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We recently identifi ed a new gene family en-
coding the T cell immunoglobulin mucin (Tim) 
proteins (1, 2). The Tim family consists of eight 
genes in mouse (Tim-1–8) and three genes in 
human (TIM-1, -3, and -4). Tim family members 
are cell surface glycoproteins that share a com-
mon motif, including an IgV domain, a mucin-
like domain, a transmembrane domain, and an 
intracellular tail (1, 2). Tim family members are 
diff erentially expres sed on Th1 cells, Th2 cells, 

or DCs, and they are implicated in the regula-
tion of asthma and autoimmunity (1).

TIM-1 was fi rst identifi ed as hepatitis A 
virus cellular receptor 1 (3, 4), and later as a 
kidney injury molecule 1 (5, 6). Interestingly, 
hepatitis A virus infection is associated with 
a reduced risk of developing asthma (7), and 
in mouse models, Tim-1 has been genetically 
linked to murine airway hypersensitivity (8). 
Furthermore, polymorphic forms of TIM-1 in 
humans have been associated with susceptibil-
ity to asthma, eczema, and rheumatoid arthritis 
(9–13), suggesting that Tim-1 may play a role 
in regulating immune responses. In addition to 
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It has been suggested that T cell immunoglobulin mucin (Tim)-1 expressed on T cells serves 

to positively costimulate T cell responses. However, crosslinking of Tim-1 by its ligand Tim-4 

resulted in either activation or inhibition of T cell responses, thus raising the issue of 

whether Tim-1 can have a dual function as a costimulator. To resolve this issue, we tested a 

series of monoclonal antibodies specifi c for Tim-1 and identifi ed two antibodies that 

showed opposite functional effects. One anti–Tim-1 antibody increased the frequency of 

antigen-specifi c T cells, the production of the proinfl ammatory cytokines IFN-γ and IL-17, 

and the severity of experimental autoimmune encephalomyelitis. In contrast, another anti–

Tim-1 antibody inhibited the generation of antigen-specifi c T cells, production of IFN-γ 

and IL-17, and development of autoimmunity, and it caused a strong Th2 response. Both 

antibodies bound to closely related epitopes in the IgV domain of the Tim-1 molecule, but 

the activating antibody had an avidity for Tim-1 that was 17 times higher than the inhibi-

tory antibody. Although both anti–Tim-1 antibodies induced CD3 capping, only the activat-

ing antibody caused strong cytoskeletal reorganization and motility. These data indicate 

that Tim-1 regulates T cell responses and that Tim-1 engagement can alter T cell function 

depending on the affi nity/avidity with which it is engaged.
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its expression on kidney cells, Tim-1 is also expressed on ac-
tivated T cells. Upon CD4+ T cell polarization, it is expressed 
at a higher level on Th2 cells than on Th1 cells (14, 15). Ini-
tial studies suggested that Tim-1 expressed on T cells is a 
positive costimulatory molecule that results in enhancement 
of T cell proliferation, cytokine production, and abrogation 
of tolerance (14). Our laboratory has recently reported that 
Tim-4, which is expressed on APCs, is a natural ligand for 
Tim-1 (15). Interestingly, dependent on the dose, Tim-4 
binding to Tim-1 has diff erent eff ects on T cell proliferation. 
A higher dose of Tim-4-Ig consistently led to an increase in 
T cell proliferation upon TCR ligation, whereas a lower 
concentration of Tim-4-Ig inhibited T cell proliferation (15). 
Therefore, it was not clear whether Tim-1 is a positive or a 
negative T cell costimulatory molecule. It is also possible, 
however, that Tim-4 could induce these opposite eff ects by 
engaging diff erent receptors on the T cell surface. One possi-
bility that would account for this apparent discrepancy is that 
the Tim-1 molecule itself may be a positive regulator of 
T cell responses, but that it may also act as an inhibitory mol-
ecule depending on how and when the molecule is engaged 
during T cell activation. To date, however, all known co-
stimulatory molecules have been categorized as positive co-
stimulators (e.g., CD28 and ICOS) or negative costimulatory 
molecules (e.g., CTLA-4 and PD-1), although some reports 
suggested that CTLA4, which is an inhibitory molecule, can 
up-regulate LFA-1 (16).

In this paper, we tested a series of anti–Tim-1 mAbs and 
identifi ed one antibody that positively costimulated T cell 
responses and another that inhibited T cell responses. The 
two antibodies also diff erentially regulated the expansion of 
antigen-specifi c T cells, cytokine production, and develop-
ment of autoimmunity in vivo. The two antibodies diff ered 
17-fold in their binding avidity for Tim-1 and in the regula-
tion of T cell cytoskeletal movement and TCR–CD3 capping, 

suggesting that Tim-1 might be intimately involved in regu-
lating TCR-driven activation.

RESULTS

Identifi cation of anti–Tim-1 antibodies that either increase 

or inhibit T cell proliferation

Tim-4 is a natural ligand for Tim-1 (15). Depending on the 
dose, Tim-4-Ig can either increase or inhibit T cell prolif-
eration upon TCR ligation, suggesting that Tim-1 may de-
liver both stimulatory and inhibitory costimulatory signals 
into T cells (15). However, the inhibitory eff ects of Tim-4-Ig 
might be caused by binding to a receptor other than Tim-1 
on T cells. To understand the mechanism by which Tim-1 
regulates T cell expansion and eff ector functions, we tested 
a series of antibodies with binding specifi city for Tim-1. It 
was previously reported that Tim-1 engagement by an ago-
nistic anti–Tim-1 antibody (clone 3B3) could costimulate 
T cells along with TCR ligation (14). Indeed, when spleen 
cells isolated from SJL mice immunized with the encephali-
togenic peptide proteolipid protein (PLP)139-151 in CFA were 
treated with antigen in vitro, addition of 3B3 anti–Tim-1 
antibody to the cultures signifi cantly increased T cell prolif-
eration at all doses of antigens, compared with the treatment 
with control rat IgG2a (rIgG2a; Fig. 1 A). Interestingly, in 
contrast to 3B3, addition of another anti–Tim-1 antibody 
(RMT1-10) reduced T cell proliferation in the cultures (Fig. 
1 A). The data suggest that Tim-1 cross-linking with diff er-
ent antibodies can deliver either a positive or negative co-
stimulatory signal in T cells, similar to what has been observed 
with Tim-4-Ig (15).

