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Summary 
We have used antisense oligonudeotides to study the roles of transforming growth factor fl (TGF-fl) 
and the two antioncogenes, retinoblastoma susceptibility (Rb) and p53, in the negative regulation 
of proliferation of early hematopoietic cells in culture. The antisense TGF-3 sequence significantly 
enhanced the frequency of colony formation by multi-lineage, early erythroid, and granulo- 
monocytic progenitors, but did not affect colony formation by late progenitors. Single cell culture 
and limiting dilution analysis indicated that autocrine TGF-fl is produced by a subpopulation 
of early progenitors. Antisense Rb but not antisense p53 yielded similar results in releasing 
multipotential progenitors (colony-forming unit-granulocyte/erythroid/macrophage/mega- 
karyocyte) from quiescence. Rb antisense could partially reverse the inhibitory effect of exogenous 
TGF-fl. Anti-TGF-fl blocking antibodies, antisense TGF-3, or Rb oligonucleotides all had similar 
effects. No additive effects were observed when these reagents were combined, suggesting a common 
pathway of action. Our results are consistent with the model that autocrine production of TGF-fl 
negatively regulates the cycling status of early hematopoietic progenitors through interaction 
with the Rb gene product. 

mong the normal hematopoietic progenitor populations, 
the cells are largely quiescent, while earliest pluripotent 

a larger proportion of later, lineage-restricted cells are in ac- 
tive phases of the cell cycle (1). Relatively little is known about 
the mechanisms that maintain early cells in a quiescent state 
(2-6), although recent reports have demonstrated that TGF-fl 
is a potent and specific inhibitor of colony formation by early 
hematopoietic progenitors (7-9). In skin keratinocytes and 
in lung epithelial cells, the growth inhibition of TGF-fl has 
been linked to its ability to prevent the inactivation of the 
product of the growth suppressive retinoblastoma suscepti- 
bility gene, RB (10, 11). Other reports suggest that the TGF-fl 
and Rb genes might be involved in multiple pathways of cel- 
lular growth control (12, 13). However, it is difficult to pu- 
rify a sufficient number of early human bone marrow pro- 
genitors to perform molecular analysis of these pathways. 
Therefore, to study the roles of these two gene products in 
controlling the cycling status of early human hematopoietic 
progenitors, we have used antisense oligonudeotides in single 
cell and clonal cultures of enriched progenitors. Our results 
indicate that the autocrine production of TGF-B negatively 
regulates the cycling status of early hematopoietic progen- 
itors and, with at least some cell populations, this regulation 
is mediated by interaction with the Rb gene product. 

Materials and Methods 
Growth Factors and Antibodies. Granulocyte (G)-CSF, 1L-3, and 

1I--6 were from Genetics Institute (Cambridge, MA), and Epo from 
Integrated Genetics (Framingham, MA). TGF-/3 blocking antibody 
for the type 1 isoform was raised in turkeys and was a generous 
gift of Drs. A. B. Roberts, and M. B. Sporn (14). 1 #1 could neu- 
tralize 4 ng of TGF431. TGF-/31 was a generous gift of Dr. D. A. 
Lawrence (Institut Curie, Orsay, France). 

Bone Marrow.. Specimens of human bone marrow were obtained 
either from normal bones at orthopedic surgery or from normal 
bone marrow transplant donors with their informed consent. All 
samples were collected on heparin. 

Cell Preparation and Cell Culture. Human bone marrow cell pro- 
genitors were prepared as follows: CD34 + cells were enriched by 
one passage on a soybean agglutinin CELLector flask to remove 
mature cells and one passage of the nonagglutinated cells on a ICH3 
CD34 antibody-covered CELLector flask (Applied Immune Sciences 
Inc., Menlo Park, CA), following the instructions of the manufac- 
turer. CD34 + cells were tested according to a modification of the 
mixed colony assay of Fauser and Messner (15): cells were plated 
in methylcellulose with 30% FCS, 1.7 U/ml IL-3, 10 U/ml Ib6, 
4 U/ml G-CSF, and 1.5 U/m1 Epo either in 35-ram non-culture- 
treated Petri dishes with 102 to 3.103 cells per ml, or in single cell 
cultures in the wells of 96-well plates. Cultures were incubated for 
14 d at 37~ in humidified atmosphere containing 5% CO2 in 
air. For 103 cells plated in 1 ml of methylcellulose culture medium, 
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we obtained: 75 • 6 monocytic colonies, 86 +_ 7 granulocytic 
colonies, 17 _+ 3 granulomonocytic colonies, 2 + 2 erythroid 
clusters (CFU-E), 25 +_ 3 erythroid burst (BFU-E), 37 +_ 5 large 
erythroid burst (early BFU-E, containing sometimes rare mega- 
karyocytes), and 4 • 1 mixed colonies (CFU-GEMM). 

