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ABSTRACT To understand the function of neuro-active
molecules, it is necessary to know how far they can diffuse in
the brain. Experimental measurements show that substances
confined to the extracellular space diffuse more slowly than in
free solution. The diffusion coefficients in the two situations
are commonly related by a tortuosity factor, which represents
the increase in path length in a porous medium approximating
the brain tissue. Thus far, it has not been clear what compo-
nent of tortuosity is due to cellular obstacles and what
component represents interactions with the extracellular me-
dium (“geometric” and “viscous” tortuosity, respectively). We
show that the geometric tortuosity of any random assembly of
space-filling obstacles has a unique value (~1.40 for radial
flux and ~1.57 for linear flux) irrespective of their size and
shape, as long as their surfaces have no preferred orientation.
We also argue that the Stokes—Einstein law is likely to be
violated in the extracellular medium. For molecules whose size
is comparable with the extracellular cleft, the predominant
effect is the viscous drag of the cell walls. For small diffusing
particles, in contrast, macromolecular obstacles in the extra-
cellular space retard diffusion. The main parameters relating
the diffusion coefficient within the extracellular medium to
that in free solution are the intercellular gap width and the
volume fraction occupied by macromolecules. The upper limit
of tortuosity for small molecules predicted by this theory is
~2.2 (implying a diffusion coefficient approximately five
times lower than that in a free medium). The results provide
a quantitative framework to estimate the diffusion of mole-
cules ranging in size from Ca2* ions to neurotrophins.

Signaling between neurons in the brain takes place principally
via the passive movement of substances in the extracellular
space. A quantitative description of extracellular diffusion is
therefore of central importance to understand both conven-
tional “fast” amino acid neurotransmission, and more diffuse
forms of chemical transmission as exemplified by monoamin-
ergic and peptidergic signaling (1, 2, 3). The distinction
between these modes of intercellular communication is in fact
blurred by reports that the fast transmitters glutamate and
y-aminobutyric acid also may act at receptors outside the
synaptic cleft where they are released (4, 5, 6, 7, 8).

The role of extracellular diffusion is not confined to chem-
ical transmission: if extracellular diffusion of Ca2* ions is slow,
they may become locally depleted in the vicinity of foci of
neuronal activity, thereby modifying synaptic efficacy (9, 10).
All of the above phenomena also are linked intimately with
pathological processes: changes in extracellular diffusivity
have been described in the very early stages of cerebral
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ischemia, both with diffusion-weighted magnetic resonance
imaging (11, 12) and with electrochemical measurements of
inorganic ions injected into the extracellular space (13, 14, 15).
These changes, which are likely to play a major role in
neurotoxicity and seizure initiation, again underline the need
for a comprehensive description of extracellular diffusion.

In spite of the fundamental role of extracellular diffusion, its
properties are incompletely understood. Nicholson and col-
leagues (16) made an important advance by introducing a
robust approximation approach, which considers diffusion in
brain tissue as occurring within a porous medium. Assuming
that cell membranes are relatively impermeable, Fick’s laws of
diffusion apply to such a medium, provided that two additional
parameters are accounted for: the extracellular volume frac-
tion a and the tortuosity A (17). The latter parameter repre-
sents the “porous-to-free” increase in the path length of
diffusing particles, which lowers the apparent diffusion coef-
ficient by a factor 1/A2,

The values of « and A have hitherto been estimated in
various brain areas by comparing the concentration profiles of
dyes or inorganic ions injected into the brain with the corre-
sponding solutions of diffusion equations (16, 18, 19, 20).
Simultaneous measurements of « and A also have been re-
ported in the same tissue in the face of alterations in osmo-
larity, either by direct manipulation of the perfusion medium
in vitro (21) or secondary to ischemia in vivo (13, 15). These
experiments show that changes in « and A are anticorrelated,
although a quantitative explanation of this relationship is
lacking. It is also unclear which component of the measured
tortuosity arises from the tissue geometry alone (a component
termed “geometric tortuosity” in this study), and which is due
to nonelastic interaction of the diffusing molecules with cell
walls and extracellular macromolecules (the “viscosity com-
ponent” of tortuosity). This knowledge is however of critical
importance, both to relate diffusion to tissue morphology and
to gain a fuller understanding of the phenomena that deter-
mine the movement of molecules between cells.

