HLA-DR � , and CD123 high ) by intracellular staining. In healthy 
individuals, MDCs responded to all of the TLR agonists 
tested, except the TLR9 agonist, with the induction of TNF- �  
and MIP1- � . In contrast, only upon activation with poly(I:C) 
(nonspecifi c TLR3 agonist) and LPS (TLR4), did MDCs 
from the patients display normal levels of MIP1- �  induction 
and some induction of TNF- � . PDCs from healthy individ-
uals responded only to agonists of TLR7 and 9, whereas 
IRAK-4 – defi cient PDCs did not respond to any of the ago-
nists tested ( Fig. 5, C – F ). As poly(I:C) activation in MDCs 
appears to be TLR3 independent ( 42 ), we further evalu-
ated the production of TNF- �  and the up-regulation of 

 Figure 4.   Multiple cytokine secretion in IRAK-4 – defi cient PBMCs. PBMCs from three healthy controls and three IRAK-4 – defi cient patients (P17, 

18, and 22) were activated with various TLR agonists for 24 h. Cytokine levels are represented as ratios of the mean secretion observed in the three IRAK-4 – 

defi cient patients to that in three healthy controls. Cytokines represented in gray are not induced upon the stimulation of control PBMCs.   
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the age of 2 yr (20 out of 28; 71%), often before the age of 
6 mo (9 out of 28; 32%) and in the neonatal period (4 out 
of 28; 14%), when maternal antibodies are still present. 
Remarkably, no invasive infection was documented in the 
six patients over the age of 14 yr (P2, 14 yr; P4, 24 yr; P7, 32 yr; 
P17 and 18, 27 yr; and P24, 16 yr), even in the absence of 
prophylaxis (P2, 4, 7, 17, and 18;  n  = 5;  Fig. 7 A ) ( 4, 6, 36 ).  
12 patients died of invasive Gram-positive infections, all be-
fore the age of 8 yr and most before the age of 2 yr ( Fig. 7 B ). 
IRAK-4 defi ciency is thus associated with a selective predis-
position to pyogenic bacterial infections, mostly caused by 
Gram-positive bacteria ( S. pneumoniae  in particular and  S. aureus  
to a lesser extent), and clinical status and outcome both 
improve with age. The detailed clinical features of IRAK-4 
defi ciency will be reported elsewhere (unpublished data). 

  DISCUSSION  

 The 28 patients reported in this study suff ered from complete 
IRAK-4 defi ciency. The patients had been exposed to an 
extremely diverse range of microorganisms, including many 
potential viral, bacterial, and fungal pathogens, as well as par-
asites (Tables S2 and S3, available at http://www.jem.org/cgi/
content/full/jem.20070628/DC1). However, IRAK-4 – defi -
cient patients presented a strikingly narrow infectious pheno-
type ( Table I ), similar to the three patients initially reported ( 1 ). 
27 patients suff ered from invasive infectious disease, typically 
caused by Gram-positive  S. pneumoniae  ( n  
 22; 79%) and/or 
 S. aureus  ( n  
 9; 32%). Seven patients (25%) also presented 
severe infections with Gram-negative bacteria ( P. aeruginosa , 
 N. meningitidis ,  S. sonnei , and  S. marcescens ). 15 patients had 
peripheral infectious disease. When identifi ed, the causal patho-
gens were  S. aureus ,  P. aeruginosa , and  Streptococcus  species. 
The susceptibility of IRAK-4 – defi cient patients to  S. aureus  
is consistent with that observed in IRAK-4 –  and MyD88-
defi cient mice ( 31, 43 ). MyD88-defi cient mice are suscepti-
ble to  P. aeruginosa  ( 44 ) and, in some models, to  S. pneumoniae  
( 45, 46 ). Intriguingly, the 28 IRAK-4 – defi cient patients were 
not particularly susceptible to most other microorganisms, 
including common viruses (e.g., herpes viruses, enteroviruses, 
adenoviruses, and papillomaviruses), and widespread bacteria 
(e.g.,  Listeria ,  Mycobacterium , and Enterobacteriaceae), parasites 
(e.g.,  Toxoplasma ), and fungi (e.g.,  Cryptococcus ,  Pneumocystis , 
 Candida , and  Aspergillus ). As fi ve of these patients have had 

