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BRIEF DEFINITIVE REPORT

      The traffi  c of leucocytes into the central ner-
vous system (CNS) is a highly regulated pro-
cess. This protects the brain against the full 
ravages of the systemic infl ammatory re-
sponse that would otherwise compromise 
the delicate homeostasis required for neural 
activity. T cells, which initiate the adaptive 
immune response, traffi  c into the brain at a 
relatively low level compared with other or-
gans ( 1 ). The question of whether antigen 
specifi city is a prerequisite for T cell traffi  c 
into the brain has been previously addressed. 
Several investigators have transferred acti-
vated T cells reactive against neural or irrele-
vant antigens into naive animals and observed 
that both infi ltrated the brain equally well 
( 2 – 7 ). However, all these studies concen-
trated on CD4 T cells; although CD8 T cells 
were present among the transferred cells in some 
experiments ( 3, 4 ), no attempt was made to 
elucidate whether the antigen specifi city of the 
CD8 T cells was infl uencing their infi ltration 
into the brain. 

 There is reason to suspect that traffi  c of 
CD8 T cells recognizing antigens within the 
brain is favored over that of irrelevant CD8 
T cells. In mice immunized with the myelin 
oligodendrocyte glycoprotein peptide MOG 
35 – 55 that develop experimental autoimmune 
encephalomyelitis, 56% of brain-infi ltrating 
CD8 T cells on day 10 were MOG specifi c ( 8 ). 
In humans with multiple sclerosis (MS), oligo-
clonal dominance of T cells in cerebrospinal 
fl uid (CSF) ( 9 ) and brain parenchyma ( 10 ) are 
seen more commonly with CD8 than CD4 
T cells. Although this has been interpreted as 
oligoclonal expansion within the CNS com-
partment, antigen-specifi c CD8 T cell infi ltra-
tion could also contribute because the CD8 
T cell clones were present in blood. 

 CD8 T cells are instrumental in the body ’ s 
response to viral encephalitides and tumors. 
However, they are also responsible for various 
infl ammatory neurological conditions such as 
MS, human T cell lymphotropic virus – associated 
myelopathy, and a whole host of neurological 
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 CD8 T cells are nature ’ s foremost defense in encephalitis and brain tumors. Antigen-

 specifi c CD8 T cells need to enter the brain to exert their benefi cial effects. On the other 

hand, traffi c of CD8 T cells specifi c for neural antigen may trigger autoimmune diseases 

like multiple sclerosis. T cell traffi c into the central nervous system is thought to occur 

when activated T cells cross the blood-brain barrier (BBB) regardless of their antigen 

specifi city, but studies have focused on CD4 T cells. Here, we show that selective traffi c 

of antigen-specifi c CD8 T cells into the brain occurs in vivo and is dependent on luminal 

expression of major histocompatibility complex (MHC) class I by cerebral endothelium. 

After intracerebral antigen injection, using a minimally invasive technique, transgenic CD8 

T cells only infi ltrated the brain when and where their cognate antigen was present. This 

was independent of antigen presentation by perivascular macrophages. Marked reduction 

of antigen-specifi c CD8 T cell infi ltration was observed after intravenous injection of 

blocking anti � MHC class I antibody. These results expose a hitherto unappreciated route 

by which CD8 T cells home onto their cognate antigen behind the BBB: luminal MHC class I 

antigen presentation by cerebral endothelium to circulating CD8 T cells. This has implica-

tions for a variety of diseases in which antigen-specifi c CD8 T cell traffi c into the brain is 

a benefi cial or deleterious feature. 
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occurred when the cognate antigen was present within the 
brain parenchyma. This proves that a mechanism capable of 
favoring antigen-specifi c CD8 T cell infi ltration exists. To 
elucidate the origin of this antigen specifi city, we depleted 
the brain of perivascular macrophages (PVMs), which are 
considered to be the foremost antigen-presenting cells at the 
blood-brain barrier (BBB), but this had no eff ect on CD8 
T cell infi ltration. We show that MHC class I expression by 
cerebral endothelium was luminal and, when blocked, resulted 
in a marked reduction of CD8 T cell infi ltration. 