We next determined the cytokine production in these 
cul tures after antigen-specifi c activation and addition of anti–
Tim-1 antibodies. As observed previously (17, 18), activa-
tion of PLP139-151-primed lymph node cells with the specifi c 
antigen in the presence of control rIgG2a resulted in the 

Figure 1. Opposite effects of the anti–Tim-1 antibodies 3B3 and 

RMT1-10 on T cell responses. (A) Anti–Tim-1 antibody 3B3 enhances, 

whereas RMT1-10 inhibits, antigen-specifi c T cell proliferation. Spleen cells 

from PLP139-151-immunized SJL mice were cultured in vitro with different 

concentrations of PLP139-151 plus 10 μg/ml RMT1-10, 3B3, or rIgG2a. Prolifera-

tion was measured after 48 h by 3[H]thymidine incorporation. The mean ± 

SEM of three independent experiments are shown. *, P < 0.0001; **, P < 0.01, 

relative to isotype control. (B) Treatment with RMT1-10 skews the 

Th1/Th17 responses toward a Th2 response. Spleen cells from PLP139-151-

immunized SJL mice were cultured in vitro with 1 μg/ml PLP139-151 plus 

10 μg/ml RMT1-10, 3B3, or rIgG2a. Supernatants were taken from the culture 

at 48 h and assessed by cytokine ELISA for IFN-γ, IL-17, -4, and -10. Data 

are representative of three independent experiments. Error bars represent 

the SEM of triplicate measurements in the same experiment.
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production of the proinfl ammatory cytokines IFN-γ and 
IL-17, with no detectable IL-4 or -10 in the cultures (Fig. 
1 B). The addition of 3B3 increased the production of both 
IFN-γ and IL-17 with no detectable production of IL-4 or -10 
(Fig. 1 B). However, the addition of RMT1-10 to the cul-
tures resulted in inhibition of IFN-γ and IL-17, but induced 
the production of the Th2 cytokines IL-4 and -10 (Fig. 1 B). 
Thus, the two anti–Tim-1 antibodies not only diff ered in their 
ability to regulate T cell proliferation but also diff erentially in-
duced cytokine production from the responding T cells.

Anti–Tim-1 antibodies 3B3 and RMT1-10 bind 

to the same or closely related epitopes in the IgV 

domain of the Tim-1 molecule

Because Tim-1 molecules contain both IgV and mucin do-
mains in the extracellular region, it was possible that opposite 
costimulatory functional eff ects on T cell responses by Tim-1 
might be caused by engagement of diff erent domains of 
Tim-1 by the two antibodies. Therefore, 3B3 and RMT1-10 
were tested in an ELISA assay for binding to full-length and 
mucinless forms of Tim-1-Ig. Both 3B3, which was gener-
ated by immunizing rats with Tim-1 IgV-only fusion protein, 
(14) and RMT1-10 bound to both full-length and mucin-
less forms of Tim-1 (Fig. 2 A), suggesting that both the 
antibodies are specifi c for the IgV domain of Tim-1. The bind-
ing of both antibodies to the mucinless form was stronger 

than the binding to full-length Tim-1. Neither antibody bound 
to the negative control Tim-4-Ig fusion proteins.

To further determine whether 3B3 and RMT1-10 bind 
to the same epitope in the Tim-1 IgV domain, we used one 
antibody to stain Tim-1 transfectants and added in the other 
antibody as a competitor to block this binding. As shown in 
Fig. 2 B, when we used RMT1-10 to stain EL-4 cells trans-
fected with Tim-1 (EL-4–Tim-1), addition of rIgG2a did not 
block the binding, whereas the addition of unlabeled RMT1-10 
strongly blocked the binding. The binding of RMT1-10 to 
EL-4–Tim-1 cells was also strongly blocked by 3B3 anti–
Tim-1 antibody but not by anti–Tim-3 antibody. When 
we used 3B3 to stain the EL-4–Tim-1 cells, addition of un-
labeled 3B3 strongly inhibited the labeled 3B3 binding to the 
Tim-1 transfectants, whereas addition of RMT1-10 in a 1:1 
ratio weakly blocked the 3B3 binding (Fig. 2 B). However, 
when higher amounts of RMT1-10 were used, we observed 
an obvious inhibition of 3B3 binding to the EL-4–Tim-1 
cells (e.g., 10:1 ratio, as shown in Fig. 2 B). These data sug-
gest that both antibodies bind to the same or closely related 
epitopes in the Tim-1 IgV domain.

Increase in early T cell dynamics induced by anti–Tim-1 

antibody 3B3, but not by RMT1-10

Given that the two antibodies bind to the same or closely 
related epitopes, but diff ered in their functional outcomes, we 
hypothesize that the two antibodies might diff er in the dyna-
mics of early activation of T cells. Cytoskeletal changes, T cell 
motility, and CD3 capping have been used as markers for the 
early stages of T cell activation (19). Using live imaging of 
T cells, we determined how the two antibodies aff ect the 
kinetics of early CD4+ T cell responses.

Changes in cytoskeletal arrangements and motility off er a 
readout for early stages in T cell activation, in addition to 
membrane ruffl  ing, and formation of lamellopodia resulting 
from reorganization of TCR–CD3 and other costimulatory/
adhesion molecules (19). After addition of the anti–Tim-1 anti-
bodies, there was no observable diff erence in the CD3 cap-
ping induced by the two antibodies. As shown in Fig. 3 A, 
when treated with control rIgG2a, only a few cells showed 
CD3 capping, and no more CD3 capping was observed 60 min 
after the rIgG2a treatment, whereas addition of either 3B3 or 
RMT1-10 within minutes induced rapid CD3 capping, as dem-
onstrated by three-dimensional reconstruction of z-stack scan-
ning of individual CD4+ T cells over time. Both 3B3 and 
RMT1-10 treatment induced a similar percentage of CD4+ T 
cells with CD3 capping during a 60-min observation (Fig. 3 A).

However, 3B3 treatment showed an increased percent-
age of motile T cells with persistent changes in morphology 
and behavior. These eff ects peaked after 15 min, lasted for 
30 min, and then began to drop. In contrast, the percent-
age of cells with body movement in the RMT1-10–treated 
culture remained unchanged over 60 min (Fig. 3 A). Treat-
ment with RMT1-10 antibody and control rIgG2a resulted 
in only a very small percentage of motile CD4+ cells, and 
the majority of the cells have a stationary behavior during 