was observed in the three IRAK-4 – defi cient patients tested 
( Fig. 6 A ). Moreover, the response to TLR7 and 9, as measured 
by cell-surface expression of CD40, CD80, and CD86 after 3 d 
of incubation with IL-4 and various TLR agonists, was also im-
paired in the patients ’  B cells ( Fig. 6 B ) ( 13 ). CD3 +  T cells from 
healthy individuals were activated by Pam 3 CSK 4 , Pam 2 CSK 4 , 
poly(I:C), LPS, fl agellin, 3M-13, 3M-2, R-848, and CpG. 
Control T cells displayed a weak but detectable response to 
Pam 3 CSK 4  and fl agellin in terms of IFN- �  production, whereas 
T cells from IRAK-4 – defi cient patients were not activated by 
any of the TLR agonists ( Fig. 6 C ). Finally, control NK cells 
were shown to respond to TLR3, 7, and TLR7 and 8 agonists 
in terms of IFN- �  production, but no response was observed 
in NK cells from IRAK-4 – defi cient patients ( Fig. 6 D ). NK cells 
respond to poly(I:C) through TLR3 ( 42 ), suggesting that at 
least some TLR3 pathways are IRAK-4 dependent. These 
data indicate that the three major blood lymphoid subsets re-
quire IRAK-4 for TLR responses, including TLR3 responses 
in NK cells. 

 Clinical features of IRAK-4 defi ciency 

 In total, 28 IRAK-4 – defi cient patients from 18 families were 
studied, including the 7 patients (P21 – 27) from 5 families de-
scribed in this study for the fi rst time ( Table I  and  Fig. 1 ). 
Most IRAK-4 – defi cient patients had had at least one Gram-
positive bacterial infection: 22 out of the 28 (79%) had had 
invasive disease caused by  S. pneumoniae  (meningitis, septicemia, 
or arthritis), and 9 out of the 28 (32%) had suff ered severe 
disease caused by  S. aureus  (meningitis, septicemia, or liver 
abscess;  Table I ). If we also take into account peripheral 
staphylococcal disease (cellulitis and subcutaneous abscess), 
14 patients could be considered particularly susceptible to 
 S. aureus . One patient (P20) had had no major infectious 
disease. This patient is 25 mo old and was diagnosed with 
IRAK-4 defi ciency as a neonate. He was placed on IgG sub-
stitution and antibiotic prophylaxis shortly after birth. Seven 
patients also suff ered from severe Gram-negative bacterial 
infections, which were invasive in four cases ( Shigella sonnei  
and  P. aeruginosa ) and peripheral in four cases ( Escherichia coli , 
 Serratia marcescens ,  Neisseria meningitidis , and  P. aeruginosa ). As 
previously reported in a smaller series ( 13 ), no severe viral, 
fungal, or parasitic infections were observed in the patients. 
Most patients developed their fi rst invasive infection before 

 Figure 5.   Impaired responses to TLR agonists in IRAK-4 – defi cient individual myeloid subsets. (A) Cleavage of CD62 ligand (CD62L) at the surface 

of granulocytes from a healthy control and an IRAK-4 – defi cient patient (P7) after activation for 1 h with various TLR agonists and TNF- � . The black line 

shows CD62L expression on nonactivated granulocytes, and the red line shows CD62L expression after 1 h of activation with various agonists (induced 

CD62L shedding). One experiment representative of four (P7, 8, 13, and 15) is shown. (B) TNF- �  secretion by CD14 �  monocytes after 24 h of activation 

with various TLR agonists. Mean values and SDs were calculated from four healthy controls and three IRAK-4 – defi cient patients. (C – F) Ex vivo MDC and 