  RESULTS AND DISCUSSION  

 Antigen-specifi c CD8 T cell traffi c into the brain 

 In CL4 mice, CD8 T cells exhibit high avidity for the HA512-
520 peptide (HA), which is K d  restricted ( 16 ). To investigate 
CD8 T cell traffi  c, we injected antigen dissolved in sterile PBS 
into the right striatum of CL4 mice. A small volume (0.5  � L) 
was delivered with a sterile, fi nely drawn glass micropipette, 
the tip of which measured 2 – 10  � m in diameter, to minimize 
tissue trauma and refl ux into the periphery. Mice were killed 

paraneoplastic syndromes ( 11 ). The crucial role of CD8 
T cells in MS has only recently been recognized. It has been 
shown that CD8 T cells specifi c for myelin antigen can initi-
ate severe experimental autoimmune encephalomyelitis dis-
ease when adoptively transferred ( 12 ). However, CD8 T cells 
are also important in disease maintenance because their num-
ber correlated with axon injury in MS plaques ( 13 ) and mag-
netic resonance imaging features of tissue destruction ( 14 ). 
CD8 T cell – mediated neuropathology may be mediated di-
rectly by CNS antigen-specifi c CD8 T cells or may occur in-
directly as a result of bystander damage by co-infi ltrating CD8 
T cells with irrelevant antigen specifi cities. However, the 
overall contribution of bystander damage has been shown to 
be small ( 15 ). The factors governing antigen-specifi c infi ltra-
tion of CD8 T cells into the brain are therefore important in 
both disease induction and maintenance. 

 To study antigen-specifi c CD8 T cell traffi  c into the 
brain, we injected antigen into the striatum of CL4 trans-
genic mice in which �95% of CD8 T cells express the V � 10 
V � 8.2 TCR ( 16 ). We show that CD8 T cell infi ltration only 

 Figure 1.   An antigen-specifi c model of CD8 T cell infi ltration into the brain. (A and B) CD8 T cell recruitment 3 d after HA (A) or control Cw3 

(B) peptide intrastriatal injection. (C) Kinetics of CD8 T cell recruitment after HA injection. (D�H) CD8 T cell infi ltration 3 d after 3 million (D�G) or 30 

million (H) in vitro�activated CL4 Thy1.1 �  CD8 T cells were injected i.v. in Thy1.2-congenic wild-type BALB/c mice at the time of right intrastriatal HA (D�F) 

or Cw3 (G and H) injection. D�F show confocal micrographs of CD8 (red, E) and Thy1.1 (green, D) immunofl uorescence, merged in F. G and H are light 

micrographs after CD8 immunohistochemistry (brown). (I�P) CD8 immunohistochemistry (brown) of striatum in CL4 mice after simultaneous HA and 

Cw3 injection in right (I and K) and left (J and L) striatum, on days 3 (I and J) and 1 (K and L); irrelevant adenovirus injection, days 1 (M) and 3 (N); stab 

lesion, days 1 (O) and 3 (P). Q is a representative merged confocal micrograph after double immunofl uorescence of striatum for CD8 (red) and Ki67 

(green) on day 1 after HA injection in CL4 mice. Bars: A and B, D�H, and Q, 50  � m; I – L, 30  � m; M – P, 20  � m.   
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expected to see CD8 T cells in the Cw3-injected hemisphere. 
However, CD8 T cells only infi ltrated the HA-injected hemi-
sphere; none were present in the contralateral hemisphere 
( Fig. 1, I and J ). 