Figure 2. Characterization of 3B3 and RMT1-10 anti–Tim-1 anti-

bodies. (A) ELISA plates were coated with goat anti–mouse IgG. Full-

length (Fl) or mucinless (Ml) Tim-1-Ig fusion proteins were used to coat 

ELISA plates, and the binding of 3B3 and RMT1-10 to the fusion proteins 

was determined. Tim-4-Ig was included as a negative control. Data are 

representative of three independent experiments. Error bars represent the 

SEM of triplicate measurements in the same experiment. (B) EL-4–Tim-1 

transfectants were incubated with 0.5 μg/106 cells of unlabeled rIgG2a, 

3B3, RMT1-10, or anti–Tim-3 antibody (clone 2C12) for 1 h on ice, and 

0.5 μg/106 cells of either biotin-labeled RMT1-10 or PE-labeled 3B3 was 

added into the reaction for another 30 min. The binding of 3B3 or RMT1-

10 (followed by PE-conjugated streptavidin) was detected by fl ow cyto-

metric analysis. The green lines show isotype control staining; the blue 

lines show Tim-1 staining blocked with rIgG2a; the red lines show the 

Tim-1 staining blocked with unlabeled 3B3, RMT1-10, or anti–Tim-3; the 

yellow line shows the Tim-1 staining blocked with 5 μg/106 cells of un-

labeled RMT1-10.
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the recorded time points. Most strikingly, treatment with 3B3 
caused persistent changes in T cell morphology and motility, 
whereas both rIgG2a and RMT1-10 treatments induced 
very little motility, and no major change in morphology 
(Video 1, available at http://www.jem.org/cgi/content/full/
jem.20062498/DC1).

This suggested that the Tim-1 molecule induced impor-
tant changes in T cell activation. Both appear to engage recep-
tors in the membrane that induced a robust CD3 capping; 
strikingly, only 3B3 antibody resulted in a subsequent robust 
motility and cytoskeletal rearrangements (20).

3B3 has a 17-fold higher binding avidity than RMT1-10 

anti–Tim-1 antibody

Because the two antibodies bound to the same or closely 
related epitopes in the Tim-1 IgV domain, the divergent eff ects 
of 3B3 and RMT1-10 on early T cell activation events and 
proliferation could not be explained by their binding speci-
fi city of the Tim-1 molecule. However, because 3B3 strongly 
blocked the binding of RMT1-10 to EL-4–Tim-1 cells, 
whereas RMT1-10 only inhibited 3B3 binding to the cells 
only at a very high concentration (Fig. 2 B), 3B3 might have 
a higher Tim-1 binding avidity than RMT1-10. Therefore, 
biacore analysis of 3B3 and RMT1-10 binding to Tim-1 
molecules was undertaken to determine their binding kinetics 
and avidities.

After capture of 3B3 or RMT1-10 on the surface of a 
goat anti–rat IgG Fc biosensor chip, a concentration series of 
Tim-1-Ig was injected over the antibodies and used to gener-
ate high-resolution kinetic data (Fig. 4 A). Association (Ka) 
and dissociation (Kd) rate constants for each antibody were 
derived from a global fi t of Tim-1-Ig binding data using a 
bivalent analyte model. Both 3B3 and RMT1-10 had rapid 
association rates with Tim-1, mean Ka = 3.8 × 106 and 3.2 × 
106 M−1s−1, respectively, but signifi cantly diff erent rates of 
antibody–antigen complex dissociation, mean Kd = 1.05 × 
10−3 and 1.02 × 10−2 s−1, respectively (P = 0.007). The 
resulting diff erence in binding avidities (KD) was primarily 
dependent on the signifi cantly faster off -rate of Tim-1 from 
RMT1-10 (Fig. 4 B). The mean avidity of 3B3 for Tim-1 is 
17-fold higher than that of RMT1-10 (mean KD = 0.294 vs. 
5.102 nM, respectively). Thus, the stronger T cell activation 
is likely a consequence of a higher-avidity interaction of 3B3 
and Tim-1 molecules. This might result in a more stable 
Tim-1 complex, which associates with the TCR–CD3 com-
plex to form large supramolecular activation clusters (19). 
Furthermore, the biacore analysis confi rms that 3B3 and 
RMT1-10 bind closely related epitopes on Tim-1 (Fig. 4 C). 
Compared with control rIgG2a, preincubation of Tim-1 with 
3B3 almost completely eliminated the ability of 3B3 that was 
captured on the surface of the biosensor chip to bind Tim-1. 
Interestingly, preincubation of Tim-1 with RMT1-10 partially 

Figure 3. Effects of treatment with 3B3 or RMT1-10 on early T 

cell responses. CD4+ T cells were stained with Alexa Fluor 488–conjugated 

anti-CD3 on ice and treated with rIgG2a, 3B3, or RMT1-10 in a Live Imaging 

Microincubator at 37°C and 5% CO2. The responses of labeled CD4+ T cells 

were recorded for 1 h in 15-min intervals. CD3 capping at the 15-min time 

point and time courses have been shown in A. The arrows represent cells 

with CD3 capping. Pictures of the cell mobility were taken from 15 to 22 

min, with 104-s intervals, and are shown in B. The arrows represent the cells 

with active body movement. The time course of the cell mobility has been 

shown in B. The video of T cell mobility from 15 to 22 min is shown Video 1. 

Green, CD3; red (A) and purple (B), differential interface contrast. Video 1 is 

available at http://www.jem.org/cgi/content/full/jem.20062498/DC1.
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inhibited the binding of Tim-1 by captured 3B3, further cor-
roborating that the opposite eff ects of 3B3 and RMT1-10 
antibodies do not have diff erent binding specifi city, but dif-
ferential binding avidity for the Tim-1 molecule.

Administration of activating anti–Tim-1 antibody 3B3 

expands autopathogenic Th1 and Th17 cells

Tim-1 regulates the early activation of T cells. Depending on 
the avidity of its cross-linking, it can either enhance or in-
hibit T cell proliferation and regulate production of cytokines 
(Fig. 1). These traits are similar to those of agonistic/antago-
nistic TCR peptide ligands (also known as altered peptide 
ligands) (21). Because the two antibodies have divergent 
eff ects on T cell responses in vitro, we next examined their 
eff ects in vivo on T cell responses and the development of 
experimental autoimmune encephalomyelitis (EAE), which 
is an animal model of autoimmune infl ammatory disease in 
the central nervous system (CNS) that serves as an animal 
model for multiple sclerosis (22). EAE is mediated by myelin-
reactive CD4+ T cells, and many studies suggest that both 
Th1 and Th17 cells are crucial for its development (18, 
23–25), whereas Th2 cells that produce IL-4 and -10 have been 
shown to inhibit and reverse EAE (26, 27). Our in vitro 
results predict that the activating anti–Tim-1 antibody 3B3 
would enhance pathogenic T cell responses and autoimmunity, 
whereas RMT1-10 would inhibit them.