PDC responses. PBMCs from healthy controls and IRAK-4 – defi cient patients were stimulated with various TLR agonists. In both subsets, responses were 

measured by staining for intracellular TNF- �  (C) and MIP-1 �  (E). Mean values and SDs were calculated from six different controls and four IRAK-4 – defi -

cient patients for TNF- �  (D), and from seven different controls and three IRAK-4 – defi cient patients for MIP-1 �  (F). (G) TNF- �  secretion in vitro by MDDCs 

after 24 h of activation. Means and SDs were calculated from six different controls and three different IRAK-4 – defi cient patients. (H) Induction of CD40, 

CD80, and CD86 surface expression on MDDCs from a control (top) and an IRAK-4 – defi cient patient (bottom) after 24 h of stimulation with various TLR 

agonists. Black and green lines indicate the expression of CD40, CD80, and CD86 without and after stimulation, respectively. The experiment shown is 

representative of three independent experiments (also performed on patients P15 and 18). C, control.   
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 Listeria monocytogenes  ( 49, 50 ),  Mycobacterium avium  ( 51 ), 
 Toxoplasma gondii  ( 52 ),  Cryptococcus neoformans  ( 53 ),  Candida 
albicans , and  Aspergillus fumigatus  ( 54 ), among other relevant 
infections ( 37 – 39 ). 

 So why are the infectious phenotypes of MyD88/IRAK-
4 – defi cient mice and IRAK-4 – defi cient humans so diff erent? 
An overrepresentation of MyD88 defi ciency with respect 
to IRAK-4 defi ciency in mouse studies may be involved, 

no prophylaxis for 60 patient years ( Fig. 7 B ) ( 4, 6, 36 ), the 
resistance to most microbes observed is unlikely to be caused 
by the early death of some patients or to the prophylactic 
treatment of the survivors. Ascertainment bias cannot be ex-
cluded, but remains unlikely, as 10 aff ected relatives with 
causal mutations shared the case-defi nition clinical pheno-
type of index cases. In contrast, MyD88-defi cient mice were 
found to be susceptible to mouse CMV ( 47 ), HSV-1( 48 ), 

 Figure 6.   Lack of response to TLR agonists of individual IRAK-4 – defi cient lymphoid subsets. (A) IL-10 secretion by CD19 �  B cells after 24 h of 

activation with various TLR agonists and PMA/ionomycin. Mean values  �  SD were calculated from the data obtained for three different controls and three 

IRAK-4 – defi cient patients. (B) Induction of CD40, CD80, and CD86 surface expression on CD19 �  B cells after activation for 72 h with 3M-13 and CpG. 

Black and green lines indicate the expression of CD40, CD80, and CD86 without and after stimulation, respectively. Data are representative of two inde-

pendent experiments. (C) IFN- �  secretion by CD3 �  T cells after stimulation for 24 h with various TLR agonists and anti-CD3 (50 ng/ml OKT3) antibody in 

the presence of 100 U/ml IL-2 for 2 d. Mean values  �  SD were calculated for three different controls and two IRAK-4 – defi cient patients. (D) IFN- �  secre-

tion by CD3  �  /CD56 �  NK cells after activation for 24 h with various TLR agonists and PMA/ionomycin. Mean values and SDs were calculated for three 