 The above experiments showed that the transgenic CD8 
T cells were recruited only to the site where cognate antigen 
was present in the brain parenchyma. It is currently thought 
that a basal low level of immunosurveillance by T cells oc-
curs in the brain ( 18 ). Therefore, the CD8 T cells could, as 
part of normal surveillance, have infi ltrated the parenchyma in 
a non-antigen – specifi c fashion only to be retained or to pro-
liferate if their cognate antigen was present (antigen-specifi c 
retention and/or proliferation, respectively). We therefore 
asked whether CD8 T cells recruited into the brain in a non-
antigen – specifi c fashion persist for any length of time in the 
absence of their cognate antigen. In separate experiments, 
CL4 mice received an injection of an irrelevant adenovirus 
(Ad70-3) or a sterile stab lesion in the right striatum ( n  � 3 
each time point). Both manipulations recruited CD8 T cells, 
which were seen at day 1 and persisted until day 3 ( Fig. 1, 
M – P ). This means that had CD8 T cells been recruited in a 
non-antigen – specifi c fashion after Cw3 injection, they would 
have been seen on days 1 or 3. To further test this hypothe-
sis, CL4 mice injected with HA in one hemisphere and Cw3 
in the contralateral hemisphere ( n  � 3) were perfused at an 
earlier time point (day 1 after injection) to see whether T 
cells were failing to persist until day 3 after injection in the 
contralateral hemisphere. No CD8 T cells were seen in the 
Cw3-injected hemisphere ( Fig. 1 L ), but CD8 T cells were 
observed in the HA-injected side, with some in a perivascu-
lar location representing the initial phase of CD8 T cell 
migration ( Fig. 1 K ). Confocal microscopy showed that CD8 
T cells infi ltrating the striatum on day 1 after cognate antigen 
injection did not express the nuclear proliferation marker 
Ki67 and therefore were not proliferating ( Fig. 1 Q ). There-
fore, initial CD8 T cell accumulation within the parenchyma 
was the result of antigen-specifi c infi ltration rather than non-
antigen – specifi c infi ltration followed by antigen-specifi c re-
tention or proliferation. 

 The role of cerebral PVMs 

 We next addressed whether antigen presentation at the BBB 
is a potential mechanism whereby CD8 T cells specifi cally 

on days 1, 3, 5, and 7 after injection (minimum  n  � 3 per time 
point). Because virtually all CD8 T cells in this mouse express 
the transgenic TCR, we used CD8 immunohistochemistry to 
track antigen-specifi c CD8 T cells in the brain parenchyma. 
Serial section immunohistochemistry had shown that all CD8� 
cells were CD� (unpublished data). 

 Intrastriatal injection of HA resulted in a focal CD8 T cell 
infi ltrate, which was strictly limited to the area of antigen 
deposition ( � 7.5 mm 2 ) as shown by a co-injected inert blue 
dye ( Fig. 1 A ).  This T cell infi ltrate peaked at day 3, reaching 
a density of 88 cells/mm 2 , and had nearly disappeared by 
day 7 ( Fig. 1 C ). No CD8 T cells were seen in the contralateral 
hemisphere. Moreover, CD8 T cell infi ltration did not occur 
at any time point after control intrastriatal injections of a K d -
restricted noncognate antigen, Cw3 peptide ( Fig. 1 B ). This 
showed that CD8 T cells were accumulating at the site of 
injection as a result of the presence of antigen. 

 The CD8 T cell infi ltrate observed was not a peculiarity 
of the CL4 transgenic mouse. Using a diff erent approach 
in a nontransgenic animal, we transferred 3 million in vitro –
 activated CL4 Thy1.1� CD8 T cells into Th1.2-congenic wild-
type BALB/c recipients at the time of intrastriatal HA injection 
( n  � 3) and perfused them after 3 d. As expected, CD8 T cells 
were observed in the right striatum of HA-injected animals. 
The vast majority of parenchymal CD8 T cells (�95%) were 
Thy1.1 �  ( Fig. 1, D – F ), indicating that they were donor HA-
specifi c CD8 T cells. No T cells were seen infi ltrating the 
brains of wild-type BALB/c mice receiving Cw3 in the right 
striatum and 3 or 30 million in vitro – activated CL4 CD8 
T cells i.v. ( n  � 3 each dose) ( Fig. 1, G and H ). 