We have demonstrated recently that the geometric tortuos-
ity of the neuropil can be estimated by applying principles of
integral geometry (22). Here, we show that the geometric
tortuosity has a unique value if the tissue area of interest is
homogeneous and isotropic. We further show that two impor-
tant principles together determine the viscosity component of
tortuosity. For small diffusing molecules, extracellular macro-
molecules can be considered as obstacles, which impose an
additional increase in path length, analogous to the geometric
obstacles formed by cells themselves. For larger diffusing
molecules, comparable in size to the intercellular gaps, the rate
of movement down the concentration gradient is further
reduced, mainly because of viscous interactions with cell walls.
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We demonstrate consistency between the predictions derived
from this treatment of viscosity and published experimental
data, implying that it can be applied to derive quantitative
predictions of the spatio-temporal extent of movement of
molecules in the brain.

RESULTS

Infinitesimal Approximation. The porous medium approx-
imation (16) implies that the extracellular space in brain tissue
represents a continuous system of narrow, interconnected
intercellular gaps (roughly equivalent to the soap phase in soap
foam), as depicted schematically in Fig. 14. First, we shall
estimate the geometric tortuosity of such a medium, that is the
porous-to-free path length increase of diffusing particles. We
shall analyze the path of these particles within the extracellular
space by considering the elementary path segments within a
thin (thickness dx) and narrow (width dy) rectangular prism
“probe” normal to OX, the direction of the general diffusion
gradient (Fig. 1A4). If the intercellular gaps are much smaller
than the obstacles to diffusion, this probe cuts out a thin
extracellular space fragment approximated by a parallelogram
K as shown in Fig. 1B. The angular position of K in Euclidian
space is determined by a pair of angles, 3; and 3, (see Fig. 1B).
The flowing particles cross the slab along an “optimal” path
PQ = dq that lies on K, whereas in a free medium the particles
would be simply translated along the segment dx. The direction
of path dg is determined by the vector N normal to the surface
K and the concentration gradient “driving force” f parallel to
OX, which acts upon the particles (from thermodynamic
principles,

1 opy
f=N 0
A4 0X

where Na = 6.02 X 102 mol~! is Avogadro’s number and pu;
is the partial molal Gibbs free energy, a quantity proportional
to concentration). Two other forces act on the particles but do
not affect the direction of dg: a Brownian stochastic force,
whose time-and-space average equals zero, and friction or
viscosity, which is antiparallel to the particle velocity vector.
Thus, the direction of the path dg is defined by the intercept
of K and a plane containing N and f (see Fig. 1B). Geometric
principles give the relationship:

dq/dx = (1 + cos?Btan?B,)!/?- [

Fic. 1. Diagram illustrating derivation of the elementary geomet-
ric tortuosity of a porous medium. (4) A schematic diagram of a
porous medium fragment with a thin and narrow rectangular prism
probe situated perpendicular to the direction of diffusion f. The
expanded section shows the relationship of extracellular and intracel-
lular spaces (ECS and ICS, respectively). (B) Geometry of the
infinitesimal approximation: the thin and narrow probe cuts a paral-
lelogram K out of the extracellular space (between two cell surfaces);
a diffusing particle encounters the probe at point P and then travels
on surface K along path dg = PQ; the spatial position of K is
determined by angles B; and B, (shown).
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Because dq is the particle path in the porous medium and dx
would be the particle path in a free medium, the ratio dg/dx
represents the “elementary geometric tortuosity”. Eq. 1 pro-
vides an elementary basis to estimate the mean tortuosity
factor that retards diffusion throughout the entire medium.
This factor is slightly different, depending on whether it is
calculated with respect to unidirectional or radial diffusion
flow, as shown below.

