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S l l n u n a r y  

Human thymic epithelial (TE) cells produce interleukin loe (Ibloe), I1:1~, and 11:6, cytokines 
that are important for thymocyte proliferation. The mRNAs for these cytokines are short-lived 
and are inducible by multiple stimuli. Thus, the steady-state levels for II.-1 and I1:6 mRNAs 
are critical in establishing the final cytokine protein levels. In this study we have evaluated the 
effect of epidermal growth factor (EGF), a growth factor for TE cells, and its homologue 
transforming growth factor oe (TGF-a), on primary cultures of normal human TE cells for the 
levels of I1:1oe, I1:1~, 1I.-6, and TGF-oe mRNA. We showed that TE cells expressed EGF receptors 
(EGF-R) in vitro and in vivo, and that treatment of TE cells with EGF or TGF-oe increased 
II.,1 and II.-6 biological activity and mRNA levels for I1:1oe, IL-lfl, and II-.6. Neither EGF nor 
TGF-c~ increased transcription rates of I1:1oe, II--18, and I1-.6 genes, but rather both EGF and 
TGF-ee increased cytokine mRNA stability. By indirect immunofluorescence assay, TGF-oe was 
localized in medullary TE cells and thymic Hassall's bodies while EGF-R was localized to TE 
cells throughout the thymus. Thus, TGF-oe and EGF are critical regulatory molecules for production 
of TE cell-derived cytokines within the thymus and may function as key modulators of human 
T cell development in vivo. 

E Pidermal growth factor (EGF) 1 is a potent growth factor 
for a variety of cells including epidermal keratinocytes 

and other epithelial cell types (1). EGF binds to EGF-R, a 
protein tyrosine kinase (PTK), and initiates a series of events 
that include activation of PTK activity ofEGF-R, phosphory- 
lation of the EGF-R and phospholipase C-3', an increase in 
levels of intracellular Ca 2+, and stimulation of phosphoinosi- 
tide turnover (2). EGF has also been shown to increase the 
rate of transcription of certain proto-oncogenes (3, 4). Re- 
cently, it has been shown that EGF can also increase stability 
of short-lived mRNA for EGF-R in a human epithelial cell 
line (5). 

TGF-c~ is structurally and functionally related to EGF (6, 
7). TGF-a binds to EGF-R with an affinity comparable to 
that of EGF and activates EGF-R PTK activity (8, 9). TGF-oe 
was originally detected in culture supernatants of transformed 

1 Abbreviations used in this paper: EGF, epidermal growth factor; G, 
granulocyte; LIF, leukemia inhibitory factor; M, monocyte; Irl'K, protein 
tyrosine kinase; TE, thymic epithelial. 

rodent fibroblasts (10-12), and is also produced by a variety 
of normal cell types (13-16). TGF-oe is mitogenic for cul- 
tured fibroblasts (10), endothelial cells (17), and epidermal 
keratinocytes (18). Since certain cell types that produce TGF-oe 
can also respond to TGF-oe, TGF-oe has been implicated in 
normal and neoplastic growth regulation through autocrine 
and paracrine pathways (19). Whether TGF-oe and EGF can 
affect autocrine and/or paracrine pathways in cells producing 
immunoregulatory cytokines has not been reported. 

Thymic epithelial (TE) cells, a major cellular component 
of thymic stroma, play a critical role in T cell development 
(20, 21). Human TE cells produce multiple immunoregula- 
tory cytokines including IL-lc~, I1:1~ (22, 23), M-CSF (24, 
25), G-CSF (25), GM-CSF, leukemia inhibitory factor (LIF), 
and II.-6 (26). The mRNAs for most of these cytokines are 
short-lived and their synthesis is inducible by a myriad of 
stimuli (27). Thus, to establish an appropriate level of cytokine 
biological activity, it is important to maintain a certain level 
of mRNA for these cytokines, either by regulating mRNA 
transcription or by regulating mRNA stability. With regard 
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to T cell development in the thymus, the regulation of produc- 
tion of TE cell-derived cytokines that affect T cell prolifera- 
tion and differentiation is a critical aspect of thymic func- 
tion, yet virtually nothing is known about regulatory 
mechanisms of human TE cell function (28, 29). TE cell 
binding to thymocytes has been shown to increase ILl re- 
lease, and triggering of TE cell surface lymphocyte function- 
associated antigen-3 (LFA-3), a ligand for CD2 on T cells, 
increases both II~la and II,-13 m R N A  levels in TE cells (23). 

In this study, we have investigated regulatory signals in- 
volved in cytokine production by human TE cells and defined 
a novel role for EGF and TGF-c~ in control of human TE 
cell-derived cytokine production at a posttranscriptional level. 
These studies suggest an important role for EGF and/or TGF-a 
in stabilizing short-lived m R N A  for TE cell-derived cytokines. 
Since TGF-a is available within human thymic microenviron- 
ment, TGF-c~ may provide a novel mechanism for regulating 
the availability of T cell trophic cytokines that affect human 
T cell development. 