different controls and three IRAK-4 – defi cient patients.   
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 We further excluded the possibility that human IRAK-4 
defi ciency may be milder than mouse MyD88/IRAK-4 defi -
ciency owing to the occurrence of human-specifi c IRAK-4 –
 independent TLR pathways in discrete leukocyte subsets, as 
suggested by the normal induction of both IL-6 and IFN- � / �  in 
IRAK-4 – defi cient fi broblasts ( 13 ). We showed that IRAK-4 
defi ciency impaired the TLR responses of all lymphoid and 
myeloid leukocyte subsets tested ex vivo, including granulo-
cytes, monocytes, PDCs, MDCs, NK, T, and B cells. With 
the exception of the induction of IFN-inducible MIP-1 �  pro-
duction in MDCs in response to poly(I:C) and LPS ( Fig. 5, 
E and F ), there was no detectable TLR response in individual 
subsets. The LPS response is TLR4 dependent, whereas the 
poly(I:C) response in MDCs appears to be TLR3 independent 
( 42 ). Even IRAK-4 – defi cient NK cells did not respond to 
poly(I:C), suggesting that responses to poly(I:C) in NK cells 
are largely TLR3- ( 42 ) and IRAK-4 – dependent. Moreover, 
MDDCs generated in vitro did not respond to TLR agonists, 
with the exception of poly(I:C) and LPS. The poly(I:C)-trig-
gered induction of TNF- � , CD40, CD80, and CD86 in 
MDDCs was IRAK-4 independent ( Fig. 5, G and H ) and 
seemed to be TLR3 dependent ( 42 ). These data extend previous 
fi ndings ( 1, 13 ) and show that human IRAK-4 plays a non-
redundant role in the conventional TLR signaling pathway in at 
least seven major leukocyte subsets. In contrast, IRAK-4 may 
be dispensable for the  “ alternative, ”  TRIF-dependent pathways 
downstream from TLR3 (for IFNs and other cytokines) and 

 although IRAK-4 –  and MyD88-defi cient mice, when infected 
by the same pathogens, are indistinguishable ( 31, 43 ). We pro-
vide an experimental demonstration in this paper that the 
occurrence of human-specifi c IRAK-4 – independent TLR 
pathways is not involved. We show that IRAK-4 – defi cient 
PBMCs do not secrete any of 11 cytokines tested when stim-
ulated with agonists of TLR1, 2, 5, 6, 7, 8, and 9. The TLR4 
response was abolished for all but two cytokines, which 
were weakly induced. One of these two cytokines was the 
IFN-inducible MIP-1 � , consistent with the IFN- �  mRNA 
response to LPS in IRAK-4 – defi cient PBMCs ( 13 ). IRAK-4 –
 defi cient PBMCs also responded to poly(I:C), producing 
IFN-inducible monocyte chemoattractant protein 1 and IFN-
inducible protein 10, as expected from the previously re-
ported induction of IFN- � , - � , and - �  in IRAK-4 – defi cient 
PBMCs and fi broblasts ( 13 ). However, poly(I:C) activates 
PBMCs normally in patients with TLR3 defi ciency ( 42 ), 
making it diffi  cult to infer conclusions about TLR3 responses 
from the data for poly(I:C) stimulation. In any event, the 
MyD88- and IRAK-4 – independent TLR3 and TLR4 path-
ways, present in mice, cannot account for humans being more 
resistant ( 13, 15 ). The  “ conventional ”  MyD88-dependent path-
way downstream from TLRs appears to be strictly IRAK-4 –
 dependent in humans; no detectable leakiness can apparently 
account for the narrow infectious phenotype. We cannot, 
however, exclude the possibility that other TLR-inducible 
genes may be IRAK-4 independent. 

 Figure 7.   Epidemiological features of IRAK-4 defi ciency. (A) Incidence of invasive infections in IRAK-4 – defi cient patients during the fi rst 40 mo 

of life (left) and the fi rst 40 yr of life (right). Invasive infections included meningitis, septicemia, and arthritis. (B) Survival curve of 28 IRAK-4 – defi cient 

patients during the fi rst 40 mo of life (left) and the fi rst 40 yr of life (right).   
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delayed acute infl ammatory responses in vivo (low serum CrP 
levels in particular) ( 34, 71 ). As CrP contributes to the clearance 
of  S. pneumoniae  ( 72, 73 ), susceptibility to  S. pneumoniae  may 
be enhanced by the delayed increase in CrP levels. The con-
tribution of individual molecules upstream or downstream 
from IRAK-4 to infectious phenotypes should be clarifi ed by 
the identifi cation of new patients with mutations in the cor-
responding genes ( 74 ). 