 The marked diff erence in CD8 T cell accumulation be-
tween the HA and Cw3 injections in the striatum of CL4 
mice suggested that CD8 T cells were sensitive to the local 
presence of their cognate antigen in the CNS. HA is a solu-
ble peptide and is likely to  “ leak ”  to the periphery ( 17 ). One 
possibility was that CD8 T cells were migrating into the stri-
atum in a non-antigen – specifi c way at the site of intracere-
bral injection after being activated in the periphery by the 
leaking HA. To investigate this possibility, we injected HA 
into one hemisphere and Cw3 into the contralateral hemi-
sphere of CL4 mice and killed them on day 3 after injection 
( n  � 3). If peripherally activated transgenic T cells were mi-
grating nonspecifi cally to the site of injection, we would have 

 Figure 2.   Cerebral PVM depletion does not affect antigen-specifi c CD8 T cell infi ltration into the brain. (A and B) Mannose receptor immuno-

histochemistry (brown) of striatum after clodronate (A) and control (B) liposome intracerebroventricular infusion in CL4 mice. Bar, 50  � m. (C) Quantifi cation of 

CD8 T cell infi ltration 3 d after intrastriatal HA injection in CL4 mice pretreated with clodronate or control liposomes (two-tailed Student ’ s  t  test, P � 0.767).   
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an intrastriatal injection of cognate antigen, and they were per-
fused 3 d later. Similar numbers of CD8 T cells had infi ltrated 
the parenchyma in both the PVM-depleted and control groups 
( Fig. 2 C ), indicating that antigen presentation by PVMs was 
not directing CD8 T cell traffi  c into the brain. 

 The role of cerebral endothelium 

 Because an antigen-presenting process was suspected to play 
an important role in CD8 T cell infi ltration, we studied the 
expression of MHC class I by immunohistochemistry on days 
0, 0.5, 1, 1.5, 2, 2.5, 3, 5, and 7 after intrastriatal injection of 
HA in CL4 mice (at least  n  � 3 for each time point). In naive 
uninjected animals, a very low basal level of MHC class I ex-
pression by endothelium was noted ( Fig. 3 A ).  Constitutive 

home in on their target behind the BBB. Cerebral PVMs are 
strategically located at the BBB between the endothelial base-
ment membrane and the glia limitans, and are considered to 
be the brain ’ s foremost antigen-presenting cells ( 19 ). We there-
fore investigated whether PVMs play a role in antigen-specifi c 
CD8 T cell traffi  c. CL4 mice were depleted of cerebral PVMs 
with an intracerebroventricular infusion of clodronate-loaded 
liposomes as described previously ( 20 ) ( n  � 6) ( Fig. 2 A ).  These 
liposomes are selectively phagocytosed by cerebral PVMs, 
leading to progressive intracellular accumulation of sodium 
clodronate. This kills all PVMs by day 5 as a result of adenosine 
triphosphate depletion and apoptosis ( 20 ). Control CL4 mice 
( n  � 4) received an intracerebroventricular infusion of empty 
liposomes ( Fig. 2 B ). On day 5, both groups of mice received 

 Figure 3.   The role of endothelial MHC class I in antigen-specifi c CD8 T cell infi ltration into the brain. (A�F) Immunohistochemistry (brown) 

for MHC class I (A�E) and CD8 (F) in naive striatum (A) and striatum from CL4 mice injected with Cw3 (B) or HA (C�F). E and F show serial sections. 

(G�I) Immunohistochemistry (brown) for biotinylated IgG 3 d after intrastriatal HA injection (day 0) in CL4 mice receiving i.v. biotinylated anti�MHC 

class I antibody (H and I) or control biotinylated IgG (G) on day 2. (J) CL4 mice injected with HA intrastriatally received an i.v. bolus of blocking anti�MHC 

class I antibody or control IgG on day 2 and were perfused on day 3. There was a 76% reduction (95% CI �  � 139.5 to �40.0) in CD8 T cell infi ltration 