Mater ia ls  and  Methods 

Initiation and Culture of Human Thymic Epithelial (TE) Cells. 
Thymic tissues were obtained as discarded tissue through the Depart- 
ment of Pathology, Duke University Medical Center, from chil- 
dren undergoing select corrective cardiovascular surgical procedures. 
TE cell cultures were initiated by an explant technique and 
propagated in enriched medium as described previously (30). Con- 
taminating fibroblasts were removed by treatment with 0.02% 
EDTA (30) and by complement-mediated lysis with a monodonal 
antibody 1B10 which binds to a cell surface antigen on human fibro- 
blasts (31). TE cell preparations were 95% to 98% positive for 
the keratin marker AE-3 (32) and negative for the macrophage 
marker Leu-M3 (33) and the thymocyte marker CD7 (34). For EGF 
or TGF-c~ treatment, confluent TE cell cultures were removed from 
enriched medium, washed twice with PBS and cultured for 24 h 
in DMEM medium containing 5% heat inactivated FCS, 10/~g/ml 
gentamicin sulfate, and 10 mM Hepes. Mouse EGF (Collaborative 
Research, Bedford, MA) and recombinant human TGF-o~ (Penin- 
sula Labs, Belmont, CA; or Amgen, Thousand Oaks, CA) were 
used at concentrations described in figure legends. 

Isolation of Total R N A  and R N A  Blot Analysis. TE ceils were 
washed three times with ice cold PBS and lysed directly on the 
plate with 4.0 M guanidine isothiocyanate. Total KNA was pelleted 
by centrifugation through a 5.7 M cesium chloride cushion as de- 
scribed previously (35). Total RNA of 8.0/~g per lane was electro- 
phoresed in 1.2% agarose gels containing 2.2 M formaldehyde in 
40 mM 3-(N-morpholino) propanesulphonic acid (MOPS) buffer 
at pH 7.0, transferred to nitrocellulose membranes and probed with 
human cytokine cDNA as described elsewhere (23, 26). 

Preparation of Nuclei. Nuclei were isolated from untreated TE 
cells or TE cells treated with EGF (5.0 ng/ml) or TGF-o~ (100 ng/ml) 
according to a modified method described by Bitter et al. (36). 
Briefly, TE cells were detached from culture dishes with 0.05% 
trypsin in PBS, pH 7.4, containing 0.02% EDTA and washed three 
times in ice cold PBS. TE cells were washed once in ice cold hypo- 
tonic buffer (10 mM Tris, pH 7.4, 10 mM NaC1, 3.0 mM MgC12), 
resuspended in the same buffer at 5.0 x 106 to 107 cells/ml and 
allowed to swell for 5.0 min on ice. NP-40 was added to the cell 
suspension to achieve a final concentration of 0.125% and the cells 
were incubated on ice for 5 min. This resulted in >95% lysis as 

determined by phase contrast microscopy and trypan blue dye ex- 
clusion. The nuclei were collected by centrifugation at 500 g for 
5 min at 4~ washed and resuspended in 200 #1 of 50 mM Tris, 
pH 8.0 buffer containing 40% glycerol, 5.0 mM MgC12 and 0.1 
mM EDTA. Nuclei were either stored in liquid nitrogen or used 
immediately in nuclear transcription assays. 