 Despite conferring selective susceptibility to only a few 
bacteria, IRAK-4 defi ciency is life-threatening in infancy and 
childhood, with a mortality rate of 43% in our series. Most, if 
not all, patients would have probably died in the absence of 
antibiotic treatment. Strikingly, although IRAK-4 is abso-
lutely vital in childhood, infections become rarer with age, 
with no deaths recorded after the age of 8 yr and no invasive 
infection after the age of 14 yr, even in the absence of antibi-
otic or IgG prophylaxis for more than 60 patient years ( 4, 6, 36 ). 
This dramatic improvement with age may be accounted for 
by the modest impact, if any, of IRAK-4 defi ciency on anti-
gen-specifi c T and B lymphocyte responses. Human T cells 
do not need IRAK-4 for activation by OKT3 in vitro (Table 
S2), in contrast to the results obtained for mice in a previous 
report ( 32 ) and in accordance with a more recent study ( 75 ). 
Moreover, our patients displayed no detectable global defect 
of protein antigen – specifi c T and B cell responses. However, 
most of the patients displayed IgE overproduction, and some 
patients have been shown to have weak antibody responses 
to a subset of glycan antigens ( 11, 12, 33 ). A more thorough 
investigation of B cells and antibody responses in IRAK-4 –
 defi cient patients is therefore currently underway (unpub-
lished data). Our data are consistent with the apparently intact 
primary and secondary antigen-specifi c responses in mice 
with MyD88 defi ciency, TRIF defi ciency, or both ( 76, 77 ). 
Adaptive immunity may therefore progressively compensate 
for the poor innate immunity in our patients. An alternative 
and complementary hypothesis, accounting for the clinical 
improvement of IRAK-4 – defi cient patients with age, is that 
innate immune responses may also mature with age ( 78, 79 ). 
As shown in this study, the TIR pathway, including TLR 
responses in particular, remains dependent on IRAK-4 with 
age, but the maturation of other innate pathways may gradu-
ally compensate for the lack of TIR – IRAK-4 signaling. 

 MATERIALS AND METHODS 
 Subjects and kindreds.   Our study was conducted according to the princi-

ples expressed in the Helsinki Declaration, with informed consent obtained 

from each patient or the patient ’ s family. The study was approved by the 

Comit é  d ’  É thique, CCPPRB, H ô pital Necker – Enfants Malades. 

 Molecular genetics.   Genomic DNA was isolated from whole blood cells 

or from B-EBVs. The cells were lysed by incubation overnight at 37 ° C in 

extraction buff er (10 mM Tris, 0.1 M EDTA, 0.5% SDS, 1 mg/ml proteinase K) 

and subjected to phenol/chloroform extraction. DNA was precipitated 

in ethanol. Amplifi ed PCR products were analyzed by electrophoresis in a 

1% agarose gel purifi ed by centrifugation through superfi ne resin (Sephadex 

G-50; GE Healthcare), sequenced by dideoxynucleotide termination with 

the BigDye terminator kit (Applied Biosystems), and analyzed on an ABI 

Prism 3730 apparatus (Applied Biosystems). 

TLR4 (for IFNs). Obviously, we cannot formally exclude the 
possibility that specifi c leukocyte subsets in certain tissues ( 55 ) 
and nonleukocyte cell types ( 56 – 59 ) display IRAK-4 – 
independent TLR responses involved in host defense. 