For single cell experiments, cells were first plated at 103 cells 
per 35-mm Petri dish and then picked separately with a Pasteur 
pipette under an inverted microscope and plated in 50 ktl of culture 
medium per well of a 96-well plate. 

Colony Classification. Colonies were classified according to es- 
tablished criteria (16) by direct observation of the dishes with an 
inverted microscope (E. Leitz Inc., Wetzlar, FRG). 

Oligonudeotides. For our studies, we designed 21mers corre- 
sponding to the sense or antisense sequences flanking the transla- 
tion initiation regions of the mKNAs for TGF-~I, Rbl, and p53. 
These oligonucleotides were synthesized using phosphorothioate 
linkages because of their demonstrated resistance to nucleases (17). 

The sequence of the phosphorothioate oligonucleotides are as 
follows with the ATG initiation codon or its complement CAT 
underlined in the sense and antisense sequences, respectively: TGF-B 
antisense, 5'-CCCGGAGGGCGC~ATGGGGGA-Y; TGF-~ sense, 
5'-TCCCCCA_W.,CCGCCCTCCGGC~Y; TGF-~ missense, 5'-GCX]- 
GAGCGAGTGAGCGCGCG~Y; Kb antisense, 5'-GTGAACG- 
ACATCTCATCTAGG-Y; Rb sense, 5'-GAT AGATGTCGTTCA- 
CTTTA-Y; Kb missense, 5'-AGCTAGCTAGCTAGCTAGCTA-Y; 
p53 antisense, 5'-CTGCGC~TCCTCCATGC~AGT-Y; p53 sense, 
5'-AC~(7,CCATGGAGGAGCGCAG-Y. Phosphomthioate oligonucle- 
otides were prepared on a DNA synthesizer (Applied Biosystems, Inc., 
Foster City, CA) with nudeoside Y-hydrogen phosphonates. At the 
end of the synthesis cycle, the full length H-phosphonate oligonucle- 
otides were converted to the thioate analogues with a sulfurization 
protocol supplied by Applied Biosystems, Inc. The crude products 
were purified by HPLC on a C-18 reverse phase column with a linear 
gradient of acetonitrile in 50 mM triethylammonium acetate. Com- 
puter searches did not reveal any significant sequence similarity be- 
tween the different 2liners and any of the sequences in GenBank, 
including TGF-B2 and TGF-/$3. 

Preliminary experiments with radiolabeled oligonucleotides demon- 
strated that these short sequences enter the various types of cells equally 
well. We did not observe any difference between the effects of the 
sense and missense oligonucleotides (not shown). 

Statistical Analysis. The mean of the values +_ SD for different 
experiments are shown in the figures and in Table 1. Significant differ- 
ences between treatment groups were determined by using Student's 
t test applied for paired samples. 
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Antisense TGF-B enhancement of colony formation by 
CD34 § human progenitors. The indicated concentrations of antisense (0) 
or sense (O) TGF-B oligonucleotides were added to cultures of CD34 +- 
enriched human progenitors. Total colonies derived from CFU-GEMM, 
CFU-GM, BFU-E, CFU-G, and CFU-M were enumerated after 12-14 
d in culture. 

twice as many mixed colonies derived from the multipoten- 
tial progenitors C F U - G E M M  were obtained, as compared 
to control cultures with TGF-~ sense (p <0.001, df  : 11), 
The  resulting colonies were also larger on average than those 
obtained in control cultures (1.6-3.2 x 104 vs. 0.8-1.6 x 
104 cells/colony). The antisense-containing cultures also 
yielded 1.5-2.0-fold more erythroid (E) colonies derived from 

Resul ts  and  D i s c u s s i o n  

As illustrated in Fig. 1, addition of the antisense but not 
the sense TGF-B oligonucleotide resulted in a dose-dependent 
increase in the formation of hematopoietic colonies from cul- 
tures of enriched progenitors. In subsequent experiments, the 
various oligonudeotides were used at concentrations between 
5 and 8 p M  to avoid the toxic effect observed at concentra- 
tions >10 ~M. 

That the antisense TGF-3 oligonucleotide enhanced colony 
formation from different types of  progenitor cells is shown 
in Fig. 2. CD34 + progenitors were plated under optimal 
growth conditions as single cell cultures in the wells of  a 
96-well plate or at low cell concentration in 35-mm Petri 
dishes. In the presence of 5 # M  antisense oligonudeotide, 

Figut~ 2. TGF-3 antisense enhancement of colony formation by different 
types of progenitors plated at tow cell density or in single cell culture. 
5/~M TGF-/~ sense or antisense oligonucleotides was included in cultures 
of CD34 + bone marrow cells plated at 103 cells/ml ([]) or in single cell 
culture (D) in the wells of 96-weU plates. Colony counts are reported 
as the percentage of the respective colonies obtained with antisense as com- 
pared to colonies obtained with sense oligonucleotides. Cultures with sense 
oligonucleotides were similar to control cultures without oligonucleotides. 