Mean Geometric Tortuosity: Unidirectional Flux. We shall
begin by considering unidirectional flux (ref. 23, pp. 273-281) in
which the net movement of diffusing particles is in the direction
OX and the average flux in directions OY or OZ equals zero (Fig.
1A). In physiological terms, this scenario occurs, for instance,
when the diffusion source or sink is a planar surface of brain
tissue. It also applies to the movement of water molecules that is
detected by diffusion-weighted magnetic resonance imaging. The
infinitesimal approximation illustrated in Fig. 1B allows estima-
tion of the mean tortuosity A by averaging the elementary
geometric tortuosity across many thin slabs normal to the axis OX,
the direction of diffusion. In other words, Ay is determined by the
mean (dq/dx) with respect to the complete set of parallel thin
slabs, of which one is depicted in Fig. 1B. Therefore, to estimate
A from Eq. 1, it is sufficient to determine the joint probability
density of B; and 3, in such a set (the joint probability density is
required because orthogonal sections of arbitrary surfaces may
not be statistically independent, ref. 24). Also note that in
conditions of steady-state diffusion, this derivation is independent
of surface concavity.

If the medium is isotropic (see Discussion for the case of an
anisotropic medium), the vectors N normal to the elementary
cell surface fragments (Fig. 1B) must point in any direction in
space with equal probability. In other words, if we relate the
occurrence of each such direction to the length of the corre-
sponding vector N, the vector vertices will form the sphere
illustrated in Fig. 24. This sphere, defined by x> + y? + z2 =
r? (where r is the arbitrary radius), thus represents the prob-
ability density function of the orientation of elementary cell
surface fragments such as K. Therefore, sampling of fragments
K in an isotropic medium is equivalent to the sampling of K on
the spherical surface illustrated in Fig. 24. The Euclidean
coordinates (x,y, z) and angles 3; and 3; (see Fig. 24) for each
fragment K, resulting from the intersection of a thin slab and
the sphere, are related as

cos By = z:(y? + 22 1/? [2a]
tan B, = x/z. [2b]
A B

Cell membrane

Flux

Cell membrane

FiG.2. (A) Sphere representing the probability density function of
the directions of the vectors N (see Fig. 1B) normal to the elementary
surface fragments K, in the case of an isotropic medium. The position
of a fragment K sampled on the sphere is determined by angles 31 and
Ba. (B) Theoretical profile of the velocity of particles flowing between
parallel cell walls. The profile corresponds to Eqs. 7-9 and applies for
large diffusing molecules.
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Combining Eqgs. 1 and 2 gives
dq/dx = (1-x%/r})~1/2, [31

Eq. 3 allows, after a few elementary transformations, the
averaging integral for A, over all slabs normal to OX (Fig. 1B)
in the form

- T dx (4]
X . Vr27x2'

This integral is convergent and yields Ay = /2 = 1.571, which
therefore estimates the mean geometric tortuosity in the case
of unidirectional diffusion flow through an isotropic medium.

Mean Geometric Tortuosity: Radial Flux. Radial diffusion
is more commonly encountered in considering intercellular
signaling and arises, for instance, when a vesicle of neuro-
transmitter is released within a small volume of tissue. In
contrast to unidirectional diffusion, the mean tortuosity A,
with respect to radial diffusion can be estimated by averaging
the elementary geometric tortuosity over the complete set of
thin slabs (see Fig. 14) sampled in all possible directions with
uniform probability. This estimate can be achieved as follows.
First, Eq. 3 is transformed into spherical coordinates

dq/dr = (1-sin®6-cos’p) /2. [51

And second, this expression is averaged over angles 0 < 6 < 7
and 0 < ¢ < 27, using a Monte Carlo experiment where 6 and
¢ are distributed uniformly over their domains. This simula-
tion experiment (sample size n = 10,000) gave the mean
tortuosity for radial diffusion: A, = 1.398.