 There are, therefore, no overt immunological diff erences 
between MyD88/IRAK-4 – defi cient mice and IRAK-4–
 defi cient patients. Nonetheless, MyD88 and IRAK-4 are criti-
cal for protective immunity to numerous pathogens in the 
mouse, whereas IRAK-4 is largely redundant for protective 
immunity in humans. Intrinsic diff erences between mice 
and humans, aff ecting receptors other than TLRs, may ac-
count for the observed discrepancies. There may be non-
TLRs governing the innate immune recognition of pathogens 
in humans but not in mice. An alternative, complementary 
hypothesis is that immunity to infection in animals is studied 
in experimental conditions, whereas immunity to infection 
in humans operates in natural conditions, accounting for 
considerable diff erences in the hosts, microbes, and routes of 
infection ( 60, 61 ). The human model can be used to defi ne 
the function of host genes in a natural ecosystem in which 
species live and undergo selection. The ecologically relevant 
and evolutionarily selected function of human  IRAK4  ap-
pears to be narrower than predicted from experimental stud-
ies in the mouse. This is reminiscent of the narrow infectious 
phenotype of patients with mycobacterial disease and muta-
tions in the IL-12 – IFN- �  circuit ( 62 ), or patients with herpes 
simplex encephalitis and mutations in the TLR3 – UNC-93B 
pathway ( 42, 63 ). In any event, whether owing to species 
diff erences or to the conditions of infection, our fi ndings for 
this series of IRAK-4 – defi cient patients strongly suggest that 
human IRAK-4–dependent TLRs are redundant for protec-
tive immunity to most microbes. 

 IRAK-4 seems to be crucial for protective immunity to 
Gram-positive  S. pneumoniae  and  S. aureus  and a few Gram-
negative bacteria. It remains unknown whether invasive bac-
terial disease in patients with IRAK-4 defi ciency results from 
an upstream impairment of IL-1R and TLR signaling or a 
combination of both pathways, from the defective induction 
of one or a combination of specifi c target genes downstream, 
or a combination of upstream and downstream defects. 
Impaired IL-1R and TLR2 signaling may play a role in the 
observed infections. Indeed, studies of experimental infection 
models in knockout mice have indicated that defense against 
 S. pneumoniae  and  S. aureus  may depend on IL-1R ( 64, 65 ), 
TLR2 ( 43, 66 ), and, for  S. pneumoniae , perhaps also TLR4 
( 67, 68 ). Interestingly, the role of TLR2 in mouse defense 
against  S. pneumoniae  has been called into question in some 
experimental conditions ( 69, 70 ). Impaired stimulation of 
TLR7, 8, and 9 is probably not involved in predisposition to 
pneumococcal disease, as UNC-93B – defi cient patients with 
impaired TLR3, 7, 8, and 9 signaling do not suff er from in-
vasive pneumococcal disease ( 63 ). The impaired production 
of IL-6 – inducible molecules, such as C-reactive protein 
(CrP), may also be involved. IRAK-4 – defi cient cells pro duce 
small amounts of IL-6 in vitro upon activation with IL-1 �  
and TLR agonists. Moreover, most patients have weak or 
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 Analysis of selectin (CD62L) shedding on granulocytes.   Granulocytes 

were isolated as described in the previous section, activated with TLR ago-

nists, stained with anti-CD62L – FITC (BD Biosciences) antibody, and ana-

lyzed by fl ow cytometry, as previously described ( 10 ). 

 Ex vivo analysis of PDCs and MDCs.   PBMCs were suspended at a fi nal 

density of 2  
  10 6  cells/ml in RPMI supplemented with 10% FCS. They were 

incubated at 37 ° C, under an atmosphere containing 5% CO 2 , and stimulated 

with TLR agonists. 10  � g/ml brefeldin A was added after 1 h of activation. 

After 3.5 h of activation, cells were washed and stained with anti-Lin1 – FITC 

(BD Biosciences), anti-HLADR – PerCP (BD Biosciences), and anti-CD123 –

 PE-Cy7 (e-Bioscience) antibodies. For intracellular staining, PBMCs were 

permeabilized with the Cytofi x/Cytoperm kit (BD Biosciences), according 

to the manufacturer ’ s instructions. Anti – TNF- �  – allophycocyanin (BD Bio-

sciences) and anti – MIP-1 �  – PE (BD Biosciences) antibodies were used to 

assess the response of MDCs and PDCs to TLR agonists. PBMCs were also 

incubated with the respective isotype controls, and cells were acquired on a 

three-laser fl ow cytometer (LSR system; BD Biosciences). MDCs were 

defi ned as Lin-1  �  , HLA-DR � , and CD123 low , and PDCs were defi ned as 

Lin-1  �  , HLA-DR � , and CD123 high . For analysis, the quadrant for each individ-

ual tested was set such that 98% of PBMCs incubated with the respective 

isotype controls were negative for nonspecifi c staining. 