(two-tailed Student ’ s  t  test, P � 0.002). (K�M) High power confocal micrographs after double immunofl uorescence on striatum for biotin (green in K) 

and  	 1-laminin (red in L) (merged in M) 3 d after intrastriatal HA injection (day 0) in CL4 mice receiving i.v. biotinylated anti�MHC class I antibody on 

day 2. Bars: K�M, 10  � m; E and F, 30  � m; A � C, 50  � m; G and H, 100  � m; D and I, 200  � m.   
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anti-K d  blocking antibody ( n  � 6) or control IgG ( n  � 6) in 
200  � L of sterile PBS on day 2, 1 d before peak CD8 T cell 
recruitment. Blocking of luminal MHC class I resulted in a 
76% reduction in CD8 T cell recruitment ( Fig. 3 J ), indicat-
ing that circulating CD8 T cells use luminal endothelial MHC 
class I as a molecular address to target their cognate antigen 
within the brain parenchyma. The critical interaction be-
tween circulating CD8 T cells and MHC I occurred on the 
luminal aspect of the endothelium because confocal micros-
copy showed that i.v. injected biotinylated anti-K d  blocking 
antibody binding was limited to the luminal aspect of the 
endothelium ( Fig. 3, K – M ). 

 CD8 T cells infi ltrating the brain after intrastriatal injec-
tions of HA in CL4 mice were not fully diff erentiated at any 
time point, as shown by the lack of granzyme B expression 
( Fig. 4 A ) and lack of tissue damage, as assessed by amyloid 
precursor protein expression to detect damaged axons ( Fig. 4 B ) 
and Luxol Fast Blue histochemistry to detect myelin damage 
( Fig. 4 C ).  In contrast, granzyme B expression and axon/
myelin damage were seen when CD8 T cells were peripherally 
activated by immunization with HA in CFA ( Fig. 4, D – F ) or 
after in vitro activation ( Fig. 4, G – I ). CD8 T cells infi ltrat-
ing the brain after HA injection alone did not proliferate on 
day 1 ( Fig. 1 Q ) but started expressing Ki67 at later time 
points ( Fig. 5, A and B ). Expression of Ki67 is an indicator of 
commitment to the cell cycle, and the Ki67 index is the per-
centage of CD8 T cells expressing this marker; the Ki67 in-
dex was 21% on day 2 and peaked at 52% on day 3. 

 Therefore, the number of CD8 T cells within the brain 
parenchyma at time points beyond day 1 can be considered 

MHC class I expression was slightly up-regulated upon injec-
tion of Cw3 ( Fig. 3 B ). After injection of HA, there was dra-
matic up-regulation of MHC class I by endothelial cells, 
peaking at day 3 ( Fig. 3 C ). This up-regulation was largely 
limited to the site of antigen deposition ( Fig. 3 D ) and coin-
ciding temporally and spatially with peak CD8 T cell infi ltra-
tion. CD8 T cells were seen in association with MHC class 
I �  blood vessels at various stages of infi ltration ( Fig. 3, E and F ). 
This raised the possibility that CD8 T cell traffi  c into the 
brain was facilitated by recognition of the cognate antigen 
presented by cerebral endothelial cells. For this to occur, 
however, antigen presentation by cerebral endothelial MHC 
class I would have to be luminal. 

 To investigate whether the up-regulated endothelial MHC 
class I was luminally expressed, CL4 mice received an intra-
cerebral injection of HA peptide followed 3 d later by an i.v. 
injection of 200  � g of biotinylated anti-K d  antibody ( n  � 3) or 
biotinylated control IgG ( n  � 3) in 200  � L of sterile PBS. 
Mice were perfused 3 h later, and the biotinylated antibody 
was detected on tissue sections. Luminal expression of MHC 
class I was observed in the striatum and was restricted to the 
site of CD8 T cell infi ltration in animals receiving biotinylated 
anti-K d  ( Fig. 3, H and I ); it was below the limit of detection 
in the contralateral hemisphere. BBB breakdown was ex-
cluded by the lack of staining in sections from mice receiving 
the biotinylated control IgG ( Fig. 3 G ). 