To determine the eff ect of 3B3 on the development of 
antigen-specifi c T cell responses, spleen cells from PLP139-151-
immunized SJL mice treated with 3B3 or control reagents 
were tested for T cell proliferation and cytokine production 
ex vivo. As shown in Fig. 5 A, spleen cells from 3B3-treated 
mice had 3–5 times the basal proliferation in the absence of 
any exogenous antigen. These cells also showed increased 
proliferation upon addition of low doses of antigen, com-
pared with those from control mice. These data suggest that 

administration of activating anti–Tim-1 antibody results in a 
hyperproliferation of T cells in vivo, such that they continue 
to proliferate ex vivo, even in the absence of further activa-
tion. Cytokine ELISA showed that even without antigenic 
restimulation, spleen cells from 3B3-treated mice secreted 
large quantities of IFN-γ, IL-17, -2, -6, and TNF-α (Fig. 5 A 
and not depicted), which correlated with the higher level of 
basal proliferation observed in these cultures. Spleen cells 
from mice treated with rIgG or PBS produced only little of 
these cytokines in the absence of antigen. However, spleen 
cells from control-treated mice showed a dose-dependent in-
crease in the production of these cytokines upon in vitro 
activation with PLP139-151. Spleen cells from 3B3-treated 
mice showed a similar dose-dependent increase in cytokine 
production, but the amounts of cytokines produced were 
two to four times higher than those from control-treated 
mice. The production of IL-4 and -10 was very low and 
comparable between 3B3-treated and control groups (Fig. 5 A 
and not depicted). These data indicate that treatment with 
activating high-avidity anti–Tim-1 antibody enhances pro-
infl ammatory Th1 and Th17 responses.

We next analyzed the frequency of PLP139-151-specifi c 
CD4+ T cells using MHC class II/IAs tetramers specifi c for 
PLP139-151 peptide (17, 28). In cultures derived from 3B3-
treated mice immunized with PLP139-151, there were approxi-
mately twofold more PLP139-151/IAs tetramer-positive CD4+ 
T cells than in cultures from control mice (Fig. 5 B; 1.76 vs. 
0.95%, P = 0.00056). Furthermore, the frequency of IL-17–
producing PLP139-151/IAs-reactive CD4+ T cells was almost 
fourfold higher in 3B3-treated mice than that in control mice 
(Fig. 5 C; 8.01 vs. 2.24%, P = 0.0016). 3B3 treatment also in-
creased the frequency of IFN-γ–producing PLP139-151-specifi c 
CD4+ T cells, although the increase in IFN-γ–producing 
cells was not as high as observed for IL-17–producing cells. 
These data demonstrate that administration of high-avidity 

Figure 4. Biacore analysis of 3B3 and RMT1-10 interactions 

with Tim-1 molecules. (A) 3B3 and RMT1-10 were captured on the 

surface of a biosensor chip, and a concentration series of Tim-1-Ig was 

used to generate high-resolution kinetic data. Tim-1 association and 

dissociation data were acquired and rate constants (Ka and Kd) were 

generated from a global fi t of the experimental binding data using a 

bivalent analyte model (mean χ2 = 0.329 for 3B3 and 0.471 for RMT1-10). 

Sensogram data are representative of five independent experiments. 

(B) Association/dissociation rate plot showing resolution of binding af-

fi nities for each antibody. Isoaffi nity diagonals indicate constant affi nity 

values that increase from bottom left to top right. Mean affinities 

(KD = Kd/Ka) for 3B3 and RMT1-10 are indicated within the plot. Data 

are the mean ± the SEM of fi ve independent experiments. (C) Antibody 

blocking was used to examine the 3B3 and RMT1-10 epitopes on Tim-1. 

Tim-1-Ig was preincubated with anti–Tim-1 antibodies and observed for 

binding to 3B3 captured on the surface of a biosensor chip. RMT1-10 

signifi cantly reduced, but did not eliminate, Tim-1 binding to 3B3. Data 

are representative of three independent experiments. The RUs of immo-

bilized anti–Tim-1 for the experiment in A were 137–141 for 3B3 and 

108–113 for RMT1-10. In the experiment shown in C, the RUs were 

360–365. In all cases, the “DeltaRUs” in the Tim-1 antibody immobilized 

on the chips was <5%.
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anti–Tim-1 antibody promotes the expansion of antigen-
specifi c proinfl ammatory Th1/Th17 cells, as well as produc-
tion of proinfl ammatory cytokines from these cells. These 
results would predict that increased proinfl ammatory cells and 
cytokines that were induced by activating anti–Tim-1 3B3 
antibody would promote autoimmunity.

Treatment with activating anti–Tim-1 antibody 3B3 

enhances the severity of EAE

To test the potential eff ect of the activating anti–Tim-1 anti-
body on the regulation of EAE, SJL mice were immunized 
with the encephalitogenic PLP139-151 peptide, and treated with 
3B3 or control reagents. Whereas the control groups (rIgG 
and PBS) showed a typical EAE course, treatment with 3B3 
dramatically altered the course of EAE (Fig. 6). 80% of 3B3-

treated mice died 3–4 d after the onset of disease (Table I). 
Histological examination of brains and spinal cords did not 
show striking diff erences in the numbers of infl ammatory/
demyelinating lesions in 3B3 versus control-treated mice 
(Table I). However, infl ammatory lesions were observed as 
early as day 8 in the 3B3 antibody-treated mice, but not in 
the rIgG-treated group. Furthermore, large numbers of 
neutrophils were regularly identifi ed in the lesions of 3B3-
treated mice, but not in control mice (unpublished data). 
There was also a trend toward larger areas of demyelina-
tion in the 3B3-treated mice, suggesting that treatment with 
3B3 resulted in more leukocyte infi ltration and more tissue 
damage in the CNS that correlated with severe, unremitting 
disease in the treated mice. Collectively, these results sug-
gest that cross-linking of Tim-1 by an activating anti–Tim-1 

Figure 5. Treatment with 3B3 enhances PLP139-151-specifi c Th1 

and Th17 responses. (A) Spleen cells from immunized SJL mice treated 

in vivo with 3B3, or with rIgG or PBS as control, were cultured in vitro for 

48 h with PLP139-151 restimulation. Proliferation was measured in triplicate 

wells after 48 h by 3[H]thymidine incorporation. Supernatants were taken 

at 48 h from the culture and assessed by cytokine ELISA for IL-2, IFN-γ, 

IL-17, -6, -4, and -10. Splenocytes from individual mice (n = 4) were 

analyzed separately, and mean data for all mice are shown. (B) Lympho-

cytes from spleen and lymph nodes of immunized SJL mice treated with 

3B3 or rIgG were cultured in vitro for 5 d with PLP139-151 restimulation. 