Nongeometric Component of Tortuosity: Viscosity. In a
viscous medium, the fundamental Stokes—Einstein law relates
the diffusion coefficient D to the effective radius of the
diffusing molecules R, and the viscosity of the medium n:

kT

D= 6mnR’ [6a]
where T is temperature and k =1.38 X 1072* J/K is Boltz-
mann’s constant. If the aqueous medium also contains large
particles, its viscosity m is given by

gt 250+1(4), [6b]

Mo
where ¢ is the volume fraction occupied by the large particles,
no is the viscosity of the aqueous phase (without these parti-
cles), and f(¢) is a term which represents deviations of the law
to particular nonideal systems. However, relationships 6a and
6b cannot be applied generally to the extracellular medium
because they require two conditions to be met. First, the
diffusing molecules must be much smaller than the medium
dimensions (intercellular gap width), so that their interaction
with the stationary cell walls is negligible. This condition may
be met for small ion species and most neurotransmitters whose
effective dimensions in the aqueous solution are smaller than
~1 nm. The situation is different for larger molecules such as
neurotrophins and other polypeptides. In this case, according
to the classic theory of viscosity, the predominant phenome-
non is likely to be stationary wall drag. Wall drag affects the
flux velocity v at different distances z from the stationary
surface according to a fundamental formula

dv_v .
dz R 7]
(where the hydrodynamic radius R also stands for the width of
an elementary layer in the flux). If molecules flow between two
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approximately parallel surfaces (cell walls) spaced at a distance
d apart, the boundary conditions for Eq. 7 are: v(0) = v(d) =
0 and v(z = %, d = ) = Ve, Where Vi is the flux velocity
unconstrained by the wall drag (i.e., in a free medium).
Integration leads to an expression

d z d—z
V=Vhell Fe  R—e R—e R ), [8]

which suggests that the profile of the flux velocity v(z) between
two parallel cell walls follows a superimposition of two expo-
nents, as depicted in Fig. 2B. Averaging v over the intercellular
gap width d by using Eq. 8 yields the mean velocity (v) of the
molecules flowing between the walls

w
Vfree

d 2R d
1+e’ﬁ—7(1—e_ﬁ). [9]

An important feature of Eq. 9 is that the ratio

)
Vfree ’

in accordance with Fick’s 1st law, is equivalent to the ratio
between the diffusion coefficient in the extracellular space and
that in a free medium, D/Dyee. Eq. 9 also indicates that the
effect of the stationary wall drag becomes negligible whenever
R << d: for instance, when r = 0.05d, D = 0.9Djcc.

The second fundamental requirement for the Stokes—
Einstein relationship 6 to hold is that the diffusing molecules
must be much larger than the molecules that constitute the
medium (25). This is likely to be violated in the extracellular
space of the brain because it contains large macromolecules
loosely attached to the cell walls. A more likely scenario is that,
although the viscosity 1 of such a medium may increase rapidly
with the volume fraction occupied by these large particles (in
agreement with Einstein’s law or its extended versions, as
illustrated by Eq. 6b (26), the diffusivity of relatively small
molecules in the medium remains much less affected (27). The
accurate liquid mechanics description of such systems is com-
plicated because of the difficulty of treating “hydrodynamic
tortuosity” (27) and accounting for the obstruction effect of
large, slowly moving particles (25).

Bearing in mind the latter comment, we attempt an alter-
native approach. Classically, the viscous interactions between
the diffusing particles and layers of the medium are treated
while assuming a nonslip boundary condition (see Eq. 7).
Instead, we treat extracellular macromolecules (and the water
molecules that they bind) as random obstacles that impose an
additional path increase (28). We postulate that small diffusing
molecules flow in the medium with a constant rate whereas the
viscous drag phenomena in the vicinity of the macromolecules
are simply reflected by the effective size (volume) of these
obstacles. Denote an additional tortuosity factor arising in this
system as A*. Because there is only one preferred direction of
diffusion within each infinitesimal fragment of the extracellu-
lar space (see Fig. 1B), A* should be calculated with respect to
unidirectional flux. Denote also as ¢ the tissue volume fraction
of the extracellular obstacles to diffusion (macromolecules
constituting the extracellular matrix). If these obstacles occupy
almost the entire extracellular volume (¢ = a), A* = A, = 1.57.
When ¢ < a, a “typical” molecule encounters no obstacles
within the extracellular space (that is, A* = 1) for a ¢/« portion
of its path. The other (1 — ¢/a) portion of the path corre-
sponds to a situation analogous that shown in Fig. 1B. Given
the probabilistic nature of mean A*, the value of A*(¢) can then
be estimated by using a Bayesian probability formula:

A*(¢)=Axx9+(1 —9> =1+0.57><9. [10]
o o o
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Dissecting Geometric and Nongeometric Tortuosity of the
Extracellular Space. Given the technical difficulties of mea-
suring the diffusivity of the extracellular medium, an obvious
question arises: how valid (and useful) are the above theoret-
ical considerations regarding extracellular diffusion in real
brain tissue? To relate our derivations to existing experimental
observations, let us assign all viscosity phenomena to a particle
path increase factor A*, which is additional to the factor A;
caused by the geometric tortuosity alone, that is, A = A, A*. The
apparent extracellular diffusion coefficient D,, measured in
brain tissue will therefore combine the effects of geometric
tortuosity and viscosity, so that D,, = Direc(A;A*) 2. Depend-
ing on whether the diffusing molecules are relatively large or
small, the main contribution to the value of A* will be
determined by Eq. 9 or 10, respectively.

Nicholson and Tao (29, 30) analyzed the diffusion of dex-
trans of different molecular weight in rat cortical slices by using
an optical method. The data, showing a positive relation
between A and the estimated Stokes radii of the dextrans, R, are
replotted in Fig. 34. Assuming d = 20 nm (the average distance
between adjacent cell membranes, as typically observed in
electron micrographs of cortical neuropil), Eq. 9 yields the
relationship shown by the dotted line. Given that there are no
adjustable parameters in the theory, the agreement between
the theoretical prediction and the data is surprisingly close.

Similarly, both Eqs. 9 and 10 predict that D,, should be
positively correlated with the extracellular volume fraction «
(or mean intermembrane distance d), as long as there is no
change in ¢. A manipulation of « that satisfies this condition
is redistribution of water between the intracellular and extra-
cellular compartments, obtained either directly by manipulat-
ing the ionic composition (and thus osmolarity) of the per-
fusing medium or indirectly by inducing tissue ischemia. In this
case, ¢ is the only free parameter, which can be estimated by
fitting Eq. 10 to the available experimental observations on the
diffusion of small molecules. Fig. 3B shows data from the rat
cortex (13, 15) (combined data shown) and the turtle cerebel-
lum (21), where A was estimated by monitoring the extracel-
lular diffusion of tetramethylammonium (TMA™) ions. Eq. 10
provides a reasonable fit in both cases, giving values of ¢ = 0.07

A B

@ turtle cereb.

3.5+ 229, —4=007
\ O rat cortex
3.07 y - =0.04
2.0{0 $=0.
2.54
< /O’O < 1.84
20 o
00 .-
154 -7 161
1.0 T r r r ) 14 T T r
0 2 4 6 8 10 0.0 0.2 0.4 0.6
R (nm) o

F1G6.3. (A) Comparison of theoretical estimates and experimental
data relating the combined tortuosity A to the effective radius of
diffusing molecules. Circles, experimental estimates of the extracel-
lular tortuosity in the rat cortex for four different dextrans (Stokes
radii R are shown on the abscissa) by Tao and Nicholson (29, 30).
Dashed line, theoretical prediction based on Eq. 9 with no adjustable
parameters. (B) Comparison of theoretical estimates and experimen-
tal data relating the combined tortuosity A to the extracellular volume
fraction «. Filled circles, experimental estimates of « and A measured
with TMA™* diffusion in the turtle cerebellum by Krizaj et al. (21),
perfused with solutions of different osmolarities. Open circles, esti-
mates of « and A obtained in the rat neocortex by Pérez-Pinzon et al.
(13) and VofiSek and Sykova (15) in conditions of induced ischemia
(combined data). Curves, corresponding theoretical estimates of A(a),
in accordance with Eq. 10 with one adjustable parameter, ¢, the
volume fraction occupied by large extracellular macromolecules.
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for the turtle cerebellum and ¢ = 0.04 for the rat cortex (i.e.,
extracellular molecules effectively occupy a smaller fraction of
the tissue volume in the rat cortex).