 To directly address the issue of whether luminal endothe-
lial MHC class I was responsible for antigen-specifi c CD8 
T cell migration, CL4 mice received an intrastriatal injection 
of HA peptide on day 0, followed by an i.v. injection of 200  � g 

 Figure 4.   Brain-infi ltrating CD8 T cells were not fully activated in this model of antigen-specifi c CD8 T cell traffi c. (A – I) Representative 

sections 3 d after intrastriatal injection of HA in CL4 mice immunized intradermally with CFA alone (A – C) or HA in CFA (D – F) 5 d previously, and in wild-type 

littermates receiving 3 million in vitro � activated CL4 CD8 T cells i.v. (G�I). Sections were submitted to immunohistochemistry (brown) for granzyme B 

(A, D, and G), amyloid precursor protein (B, E, and H), or Luxol Fast Blue histochemistry (C, F, and I). Bars are 60  � m except for the following: A, 30  � m; 

D, 20  � m; G, 10  � m.   
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intercellular adhesion molecule (ICAM)-1, and the strength of 
this interaction is potentiated by chemokine receptor signaling. 
Arrest of T cell rolling suggesting adhesion, similar to that 
seen with chemokine ligand – chemokine receptor binding, 
has been observed after cognate MHC-TCR interaction ( 23 ). 
Also, MHC-peptide – TCR interaction gives rise to a similar 
increase in avidity of LFA-1 to ICAM-1 ( 24 ) as happens after 
chemokine receptor ligation. The affi  nity of a typical MHCI-
peptide – TCR interaction is less than that of LFA-1 – ICAM-1 
(K D  of 10  � M [ 25 ] and 500 nM [ 26 ], respectively), but it is 
strengthened by the accompanying MHCI – CD8 interaction. 
Moreover, cognate MHCI-peptide – TCR interaction results 
in the formation of a supramolecular activation cluster that re-
cruits LFA-1, thereby strengthening overall adhesion. 

 An integral requirement of MHC-dependent CD8 T cell 
traffi  c into the brain is the presentation of processed exoge-
nous antigen by MHC class I on the luminal surface of cere-
bral endothelium. Interestingly, presentation of endogenous 
antigen by endothelial cells in peritoneum and cremasteric 
venules facilitates diapedesis of T cells ( 27 ). We used HA 
peptide in our experiments to simulate the availability of pro-
cessed antigen within the extracellular milieu of brain paren-
chyma under infl ammatory conditions. Various CNS proteins 
are released into the CSF in the course of neuropathology 
that may be degraded into smaller proteins or peptides by in-
terstitial enzymes. Cross-presentation by endothelial cells has 
been reported to occur in the pancreas ( 28 ). It remains to be 
shown in brain endothelium. 

 In this study, we used an antigen-naive system. CL4 mice 
were housed in individually fi ltered cages throughout and 
were not allowed to come into contact with sources of infl u-
enza infection. HA was stereotaxically injected into the stria-
tum using very fi ne glass micropipettes; great care was taken 
to avoid refl ux to the periphery and minimize trauma to sur-
rounding tissue. Indeed brain-infi ltrating CD8 T cells were 
not activated on day 1 after such injections in CL4 mice. In 
agreement with a recent study ( 29 ), our results suggest that 
activation is not an absolute prerequisite for CNS infi ltration 
by CD8 T cells. CD8 T cells entered the cell cycle after infi l-
trating the brain, but there was no detectable granzyme B ex-
pression or tissue damage at any time point, indicating that 
they were not fully activated to achieve cytotoxic potential. 

to be a result of two processes: infi ltration and proliferation. 
This raised the question of whether the i.v. injected blocking 
anti-K d  antibody, which resulted in a 76% reduction in pa-
renchymal CD8 T cell numbers after cognate antigen injec-
tion in the striatum, could have aff ected proliferation rather 
than infi ltration. To address this issue, we studied the CD8 
T cell Ki67 index in CL4 mice receiving HA in the striatum, 
followed by blocking anti-K d  antibody or control isotype 
i.v. 2 d later. No diff erence in Ki67 index was observed 
( Fig. 5 C ).  This provides defi nitive evidence that the blocking 
anti-K d  antibody acted by inhibiting infi ltration rather than 
proliferation of CD8 T cells in the brain. 