Live cells were obtained by Ficoll-Hypaque density gradient centrifugation 

and used for triple color staining with PE-conjugated IAs tetramer, APC–

anti-CD4, and 7-AAD. The PLP139-151/IA
s tetramer-positive cells were deter-

mined in the live CD4+ cell population (CD4+7-AAD−). Cells were also 

reactivated with PMA and ionomycin for 4 h and used for four-color 

staining with APC-conjugated IAs tetramer, FITC–anti-CD4, 7-AAD, and 

PE-cytokine. (C) The number of cytokine-producing cells was determined 

in the PLP139-151/IA
s tetramer-positive CD4+ cell population. Data are rep-

resentative of three independent experiments.

Table I. Clinical and histological EAE in anti–Tim-1 antibody 3B3-treated SJL mice

Clinical disease

Histopathology

(Number of

infl ammatory

lesions)

Treatment Incidence 

(sick/total)

Mean day of onset 

(mean ± SEM)

Mean maximum score 

(mean ± SEM)

Mortality 

(death/total)

Meninges Parenchyma 

(mean ± SEM)

Total

PBS 8/8 9.75 ± 0.46 3.25 ± 0.60 0/8 78 ± 29 110 ± 17 188 ± 18

rIgG 8/8 10.25 ± 0.89 3.50 ± 0.89 1/8 72 ± 30 110 ± 40 182 ± 56

3B3 10/10 9.25 ± 0.46 4.75 ± 0.46a 8/10b 68 ± 42 120 ± 33 188 ± 61

a,bP < 0.05, 3B3-treated group compared with rIgG- or PBS-treated group.
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antibody in vivo during T cell activation not only enhances 
proinfl ammatory Th1 and Th17 responses, but also has func-
tional consequences in that it dramatically enhanced the pro-
gression and severity of EAE.

Inhibitory anti–Tim-1 antibody RMT1-10 decreases antigen-

specifi c CD4+ T cell expansion and production of IFN-𝛄 

and IL-17 by these cells

When SJL mice were immunized with PLP139-151 and treated 
with the anti–Tim-1 antibody RMT1-10, their spleen cells 
had a lower basal proliferation in the absence of antigen and 
decreased proliferation in the presence of antigen, compared 
with the control (Fig. 7 A). PLP139-151/IAs tetramer staining 
demonstrated that the frequency of PLP139-151-specifi c CD4+ 
T cells decreased nearly twofold in cells derived from RMT1-
10–treated mice compared with those from the control mice 
(Fig. 7 B; 0.43 vs. 0.91%, P = 0.0018). Furthermore, the 
frequency of IL-17–producing PLP139-151/IAs-reactive CD4+ 

T cells was about twofold lower in RMT1-10–treated mice 
than in control mice (Fig. 7 C; 2.68 vs. 5.18%, P = 0.0019). 
The frequency of IFN-γ–producing PLP139-151/IAs-reactive 
CD4+ T cells was slightly decreased in RMT1-10–treated 
mice. These data suggest that administration of the low-
avidity anti–Tim-1 antibody RMT1-10 inhibits expansion 
and cytokine production of proinfl ammatory T cells, espe-
cially Th17 cells.

Administration of RMT1-10 inhibitory anti–Tim-1 antibody 

inhibits the development of EAE

Next, we determined whether the reduced frequency of Th1 
and Th17 cells upon RMT1-10 treatment also translated into 
an attenuation of EAE. Indeed, in contrast to treatment with 
3B3, administration of RMT1-10 inhibited the development 
of EAE (Fig. 8). Only 30% of RMT1-10–treated mice devel-
oped EAE, whereas all of the rIgG-treated mice developed 
severe EAE. Furthermore, RMT1-10 treatment not only 
dramatically decreased the severity of EAE but also delayed 
the disease onset (Table II). Histological examination of brain 
and spinal cords demonstrated a signifi cant decrease in the 
number of infl ammatory lesions in the meninges and paren-
chyma in RMT1-10–treated mice compared with control 
animals (Table II). These data suggest that the low-avidity 
anti–Tim-1 antibody RMT1-10 inhibits EAE when admin-
istrated in vivo during the induction phase, which is opposite 
to the eff ect of the activating high-avidity anti–Tim-1 anti-
body 3B3.

D I S C U S S I O N 

T cell activation is a tightly regulated event involving com-
plex receptor–ligand interaction, ultimately leading to down-
stream signaling events. Optimal T cell activation requires at 
least two signals, antigen recognition and costimulation (29–31). 
The TCR–CD3 complex, which recognizes antigens pre-
sented by MHC molecules, is critical in maintaining the 

Figure 6. Administration of 3B3 anti–Tim-1 antibody enhances 

EAE severity. 8–12-wk-old female SJL mice were actively immunized 

with PLP139-151 emulsifi ed in CFA, and treated with 3B3, rIgG, or PBS every 

other day from day 0 to 8. Mice were evaluated daily for the signs of EAE.

Figure 7. Treatment with RMT1-10 anti–Tim-1 antibody inhibits 

PLP139-151-specifi c T cell responses. (A) Spleen cells from immunized 

SJL mice treated in vivo with RMT1-10 or rIgG were cultured in vitro for 

48 h with PLP139-151 restimulation. Proliferation was measured in triplicate 

wells after 48 h by 3[H]thymidine incorporation. (B and C) Lymphocytes 

from spleen and lymph nodes of immunized SJL mice were cultured for

5 d with PLP139-151 restimulation. Live cells were then obtained by Ficoll-

Hypaque density gradient centrifugation and used for determining the 

frequency of PLP139-151/IA
s tetramer-positive CD4+ cells and cytokine pro-

duction from these cells as described in Fig. 5 (B and C). Data are repre-

sentative of three independent experiments.
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specifi city of T cell responses. Signal two, or costimulation, is 
an antigen-independent signal required for sustained T cell 
activation, proliferation, and survival. Although several co-
stimulatory molecules have been identifi ed that can either 
enhance (e.g., CD28 and ICOS) or inhibit (e.g., CTLA4 and 
PD-1) T cell responses in terms of T cell activation, none of 
these molecules has been found to both activate and inhibit 
T cell proliferation/cytokine responses. With the specifi c 
anti–Tim-1 antibodies described here, we provide evidence 
that engagement of Tim-1 can both activate and inhibit 
T cell responses. We have shown that two mAbs that are 
both specifi c for the IgV domain of Tim-1 have diff erent 
eff ects on T cell activation and subsequent responses mainly 
because of the diff erence of their binding avidity, but not 
binding specifi city. Because both anti–Tim-1 antibodies were 
specifi c for Tim-1 and did not cross react with other Tim 
family members, this places Tim-1 in a unique position in the 
category of T cell costimulatory molecules. Tim-1 may rep-
resent a third category of costimulatory molecules that can 
deliver both positive and negative costimulatory signals de-
pending on how it is engaged during T cell activation.