Finally, our theory predicts that, for molecules much smaller
than the intercellular gaps, the upper limit of the combined
tortuosity A is A A, = 2.2 (see Eq. 10 when ¢ — «). This value
is not exceeded in any of the experimental measurements of
TMA™ diffusion (13, 15, 21, 31). Because the activation of
glutamate receptors depends steeply on the effective diffusion
coefficient (22), these results place constraints on the extent to
which extrasynaptic receptors can be opened following exocy-
tosis.

DISCUSSION

We have shown that the geometric tortuosity of an isotropic
medium composed of space-filling obstacles has a unique
value, ~1.57 for unidirectional flux and 1.40 for radial flux.
This result implies that, if the brain parenchyma is genuinely
isotropic, deviations in A from these values arise not from
changes in tissue geometry but from the nongeometric, or
viscosity, component of total tortuosity. Indeed, all the avail-
able estimates of A, which is generally measured for radial flux,
are in excess of 1.40, implying that the viscosity component is
not negligible.

Tortuosity for Unidirectional and Radial Flux. Crank (23)
and others have cautioned against extrapolating from detailed
geometric treatments of unidirectional flux in heterogeneous
media to other patterns of diffusion (ref. 23, p. 273). Never-
theless, a distinction between A and A, that is, between the
tortuosity for unidirectional and radial flux, has not previously
been made explicitly. The observation that the effective cu-
mulative increase in path length caused by an arbitrary obsta-
cle is generally greater for unidirectional than for radial flux
can be illustrated by the following two-dimensional example.
Consider a particle moving down a unidirectional concentra-
tion gradient (Fig. 4). In the absence of obstacles, it will cross
successive iso-density contours, represented by parallel
straight lines normal to the trajectory of the particle. However,
when the particle’s movement is restricted to a narrow “pore”
(at an arbitrary angle 6 with respect to the concentration

F1G. 4. Difference between tortuosity for unidirectional and radial
flux. A particle at A, flowing down its concentration gradient (hori-
zontal dotted arrow), is confined to an intercellular pore. In the case
of unidirectional flux, it reaches the next iso-density contour (vertical
dotted line) at C. In the absence of obstacles, it would have reached
the next contour at B. The ratio of path length AC/AB, equivalent to
1/cos 6, averaged over space, is thus equivalent to Ay, the tortuosity for
unidirectional flux. If, however, the diffusion flux is radial, originating
from a point source at O, the particle only needs to travel as far as D
to reach the next isodensity contour (circular dotted lines). The
tortuosity for radial flux Ay, is thus given by averaging the ratio AD/AB
over space. Because AC > AD, it follows that Ax > A;.



Neurobiology: Rusakov and Kullmann

gradient), it will have to travel further than in a free medium
(by a factor 1/cos6) to reach the next iso-density contour. In
the case of radial diffusion, the iso-density contours are
concentric circles, and the particle again travels further to
reach the next contour, which is however always closer than for
unidirectional flux (see Fig. 4). Because tortuosity is simply the
average increase in path length for many such obstacles, it
follows that A (tortuosity for unidirectional flux) is greater
than A, (tortuosity for radial flux).