 MDDCs.   MDDCs were prepared as previously described ( 80 ). In brief, 

PBMCs were suspended in RPMI 1640 supplemented with 10% FCS, 

plated in cell culture fl asks, and incubated for 1 h. Monocytes attached to 

the bottom of the culture fl ask and nonadherent cells were removed with 

medium. Monocytes were then cultured in RPMI 1640 supplemented with 

10% FCS, 25 ng/ml GM-CSF, and 100 U/ml IL-4. GM-CSF and IL-4 were 

added to the medium every other day to maintain their initial concentrations. 

On day 7 or 8, some of the MDDCs were stained for CD1a and CD14. 

Living cells and cell debris were distinguished by forward/side scatter. 

More than 95% of living cells were CD1a � , and no CD14 �  cells were 

detected. On day 7 or 8, MDDCs were suspended in RPMI 1640 supple-

mented with 10% FCS at a density of 2  
  10 5 cells/ml, and supernatants were 

collected after 24 h of activation. The up-regulation of surface markers was 

assessed by collecting MDDCs and staining them with anti-CD1a – PE (BD 

Biosciences), anti-CD40 – FITC (BD Biosciences), anti-CD80 – FITC (BD 

Biosciences), and anti-CD86 – FITC (BD Biosciences) antibodies. 

 Vaccination schedules of patients.   Patients were immunized against 

diphtheria and tetanus in accordance with international recommendations. 

Nine patients received multiple injections of glycan antigens (nonconjugated 

[ “ Pneumo23 ” ] and conjugated [ “ Prevenar ” ] antipneumococcal vaccine), 

and their specifi c antibody titers were subsequently monitored in detail. 

 Online supplemental material.   Fig. S1 demonstrates a deletion of the 

 IRAK4  locus on one allele in P2 and the presence of both  IRAK4  loci in P7. 

Fig. S2 shows the detailed results for each of the 11 cytokines for which a 

response to TLR agonists in healthy controls could be detected by multiplex 

assay. Table S1 shows blood leukocyte subsets in IRAK-4 – defi cient patients. 

Table S2 highlights T cell proliferation, Ig levels, and humoral responses to 

recall antigens and to glycans in IRAK-4 – defi cient patients. Table S3 off ers 

the serology of patients to common viruses. Online supplemental material is 

available at http://www.jem.org/cgi/content/full/jem.20070628/DC1. 
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 RNA and protein levels.   RNA was extracted from B-EBV and SV40-

fi broblasts in TRI zol  (Invitrogen), and cDNA was prepared using reverse 

transcriptase (SuperScript II; Invitrogen) for RT-PCR, according to the 

manufacturer ’ s instructions. Proteins for Western blotting were extracted 

from B-EBV and SV40-fi broblasts, and Western blots were probed with 

rabbit antibodies against IRAK − 4 (Tularik) and GAPDH (Santa Cruz Bio-

technology, Inc.). 

 TLR agonists.   TLR agonists and cytokines were used at the following fi nal 

concentrations, unless otherwise indicated: synthetic triacylated lipopeptide 

(PAM 3 CSK 4 , agonist of TLR1/2; Invivogen), 100 ng/ml; synthetic diacyl-

ated lipopeptide (PAM 2 CSK 4 , agonist of TLR2/6; Invivogen), 100 ng/ml; 

poly(I:C) (a synthetic analogue of dsRNA, polyinosine-polycytidylic acid, 

and nonspecifi c TLR3 agonist; Invivogen), 25  � g/ml; LPS (Re 595 from 

 Salmonella minnesota , agonist of TLR-4; Sigma-Aldrich), 100 ng/ml; fl agellin 

(TLR5 agonist; Invivogen), 1  � g/ml; 3M-13 (TLR7 agonist) and 3M-2 

(TLR8 agonist; both provided by 3M Pharmaceuticals), 3  � g/ml each; 