The anti–Tim-1 antibodies 3B3 and RMT1-10 had op-
posite eff ects on T cell responses and the development of 
an autoimmune disease. The opposite eff ects of the two anti-
bodies apparently are not caused by their binding specifi city 

because both antibodies bound to closely related epitopes in 
the Tim-1 IgV domain. However, based on the biacore 
analysis, it was evident that the activating anti–Tim-1 anti-
body had an avidity that was 17 times higher than the in-
hibitory antibody RMT1-10. Because Tim-1 appears to be 
a costimulatory signaling molecule (14, 32), higher-avidity 
antibodies like 3B3 could enhance T cell activation by form-
ing a stable Tim-1 complex and bringing Tim-1 into the 
TCR–CD3 complex, and they also help form large supra-
molecular activation clusters for full T cell activation (19). On 
the other hand, low-avidity antibodies like RMT1-10 have 
a signifi cantly faster off -rate and may not support the forma-
tion of stable Tim-1–TCR–CD3 complexes. Akin to partial 
agonist/antagonist TCR ligands, low-avidity engagement of 
Tim-1 by RMT1-10 might only lead to partial T cell acti-
vation. Many of the partial agonist/antagonist TCR ligands 
have been shown to induce a partial signal into T cells, induce 
Th2 responses in vivo, and prevent development of autoim-
mune diseases (21, 33, 34). Strikingly, in agreement with this, 
treatment with RMT1-10, indeed, induced a Th2 response, 
even under proinfl ammatory immunization conditions. Our 
data clearly show that the 3B3 antibody induced a stronger 
cytoskeletal activation and motility, although the percentage 
of CD4+ T cells forming CD3 caps is not diff erent between 
the two antibody treatments (Fig. 3 and Video 1). Further-
more, we found that monovalent Fab′ fragments of 3B3, like 
bivalent 3B3, enhanced Th1 and Th17 responses, whereas 
Fab′ fragments of RMT1-10, such as bivalent RMT1-10, 
decreased Th1 and Th17 responses and increased Th2 re-
sponses. However, the Fab′ fragments of both anti–Tim-1 
antibodies did not change Th cell proliferation signifi cantly 
upon antigen restimulation (Fig. S1, available at http://www
.jem.org/cgi/content/full/jem.20062498/DC1). These data 
suggest that the mere affi  nity (binding strength of Tim-1 
and antibody) of Tim-1 engagement might contribute to 
the quality of the resulting T cell response. Also, because, 
similar to the intact antibodies, the Fab′ fragments of 3B3 
and RMT1-10 induced skewing of the T cell response, it is 
unlikely that the results observed with the intact antibodies 
were caused by diff erences in the binding of Tim-1 (monova-
lent vs. bivalent) (35), but instead the stability of the Tim-1–
antibody complex and the number of Tim-1 molecules en-
gaged at a given time point might account for the diff erential 

Figure 8. Administration of RMT1-10 anti–Tim-1 antibody inhibits 

EAE. Female SJL mice were actively immunized with PLP139-151 emulsifi ed 

in CFA and treated with RMT1-10 or rIgG every other day from day 0 to 10. 

Mice were evaluated daily for the signs of EAE.

Table II. Clinical and histological EAE in anti–Tim-1 antibody RMT1-10-treated SJL mice

Clinical disease

Histopathology

(Number of

infl ammatory

lesions)

Treatment Incidence 

(sick/total)

Mean day of onset 

(mean ± SEM)

Mean maximum score 

(mean ± SEM)

Mortality 

(death/total)

Meninges Parenchyma 

(mean ± SEM)

Total

rIgG 6/6 10.75 ± 1.16 3.38 ± 0.92 1/6 97 ± 33 87 ± 18 185 ± 33

RMT1-10 3/10 14.00 ± 3.46a 2.00 ± 1.00b 0/10 35 ± 26c 27 ± 19d 63 ± 35e

a,bRepresenting the mice that showed clinical signs of EAE (3 out of 10 mice).
c,d,eP < 0.05, RMT1-10–treated group compared with rIgG- or PBS-treated group.
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T cell responses. However, the diff erences in the eff ect of 
the two antibodies on proliferation appears to be signifi cantly 
aff ected when intact rather than when the Fab′ fragment was 
used in T cell proliferation assays, suggesting that the two 
T cell responses (proliferation vs. cytokine production) can 
be separated, depending on whether monovalent or bivalent 
antibodies are used.

Our data cannot exclude the possibility that interaction 
of Tim-1 with its ligand is an inhibitory interaction and that 
antibodies like 3B3 and RMT1-10 are diff erentially block-
ing this inhibitory interaction. Tim-1 has been shown to 
bind to itself by a homophilic interaction (36), and also to 
Tim-4, which is preferentially expressed on the antigen-
presenting cells (15). Indeed, the Tim-1–Tim-4 inter action 
can be strongly blocked by high-avidity 3B3 antibody, 
whereas low-avidity antibody RMT1-10 showed a weak 
inhibition only at a very high dose (unpublished data). 
Whether the blockade of Tim-1–Tim-4 or Tim-1–Tim-1 
interaction by anti–Tim-1 antibodies (3B3 or RMT1-10) 
contributes to the diff erential T cell responses observed here 
need to be further investigated. Furthermore, biochemical 
diff erences in the signaling mediated by the affi  nity/avidity 
of the two antibodies will further help discern the mecha-
nism by which the two anti–Tim-1 antibodies mediate such 
opposite eff ects.

It has been reported that administration of 3B3 prevented 
development of respiratory tolerance and led to the develop-
ment of airway hyperreactivity (14). Using this activating 
high-avidity anti–Tim-1 antibody, we showed that 3B3 
in vivo strongly enhanced pathogenic Th1/Th17 responses, 
leukocyte infi ltration, and tissue injury in the CNS, and in-
creased disease severity of EAE. Both Th1 and Th17 T cell 
subsets have been shown to be critical for the tissue infl am-
mation and pathogenesis of EAE (18, 23–25, 37). Using 
PLP139-151/IAs tetramers, we further analyzed the expression 
of cytokines in tetramer-positive cells. In 3B3-treated mice, 
the frequency of IFN-γ–producing PLP139-151-reactive Th 
cells was only slightly increased, indicating that the eff ect of 
3B3 treatment on increase of IFN-γ production might 
mainly be caused by expansion of the responding T cells. 
There was an even bigger expansion in Th17 cells (nearly 
fourfold increase) in 3B3-treated mice. Besides increasing 
IFN-γ and IL-17, 3B3 enhanced IL-6 production from the 
responding T cells as well. Because we and others have re-
cently shown that IL-6 is a key cytokine that, together with 
TGF-β, promotes diff erentiation of Th17 cells (18, 38), in-
creased generation of Th17 cells by activating anti–Tim-1 
antibody may be partly caused by the induction of IL-6 by 
3B3 in T cells. Together with TGF-β, this induction of IL-6 
might be responsible for the generation of Th17 cells in 
3B3-treated mice. A previous report suggested that 3B3 
antibody could enhance both production of IFN-γ and Th2 
cytokines (14); however, we could not detect IL-4 or -10 in 
our study. This is likely caused by strain diff erences (SJL vs. 
BALB/c) in that in the previous study the authors used a 
Th2-prone strain, BALB/c, whereas most of our studies are 