Anisotropic Diffusion. A potential limitation on the present
conclusions is the assumption that the brain is isotropic.
Indeed, Nicholson, Sykovd and coworkers (15, 32, 33) have
shown that the neuropil in some areas of the brain does exhibit
minor degrees of anisotropy with respect to tortuosity. These
measurements were obtained on a scale of 100 wm or more and
do not necessarily preclude the occurrence of local isotropy at
a smaller scale (for instance, intersynaptic distances). Never-
theless, it is important to establish whether the present analysis
can be extended to the more general, anisotropic case. Al-
though there is no general definition for an anisotropic
medium, it can be conveniently introduced through the geo-
metric formalism depicted in Fig. 24. This can be used to
relate the anisotropy of a medium with space-filling cells to a
nonuniform spatial orientation of normal vectors N that
determine the angular positions of elementary surface frag-
ments. One natural example of such anisotropy is when the
tissue can be considered as an initially isotropic medium
stretched/compressed in one or two directions. In this case, the
vertices of N form not a probability density sphere as depicted
in Fig. 24, but a three-axis ellipsoid. For an ellipsoid deter-
mined by x?/a® + y?/b? 4+ z?/c* = 1 (where a, b, and ¢ are the
three ellipsoid axes), the expression for local tortuosity, anal-
ogous to Eq. 3, takes the form:

dq b4C4X2 5 X X2 y2
aZ l+m where z°=c *?*p. [11]

Eq. 11 allows estimation of the mean tortuosity A, with respect
to uni-directional diffusion along OX by using Monte Carlo
averaging, where x and y are uniformly distributed within
intervals [0, a[ and [0, b[, respectively. The estimated values of
Ax are shown in Table 1 for several characteristic ratios a:b:c.
Note that the notion of “mean” tortuosity with respect to
radial diffusion in this case is ambiguous because diffusion in
an anisotropic medium occurs with different velocities in
different directions.

A potential source of error in our approach is that estimates
of A from Eqs. 5 and 11 rely on Monte Carlo sampling
experiments. This method was chosen because the explicit
averaging integrals, although being finite by definition, showed
unsatisfactory numerical convergence in the vicinity of singu-
larities (data not shown). The numerical error that arises in our

Table 1. Estimated values of the mean geometric tortuosity, A, of
a porous medium with different degrees of anisotropy of cell
surfaces, characterized by the axes a, b, and ¢

Anisotropy axis ratio, a:b:c Estimated tortuosity, A

1:1:1%* 1.56
1:1:27 1.49
1:2:17 1.39
1:2:2 1.76
2:1:1 1.09
2:2:11F 1.13
2:1:21F 1.17

*, Spherical surface: the Monte Carlo assessment is consistent with
the analytical solution, giving Ax = /2 (see Results). Axis ratios
marked with similar symbols (f or ) represent geometrically identical
cases with respect to the direction of diffusion (differences in A reflect
the precision limit of the Monte Carlo simulations; see Discussion).
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Monte Carlo simulations was assessed by the variation between
the estimates obtained with different sample sizes, ranging
from 5,000 to 15,000. This variation falls within +2-5% of the
mean estimated value.

Mechanisms of Viscosity. We have argued that two different
viscosity mechanisms contribute to the diffusion phenomena
in the extracellular medium depending on whether the diffus-
ing molecules are relatively large (Eq. 9) or small (Eq. 10). The
distinction between these two mechanisms is, of course, some-
what artificial because molecules do not fall into two separate
size classes. In addition, the diffusion of proteins with complex
shapes and surface charge distributions may be affected by
nonviscous interactions with extracellular receptors and other
matrix molecules. The present derivations of the viscosity
component of tortuosity should therefore be seen as the basis
for further refinements. Nevertheless, the treatment of wall
drag interactions with dextrans of different sizes does give a
reasonable agreement with the data of Nicholson and Tao (29,
30) as depicted in Fig. 34. Indeed, because the smaller dextrans
encounter both viscosity mechanisms (wall drag and macro-
molecular obstacles), the discrepancy between the experimen-
tal fit and theoretical prediction may be even smaller than
indicated.