R-848, resiquimod hydrochloride (TLR7 and TLR8 agonist; provided 

by PharmaTech), 3  � g/ml; and unmethylated CpG DNA CpG-C (C274; 

5 � -TCGTCGAACGTTCGAGATGAT-3 � ; TLR9 agonist; provided by 

R. Coff man and F. Barrat, Dynavax Technologies, Berkeley, CA), 3  � g/ml. 

Polymyxin B was used at 10  � g/ml (Sigma-Aldrich). 

 B-EBV and SV40-fi broblast activation.   We suspended 10 6  B-EBV cells 

per well in RPMI 1640 (Invitrogen) supplemented with 10% FCS (Invitro-

gen) and activated them by incubation with 3M-13, 3M-2, R-848, and 10  � 7  

M PMA plus 10  � 5  M ionomycin (Sigma-Aldrich) for 24 h. 10 5  SV40-fi bro-

blast cells per well were seeded in DMEM (Invitrogen) supplemented with 

10% FCS in 24-well plates. Cells were activated with 20 ng/ml TNF- �  

(R & D Systems), 10 ng/ml IL-1 �  (R & D Systems) and 10  − 7  M PMA plus 

10  � 5  M ionomycin the next day. The supernatants were harvested after 24 h 

of activation. 

 Cytokine measurement.   ELISA determinations of TNF- � , IL-6, and IL-10 

in cell culture supernatants were performed with a kit (PeliPair reagent set; 

Sanquin), according to the manufacturer ’ s instructions. Optical density was 

determined by an automated ELISA reader (MR5000; Thermolab Systems). 

We used a fl uorescence-based assay (a human cytokine 25-plex antibody bead 

kit) that can detect 25 cytokines (LHC0009; Biosource International) for 

the simultaneous determination of multiple cytokines. Fluorescence was mea-

sured with a 100 IS system (Luminex Corporation). The assay and analysis 

were performed according to the manufacturer ’ s instructions. 

 Cell purifi cation and activation.   Blood samples from healthy controls 

or patients were collected into heparin-containing tubes, and PBMCs and 

granulocytes were separated by Ficoll-gradient centrifugation. The patients 

were of diff erent ages when the experiments were performed, ranging 

from 7 to 32 yr old. For granulocyte isolation, erythrocytes were lysed and 

washed twice in PBS. More than 95% of the granulocytes purifi ed on 

Ficoll were CD15 � . We did not purify granulocytes by fl ow cytometry, as 

the surface expression and TLR-induced shedding of L-selectin (CD62L) 

were not better detected (unpublished data).The PBMC preparation was 

enriched in T cells, B cells, monocytes, and NK cells by magnetic bead 

isolation using anti-CD3, -CD19, -CD14, and -CD56 microbeads (Miltenyi 

Biotec), according to the manufacturer ’ s instructions. Purifi ed T cells were 

labeled with anti-CD3 – FITC (BD Biosciences), B cells with anti-CD19 – PE 

(BD Biosciences), monocytes with anti-CD14 – FITC (BD Biosciences), and 

NK cells with anti-CD3 – FITC/anti-CD56 – PE (BD Biosciences) anti-

bodies, and sorting was performed on a fl ow cytometer (FACSVantage; 

BD Biosciences). The isolated cells were cultured in RPMI 1640 supple-

mented with 10% FCS, with immediate TLR agonist stimulation. We added 

100 U/ml IL-2 to cultures of purifi ed T cells. Purifi ed B cells were sus-

pended in RPMI 1640 supplemented with 10% FCS at a density of 

10 6  cells/ml. Cells were stimulated with TLR agonists together with 100 U/ml 

IL-4 for 3 d. 
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