undertaken with the SJL mice. The low-avidity anti–Tim-1 
antibody RMT1-10 inhibited T cell expansion and proin-
fl ammatory cytokine production and promoted the genera-
tion of Th2 responses. This reduction in T cell proliferation 
and change in cytokine profi le was paralleled by the inhibi-
tion of EAE in the RMT1-10–treated mice. The mechanism 
by which this anti–Tim-1 antibody inhibited EAE could be 
caused by both reduction of encephalitogenic Th1/Th17 re-
sponses and induction of Th2 responses. Both Th2 cytokines 
IL-4 and -10 have previously been shown to suppress EAE, 
and an increase in Th2 cytokines has been shown to accu-
mulate in the CNS during recovery and to precede remis-
sion (25). Of the two cytokines, IL-10 has been shown to 
have more profound eff ect in regulating EAE (27). IL-4 has 
also recently been shown to potently inhibit the generation 
of Th17 cells (24, 37).

A subset of CD4+ cells called CD4+CD25+ regulatory 
T cells (T reg cells) that express Forkhead box P3 (Foxp3) 
can control autoimmune responses (39, 40). T reg cells have 
recently been shown to confer signifi cant protection from 
the development of EAE (41), but also traffi  c to the target 
tissue and impact on the local milieu (42). We reported that 
there is a dichotomy in Th17 and FoxP3+ T reg cells (18). 
Whether increased severity of EAE in 3B3-treated mice or 
inhibition of EAE in RMT1-10–treated mice is also caused 
by alteration in the number and/or function of FoxP3+ T reg 
cells is not clear. Our preliminary data suggest that there is no 
decrease in the number of T reg cells in 3B3-treated mice or 
increase of T reg cells in RMT1-10–treated mice. However, 
whether treatment with 3B3 or RMT1-10 antibody alters 
the generation or function of antigen-specifi c T reg cells will 
need to be further investigated.

In conclusion, we found that Tim-1 plays an important 
role in the regulation of T cell responses and the develop-
ment of autoimmune disease. The high-avidity anti–Tim-1 
antibody enhances the severity of EAE because of increasing 
autopathogenic Th1 and Th17 responses, whereas the low-
avidity antibody inhibits autopathogenic Th1 and Th17 re-
sponses and EAE and induces a strong Th2 response. The data 
suggest that Tim-1 may represent a new category of T cell 
costimulators that can positively and negatively costimulate 
T cell responses depending on how they are engaged during 
T cell activation, similar to the TCR ligands that can change 
functional outcomes depending on avidity with which TCR 
is engaged. Manipulating the Tim-1 pathway may have a 
therapeutic potential for many diff erent diseases. Although 
antibodies with characteristics of 3B3 would be useful as vac-
cine adjuvants and in the treatment of cancers and infectious 
diseases, antibodies like RMT1-10 would be useful in treat-
ing autoimmune diseases and transplant rejections.

MATERIALS AND METHODS
Mice and antigen. SJL mice were purchased from The Jackson Laboratory. 

The mice were maintained and all animal experiments were done accord-

ing to the animal protocol guidelines of Harvard Medical School. PLP139-151 

(H S L G K W L G H P D K F ) was synthesized by Quality Controlled Biochemi-

cals and was >90% pure, as determined by HPLC.
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Generation of Tim transfectants and anti–Tim-1 mAbs. Mouse Tim-1 

cDNA was cloned into the pDisplay vector (Invitrogen) and transfected into 

Chinese hamster ovary (CHO) and EL-4 cells using a previously described 

method (43). Anti–Tim-1 mAb 3B3 (rat IgG2a, κ) was generated using mu-

cinless Tim-1-Ig, which contains the IgV domain only, as immunogen (14). 

Anti–mouse Tim-1 mAb RMT1-10 (rat IgG2a, κ) was generated by immu-

nizing SD rats with full-length Tim-1-Ig that contained both IgV and mucin 

domains of Tim-1. Lymph node cells were then fused with P3U1 myeloma 

cells and cloned. The hybridomas were screened for binding to mouse Tim-

1–transfected CHO cells, but not the parental CHO cells. The specifi city 

of the anti–Tim-1 antibodies were further determined by staining EL-4 and 

CHO cells transfected with diff erent Tim family members.

Induction and clinical evaluation of EAE. 8–12-wk-old female SJL 

mice were immunized subcutaneously in the fl anks with an emulsion con-

taining PLP139-151 (80 μg/mouse) and 4 mg/ml Mycobacterium tuberculosis 

H37Ra extract (DIFCO) in CFA. Pertussis toxin (100 ng/mouse; List 

Biological Laboratories) was administered intravenously on days 0 and 2. 

Mice were intraperitoneally injected with 100 μg 3B3, RMT1-10, rIgG, 

or PBS every other day from day 0 to 8. Mice were monitored and as-

signed grades for clinical signs of EAE using the following scoring system: 

0, healthy; 1, limp tail; 2, impaired righting refl ex or waddled gait; 3, 

hind limb paralysis; 4, total limb paralysis; 5, moribund or death. At dif-

ferent time points, brains and spinal cords were removed and fi xed in 10% 

phosphate-buff ered formalin and examined histologically for numbers of 

infl ammatory foci and demyelination.

Proliferation assays and ELISA. Female SJL mice were immunized with 

PLP139-151/CFA and treated with anti–Tim-1 or control antibodies as described 

in the previous section. Mice were killed at the time of disease onset (on day 

10 for 3B3 treatment and on day 14 for RMT1-10 treatment) and spleens were 

removed. Spleen cells were isolated and plated in round-bottomed 96-well 

plates (BD Biosciences) in culture medium with various concentrations of 

PLP139-151. After 48 h, culture supernatants were removed for cytokine ELISA 

and cytokine production was measured by quantitative capture ELISA, as pre-

viously described (43). Plates were pulsed for 16 h with 1 μCi [3H]thymidine 

per well. Proliferation was measured as counts per minute by using a Wallac 

Liquid Scintillation Counter (Perkin Elmer).