We have argued that the retardation of extracellular diffu-
sion due to viscosity is largely determined by the parameters
¢, d, and a, rather than following the classic Stokes—Einstein
theory. Although d and « can be estimated from electron
micrographs (22), there does not appear to be a direct exper-
imental approach to verify our predictions regarding ¢, which
represents the extracellular volume fraction occupied by large
macromolecules (Fig. 3B). However, the prediction that the
combined tortuosity A is increased by extracellular macromol-
ecules has been recently supported by experimental observa-
tions of Sykovd and coworkers (34): high molecular weight
dextrans added to the perfusate caused large increases in A,
monitored in the isolated rat spinal cord by the diffusion of
TMA™*. These results also can be used to compare the Stokes—
Einstein theory (Eq. 6a) and the Bayesian approximation (Eq.
10). To test the applicability of the Stokes—Einstein law, we
examined the effect of different dextran concentrations on the
viscosity of the perfusate by using a falling ball viscometer
(Gilmont, Barrington, IL). The results, related to the baseline
value obtained for standard artificial cerebrospinal fluid
(ACSF), were then used to derive an estimate of the relative
diffusion coefficient (Eq. 6a), and consequently apparent
tortuosity A in the presence of dextrans. For the Bayesian
description (Eq. 10), we referred to data from Tao and
Nicholson (30): the hydrodynamic radii of both 40 kDa and 70
kDa dextran were reported to be ~8 nm, implying that, ina 1%
solution, the macromolecules occupy ~20% of the volume.
Under baseline conditions in the rat central nervous system, A
= 1.57 (ref. 34), implying ¢/a = 0.22 (Fig. 3B). Eq. 10 can then
be applied to predict the effect of adding specified concen-
trations of dextrans on ¢ and therefore A. The outcome of the
two alternative models is shown in Table 2, which indicates that
the Stokes—Einstein description (Eq. 6a) yields a larger devi-
ation from the experimental data than the Bayesian descrip-
tion (Eq. 10). This implies that the effect of large, slowly
moving obstacles on the extracellular diffusion of small mol-
ecules, as described above, cannot be ignored.

An important aspect of the above considerations is that local
narrowing of the intercellular gaps may significantly retard the
diffusing flux in a supra-linear manner, whatever the size of the
diffusing molecules. This phenomenon is reminiscent of the
distinction between “local” and “global” viscosity observed in
aqueous solutions containing large biological molecules (26,
27). It is therefore important to bear structural inhomogene-
ities in mind in considering diffusion on a small scale, for
instance in the vicinity of a synapse.
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Table 2. Comparison of experimental data and theoretical
predictions for the effect of exogenous extracellular
macromolecules (dextrans) on the tortuosity factor A

Bayesian Stokes—Einstein

Prefusate Experimental approximation,  prediction, (Eq.
medium data* (Eq. 10) 6)

A d/a A n, mPas A

ACSF 1.57 022  (1.57) 1.05 (1.57)

+1% 70 kDa 1.75 0.38 1.70 1.47 1.85

+2% 70 kDa 1.72 0.54 1.83 1.70 2.00

+2% 40 kDa 1.77 0.54 1.83 1.47 1.85

*Data from Prokopova et al (34): Left column, artificial cerebro-
spinal fluid (ACSF) with various concentrations of 40 or 70 kDa
dextran; ¢/a, volume fraction of large molecules (including dextrans)
in the extracellular space; m, viscosity of perfusate measured in mPas.

Apart from the geometric and viscous components of tor-
tuosity, another phenomenon that affects the movement of
neuroactive substances in the brain is the interaction of
diffusing molecules with receptors, transporters and other
binding sites. Although this interaction is beyond the scope of
this paper, it can, under certain conditions, be treated as a
buffering process that scales the diffusion coefficient in an
analogous manner to tortuosity (22).

CONCLUSION

The present study separates tortuosity into two distinct com-
ponents, geometric and viscosity. The finding that, for an
isotropic porous medium, there is a unique value for geometric
tortuosity is at first sight difficult to reconcile with the obser-
vation that osmotic perturbations, among other treatments,
can have profound effects on the apparent diffusion path
length. This paradox can however be fully explained by changes
in viscosity arising from alterations in the distance between cell
membranes and in the density of macromolecular obstacles.
The approach outlined here allows a quantitative insight into
the constraints on the movement of neuro-active substances in
the extracellular medium and sheds light on the consequences
of the early changes in extracellular space that accompany
cerebral ischemia and other neuropathological states.
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