926 Go Phase Autocrine Control of Early Human Hematopoietic Progenitors 



20 

18 

16 

i 

O 
~ 8 .L 

~ 6 

2 

0 
0 500 1000 1500 2000 2500 3000 

Plated CD34+ cells / ml 

Figure 3. Effect of cell density on the frequency of mixed colony for- 
mation by CD34 + cells. Progenitor cells were enriched and plated at 
different cell densities as described in Fig. 1 in the presence of 5 ~M an- 
tisense ( . )  or sense ([3) TGF-3 oligonucleotides or in the absence of oli- 
gonucleotides (A). The data represent the mean of the mixed colony counts 
from 20, 10, 6, and 2 dishes of cultures containing 100, 300, 1,000, and 
3,000 CD34 § cells/ml, respectively. Least square regression analysis 
yielded Yintercepts of 0.588 _+ 0.499 (m), 0.216 _+ 0.351 ([~), and0.227 
_+ 0.403 (A) (values + 95% confidence interval, df = 36, t = 2.03). 

Figure 4. R.b antisense oligonucleotide enhancement of colony forma- 
tion by different types of progenitor cells. 8/zM antisense (D) or sense 
([]) Rb oligonucleotides were added to cultures of CD34 + progenitors 
cells as described in Fig. 1. Colony counts, enumerated after 14 d in cul- 
ture, are reported as the percentage of the respective colony types obtained 
in the absence of oligonucleotides. 

early erythroid progenitors (BFU-E) and a similar increase 
of granulocyte-monocyte (GM) and granulocyte (G) colonies 
(p <~ 0.005, 9 ~< df~< 11). The number of very large erythroid 
colonies derived from the earliest BFU-E was even increased 
2-4.5-fold. In contrast, TGF-3 antisense had no effect on late 
erythroid progenitors (CFU-E and late BFU-E) nor on mac- 
rophage colony formation, whether or not macrophage colony- 
stimulating factor (M-CSF) was included in the culture (data 
not shown). Finally, although the antisense oligonucleotide 
significantly increased the frequency of large granulocyte colo- 
nies in cultures supplemented with both IL-3 and G-CSF, 
it had no effect on small ones typically obtained in cultures 
maintained with G-CSF alone (data not shown). 

Fig. 2 shows no significant difference between single cell 
and low cell density cultures, except that the colonies were 
larger in 35-mm plates, probably due to poor gas exchange 
in the 96-well plates. These results demonstrate that the var- 
ious types of progenitors (CFU) are single cells and that the 
resulting colonies are clonal and do not depend on accessory 
cells for their response to growth factors or oligonucleotides. 
This is further demonstrated in Fig. 3, which shows that 
the frequency of mixed colonies was linearly related to the 
input CD34 § cell number when tested at concentrations as 
low as 100 cells in a 1-ml culture. When extrapolated to 0 
input cells, the best line fit of the data of Fig. 3 originates 
very close to the X/Y intersection (0 input, 0 colonies). These 
results demonstrate that early progenitors themselves and not 
accessory cells produce the negative regulatory molecule, 
TGF-~. 

The success of antisense TGF-3 in releasing hematopoi- 
etic progenitors from a quiescent, growth factor-unrespon- 

sive state prompted us to try a similar approach for blocking 
the expression of two intracellular regulators of cell prolifer- 
ation, p53 and Rb. Although the antisense p53 oligonucleo- 
tide did not enhance colony formation by any type of pro- 
genitor cell tested (data not shown), the Rb antisense 
oligonucleotide resulted in a twofold increase in the frequency 
of mixed colony (CFU-GEMM) formation (p < 0.001, df 
-- 7) and an increase in granulo/monocytic and granulocytic 
colonies ~ < 0.05, df = 5) grown in the presence of IL-3 
and G-CSF (Fig. 4), but had no effect on G-CSF supported 
CFU-G (data not shown). In contrast to the antisense TGF-3, 
the antisense Rb oligonucleotide had no effect on BFU-E. 
Rb sense or missense oligonucleotides had a negligible toxic 
effect up to 8/zM (data not shown). 