IAs Tetramer staining and intracellular staining. IAs tetramers for 

PLP139-151 and TMEV70-86 were generated as previously described (17, 28). 

TMEV tetramers were used as negative controls. Lymphocytes from spleen 

and lymph nodes of PLP139-151-immunized SJL mice treated with diff erent 

antibody were cultured with 20 μg/ml of antigen for 5 d. Cells were puri-

fi ed by Ficoll-Hypaque density gradient centrifugation. After washing, cells 

were incubated with the tetramers (30 μg/ml) for 3 h at 37°C, followed by 

staining with anti–CD4-APC (clone RM4.5) and 7-amino-actinomycin D 

(7-AAD; BD Biosciences). Cells were acquired by using the FACSort fl ow 

cytometer (Becton Dickinson), and tetramer-positive cells were determined 

within the CD4+ population after gating the viable cells (7-AAD−). FACS 

data were analyzed with the CELLQUEST (Becton Dickinson) and FlowJo 

(Tree Star) programs. To determine the frequency of cytokine-producing 

cells, Ficoll-purifi ed cells were reactivated with 20 ng/ml PMA (Sigma-

Aldrich) and ionomycin (300 ng/ml; Sigma-Aldrich) and 2 mM monensin 

(GolgiStop; BD Biosciences) for 4 h at 37°C. After staining with tetramer, 

anti–CD4, and 7-AAD, the cells were fi xed, permeabilized, and stained with 

cytokine antibody as recommended by the manufacturer (BD Biosciences). 

The frequencies of cytokine-producing cells were analyzed by gating on 

tetramer+CD4+7-AAD− populations.

Anti–Tim-1 binding ELISA. ELISA plates were coated with 10 μg/ml 

of Affi  niPure goat anti–mouse IgG (Jackson ImmunoResearch Laboratories, 

Inc.). After overnight incubation at 4°C and washing, the plates were then 

coated with 50 nM of full-length or mucinless mouse Tim-1-Ig or Tim-4-Ig 

fusion protein. After blocking, diff erent concentrations of anti–Tim-1 were 

added, followed by peroxidase-conjugated Affi  niPure goat anti–rat IgG sec-

ondary antibody (Jackson ImmunoResearch Laboratories). Assays were de-

veloped with TMB Microwell Peroxidase Substrate (Kierkegaard and Perry 

Laboratories) and read at 450 nm using a Benchmark microplate reader 

(Bio-Rad Laboratories).

Confocal microscopy and live imaging. CD4+ T cells were purifi ed 

from SJL mouse using CD4 T cell enrichment column (R&D Systems) and 

stained with Alexa Fluor 488–conjugated anti–mouse CD3 mAb (BioLegend). 

Labeled cells were placed in a Live Imaging Microincubator (Carl Zeiss 

MicroImaging, Inc.) at 37°C and 5% CO2 for monitoring cell responses to the 

treatment with rIgG2a, 3B3, or RMT1-10 antibodies. Data were recorded 

for 1 h with a LSM510 laser-scanning confocal microscope (Carl Zeiss 

MicroImaging, Inc.) by using z-stack of the cultures to obtain the behavior 

of the entire body of cells and not just a single optical plane over time; 

these allow us to fi rmly establish the activity of both antibodies in CD3 

capping and cell movement. Three-dimensional reconstructions were per-

formed for every experiment and followed for the duration of the experi-

ments, and the percentage of cells demonstrating capping and extended 

short-range movement, increased motility were annotated. Laser scanning 

parameters were maintained to a minimum to avoid any potential photo-

damage, and results were analyzed with LSM 510 software (Carl Zeiss 

MicroImaging, Inc.) and processed using LSM 510 confocal software, as 

previously described (24, 44).

Biacore analysis. A Biacore T100 system (Biacore, Inc.) was used for ki-

netic analysis of anti–Tim-1 antibodies 3B3 and RMT1-10 with a reaction 

temperature of 37°C. Goat anti–rat IgG Fc was immobilized to the CM5 

carboxymethylated dextran sensor chip. 5 nM of 3B3 or RMT1-10 was 

injected over the chip surface for 3 min at 10 μl/min. The reference fl ow 

cell was injected with rIgG2a. Tim-1-Ig, at concentrations of 5, 2.5, 1.25, 

0.625, 0.3125, 0.156, and 0.078 nM, and buff er only was introduced to the 

chip surface using a high-performance injection for 4 min at 30 μl/min. For 

each concentration, dissociation of bound antigen in the buff er fl ow was 

recorded for an additional 20 min. The sensor chip surface was regener-

ated with a 30-s injection of 20 mM HCl at 60 μl/min, followed by a 30-s 

stabilization period.

For anti–Tim-1 epitope mapping, a Biacore 3000 system was used with 

a reaction temperature of 25°C. 10 μg/ml of anti–Tim-1 antibody 3B3 were 

injected over the goat anti–rat IgG Fc-immobilized chip surface for 1 min 

at 10 μl/min. The chip surface was then saturated with rIgG. A mixture of 

10 μg/ml Tim-1-Ig and 100 μg/ml anti–Tim-1 antibody (3B3, RMT1-10, 

or control antibody) was injected over the chip surface for 3 min at 10 μl/

min. The sensor chip surface was regenerated with a 40-s injection of 20 mM 

HCl at 60 μl/min.

Data transformation and sensogram plot overlays were prepared using 

BIAevaluation software for Biacore 3000 data, and Biacore T100 evaluation 

software was used for kinetic analysis of association and dissociation rates. All 

sensogram data were subtracted from the reference fl ow cell and double ref-

erenced using buff er injection data from each condition tested. Association 

and dissociation kinetics were determined using a bivalent analyte algorithm 

with global fi t analysis.

Statistics. Comparisons of the diff erences in biacore data or immune re-

sponses, such as proliferation and cytokine production and numbers of IAs 

tetramer-positive CD4+ T cells, were made using Student’s t tests. The clin-

ical score and incidence of PLP139-151-induced EAE was analyzed by Fisher’s 

exact test. P < 0.05 was considered signifi cant.

Online supplemental material. Fig. S1 shows the eff ects of Fab′ frag-

ments of 3B3 and RMT1-10 on T cell proliferation and cytokine pro-

duction. Video 1 shows that treatment with 3B3, but not RMT1-10, 

anti–Tim-1 antibody causes highly motile T cells with changes in mor-

phology. The online version of this article is available at http://www.jem

.org/cgi/content/full/jem.20062498/DC1.
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