 Antigen-specifi c CD8 T cell traffi c: concluding remarks 

 The study of T cell traffi  c into the brain has been dominated 
by CD4 T cells in view of their perceived importance in 
neuroinfl ammatory disease. This is now changing, and CD8 
T cells are increasingly recognized as major players ( 11 ), but 
relatively little is known about CD8 T cell traffi  c into the 
brain. Here, we show that unlike CD4 T cells, antigen speci-
fi city is a factor that governs CD8 T cell infi ltration into the 
brain. We also demonstrate that the underlying mechanism 
favoring antigen-specifi c CD8 T cell traffi  c is luminal expres-
sion of MHC class I by cerebral endothelium, which acts as 
a molecular address at the BBB. This crucial diff erence be-
tween CD4 and CD8 T cell traffi  c into the brain is a refl ec-
tion of cerebral endothelial cell biology. Low level MHC 
class I, but not class II, expression by cerebral endothelium 
occurs constitutively ( 21 ). Therefore, the mechanism for ini-
tiating transendothelial antigen-specifi c T cell traffi  c into the 
naive brain only exists for CD8 T cells. This situation might 
have evolved as a result of selective pressure in favor of en-
hanced antiviral immunosurveillance of the CNS ( 18 ). 

 The additional molecular requirements for the MHC-
dependent transendothelial T cell migration we describe here 
are known to be present at the cerebral endothelium. As else-
where in the body, T cell infi ltration into the brain is a three-
step process: rolling, adhesion, and diapedesis ( 22 ). Strong 
adhesion is a requirement for subsequent diapedesis, and this 
was classically thought to be mediated by interaction between 
integrins on the T cell surface and cellular adhesion molecules 
on the endothelium. An example of such a pair is LFA-1 and 

 Figure 5.   Intravenously administered anti�MHC class I antibody does not affect proliferation of brain-infi ltrating CD8 T cells in this model 

of antigen-specifi c CD8 T cell traffi c. (A) Merged confocal micrograph after double immunofl uorescence for CD8 (red) and Ki67 (green) on striatum 

from CL4 mice 3 d after HA injection. (B) Ki67 index of brain-infi ltrating CD8 T cells at several time points after intrastriatal HA injection in CL4 mice. 

(C) Ki67 index of brain-infi ltrating CD8 T cells 3 d after intrastriatal HA injection (day 0) in CL4 mice receiving i.v. blocking anti�MHC class I antibody or 

control IgG on day 2 (two-tailed Student ’ s  t  test, P � 0.844). Bar, 20  � m.   
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 Cell culture.   CL4 CD8 T cells were purifi ed by positive selection as de-

scribed previously ( 18 ). 

 Immunization.   CL4 mice were immunized with an intradermal injection 

of 100  � L PBS/CFA (1:1) with or without 5  � g HA. On day 5, the animals 

received an intrastriatal injection of HA followed by perfusion 5 d later. 

 Adoptive transfer.   Wild-type BALB/c mice received an intrastriatal injec-

tion of HA or Cw3, and 4 h later they were injected i.v. with 3 or 30 million 

in vitro – activated CL4 CD8 T cells in 200  � L DMEM. They were perfused 

3 d later. 

 Quantifi cation.   This was performed manually under light or fl uorescence 

microscopy. The operator was blinded to the identity of the slides counted. 

Cells were counted using a graticule under a high power objective ( 
 25), and 

the density of cells was converted to a value per mm 2 . In all cases, at least four 

lesion-center sections (as shown by the co-injected blue dye) from the same 

animal and several animals from each experimental group (as denoted by 

number  n ) were taken, and counts were averaged. 

 Statistics.   Data were analyzed using SPSS version 12. All the data were 

parametric, and therefore the two-tailed Student ’ s  t  test for two independent 

samples was used throughout. The confi dence level was 95%. 
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