To test for possible interactions of TGF-3 with the Rb 
gene product in the control of cycling of early hematopoietic 
cells, we examined the effects of combinations of TGF-3, anti- 
TGF-3 antibody, or antisense TGF-3 oligonucleotide with 
antisense R.b oligonucleotide on colony formation by CFU- 
GEMM from CD34 + enriched human bone marrow cells 
(Table 1). In this experiment, addition of anti-TGF-3 anti- 
body yielded the same enhancement of CFU-GEMM colony 
formation as achieved with addition of either antisense TGF-3 
or Rb oligonucleotides, demonstrating that the autocrine 
TGF-3 acts external to the cell. Combination of antibody 
against TGF-3 with antisense Rb oligonucleotide did not 
result in additional enhancement of colony formation, indi- 
cating that these agents act on the same cells. Finally, addi- 
tion of exogenous TGF-3 to the cultures completely blocked 
CFU-GEMM colony formation, and this inhibition was par- 
tially reversed by the addition of antisense Rb oligonucleo- 
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Table 1. Effects of TGF-fl, Anti-TGF-~ Antibodies, 
Antisense TGF-~, or Rb Oligonucleotides on Mul@otential 
Progenitors (CFU-GEMM) 

Added factors Mixed colonies/3 x 103 cells 

Control 9 + 2 
TGF-r sense 8 _+ 1 
Kb sense 8 _+ 1 

TGF-fl antisense 20 _+ 2 
Rb antisense 17 + 3 
Turkey irrelevant antiserum 9 _+ 1 

Anti-TGF-fl antibodies 19 _+ 3 
Anti-TGF-fl antibodies 

+ Rb sense 17 _+ 2 
Anti-TGF-fl antibodies 

+ Kb antisense 18 _+ 3 
TGF-fl 1 _+ 1 
TGF-fl + Rb sense 0 -+ 0 
TGF-fl + Kb antisense 7 _+ 1 

CD34 § cells were enriched and cultured as described in Materials and 
Methods. TGF-fl was added at 1 ng/ml. A turkey anti-TGF-fl blocking 
antiserum was added at 0.75 #l/ml. Rb and TGF-fl oligonucleotides were 
added at 8 and 5 #M, respectively. This is one experiment out of four 
similar ones. 

tide, indicating that with at least some early cells, functional 
RB protein is required to mediate TGF-fl growth inhibition. 

Our results implicate TGF-fl as an important negative au- 
tocrine growth regulator of several different types of hema- 
topoietic progenitors, including the early multipotent CFU- 
GEMM but also the slightly more differentiated early BFU-E, 
CFU-GM, and early CFU-G. With some of these cell popu- 
lations, more than half of the detectable colony formation 

progenitor cells are maintained in a growth factor unrespon- 
sive state by autocrine production of TGF-fl. 

The similar enhancement of CFU-GEMM, CFU-GM, and 
CFU-G colony formation achieved with antisense Rb oligo- 
nucleotides suggested that the inhibition of cycling of these 
cell types by TGF-fl might be mediated through the Rb gene 
product, an expectation confirmed with at least some CFU- 
GEMM. Within the CFU-GEMM population in which the 
antisense Rb oligonucleotide released the TGF-fl block, our 
results are consistent with other studies that have demon- 
strated that treatment of cells with TGF-fl results in the ac- 
cumulation of under-phosphorylated RB protein within the 
cell immediately before growth arrest. Inactivation of the RB 
protein through phosphorylation is believed to be a key step 
in allowing most if not all types of mammalian cells to cross 
the G1/S boundary and begin active cycling (18-20). How- 
ever, it seems unlikely that inhibition of growth of hemato- 
poietic cells by TGF-fl and Rb will involve a simple linear 
sequence of events, because recent reports from other systems 
have shown multiple overlapping pathways mediated by these 
two gene products (12). For example, the RB protein itself 
can either induce or repress TGF-fl expression, depending 
on the cell type (13). Our own data, in which antisense TGF-fl 
but not antisense Rb oligonucleotides enhanced growth of 
early BFU-E, point out the complexity of the system. In this 
case, either the antisense Rb, in contrast to the antisense 
TGF-fl, failed to work in this cell population, or the TGF-fl 
inhibition is mediated through some other mechanism. It 
is perhaps relevant that several other proteins that appear to 
be functionally related to RB have also been described, and 
it will be of interest to see if any of these are involved in 
the control of the cycling of erythroid progenitors (21-23). 
The use of antisense oligonucleotides, which permits the study 
of the function of growth regulatory genes in rare cells that 
cannot be prepared in pure form in large quantities, should 
facilitate this analysis. Antisense oligonucleotides in the fu- 
ture may also prove useful in the amplification of normal he- 
matopoietic stem cells through release of intracellular con- 
trol mechanisms that prevent them from leaving Go. 
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