In Vitro Nuclear Transcription Assay. In vitro elongation of na- 
scent RNA in isolated nuclei was performed according to a modified 
method of Groudine et al. (37). Nuclear transcription was performed 
in a total volume of 400/~1 reaction buffer containing 5.0 x 106- 
107 nuclei, 30 mM Tris pH 8.0, 5 mM MgC12, 0.15 M KC1, 0.05 
mM EDTA, 2.5 mM DTT, 20% glycerol, 250 U/ml RNAse in- 
hibitor, 0.5 mM of a-ATP, a-GTP, c~-CTP (Pharmacia-LKB, Pis- 
cataway, NJ) and 100 /zCi of 32p-ol-UTP (3,000 mCi/mmole) 
(Amersham, Arlington Heights, IL). The transcription reaction 
was allowed to take place at 30~ for 30 min and terminated by 
adding 20/zg DNAse I in high salt buffer (10 mM Tris pH 7.4, 
50 mM MgC12, 2.0 mM CaC12), and incubated at 30~ for 15 
min. Proteinase treatment was carried out with 200 #g/ml of pro- 
teinase K in 0.8% SDS and 20 mM EDTA at 42~ for 30 min. 
The transcription reaction was extracted with phenol/chloro- 
form/isoamylalcohol (20:20:1; v/v) in the presence of 4.0/~g/ml 
yeast tRNA. The aqueous layer was adjusted to 2.4 M ammonium 
acetate, precipitated with equal volume of isopropylalcohol in a dry 
ice-methanol bath for 1 h and centrifuged. The pellets were dis- 
solved in 100 #1 of lx  Tris-EDTA, pH 7.4 buffer. Unincorporated 
32p-o~-UTP was separated from labeled nuclear RNA by centrifu- 
gation through a G-25 sephadex column. The procedure allowed 
the incorporation of 2.0 x 106 to 3.5 x 106 CPM into 3.0 x 
106-5.0 x 106 isolated nuclei. The labeled RNA was incubated 
in 0.2 N NaOH on ice for 15 min, neutralized with equal molar 
concentration of 0.1 N HC1 and mixed with 0.5 ml of hybridiza- 
tion buffer containing 6 x SSPE (lx SSPE is 0.15 M NaC1, 0.01 M 
NaH~PO4, 1 mM EDTA, pH 7.4), 50% deionized formamide, 5 x 
Denhardt's solution, 0.1% SDS, and 200 #g/ml denatured salmon 
sperm DNA. The purified labeled RNA was hybridized to an excess 
amount of plasmids (5.0/zgAlot) containing human cDNA specific 
sequences that were immobilized on nitrocellulose filters according 
to the method of Greenberg and Ziff (38) using a slot-blot apparatus 
(Schleicher & Schuell, Keene, NH). Hybridization was carried out 
at 42~ for 5 d and filters were washed in 2x SSC, 0.1% SDS, 
2 mM EDTA at room temperature for 30 min (three times), fol- 
lowed by 0.1x SSC, 0.1% SDS, 2.0 mM EDTA at 50~ for 30 
min (three times). Autoradiography was carried out for 7 d at 
-70~ using Kodak Xomat AR-5 film (Eastman Kodak Co., Roch- 
ester, NY) with intensifying screens. 

cDNA Probes. The following human specific cDNA probes were 
used in this study: I b l a  (1.7 kb Xho fragment in pXM plasmid), 
IL-13 (1.4 kb Pst fragment in pSP64), I1,-6 (0.7 kb Xho fragment 
in pXM), TGF-o~ (1.8 kb EcoRI fragment in SP65C17N3, a sub- 
clone of pTGF C-1), and B-actin (0.8 kb EcoRI-BamHI fragment 
of pHF/~A3'UT). After digestion with the appropriate restriction 
endonuclease, cDNA inserts were separated from the plasmid in 
which they were propagated by gel electrophoresis and extracted 
from gel slices with Geneclean kit (Bio 101, La Jolla, CA). The 
cDNA inserts were labeled with 32p-c~-dCTP (3,000 mCi/mmole) 
(Amersham) by a multiprime DNA labeling technique (Pharmacia- 
LKB) to a specificity of 2-3 x 109 dpm//~g DNA. 

Indirect Immunofluorescence Assay. 4 #m sections were prepared 
from frozen thymus tissue and fixed in acetone at -20~ for 5 
min. Tissues were stained as described previously (39) with purified 
mAb against human EGF-R (20 #g/ml) (Oncogene Science Inc., 
Mineola, NY), isotype control antibody (P3x63/AgS), affinity 
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purified polyclonal chicken anti-human TGF-oe (IgG, 3.0 #g/ml) 
(gift from Dr. K. Hashimoto, Osaka University, Japan), or IgG 
fraction (3.0 #g/ml) from chicken serum (Organon Teknika Corp., 
Westchester, PA). Flow cytometry using trypsinized TE cells and 
anti-EGF-R receptor was performed as previously described using 
FACS Star flow cytometer (Becton-Dickinson and Co., Mountain 
View, CA). 

ILl andIL6 Assa~F lid biological activity was determined using 
the D10S assay as described elsewhere (40). IL-6 biological activity 
was determined with a mouse plasmacytoma cell line Tl165 (41). 
TE cell culture supernatants were tested at 1/8 final dilution in 
both the 11,1 and I1,6 assays. 

Results 
Human Thymic Epithelial Cells Express Epidermal Growth 

Factor R (EGF-R) In Vitro and In Viva TE cells were cul- 
tured in medium without exogenous EGF and analyzed for 
EGF-R expression using indirect immunofluorescence assay 
and flow cytometry with anti-human EGF-R mAb. All TE 
cells expressed EGF-IL as detected by flow cytometry (Fig. 
1 A). However, TE cells cultured continuously with 20 ng/ml 
of EGF to saturate all receptors did not bind monoclonal 
anti-EGF-R antibody (Fig. 1 B). These results indicated that 
TE cells expressed EGF-R and that EGF specifically bound 
to EGF-R on TE cells. Using indirect immunofluorescence 
assays on frozen sections of human thymus, we detected EGF-R 
on TE cells in both the thymic cortex and medulla (Fig. 2 
A-C). Bright staining of EGF-R was observed with cells 
of the subcapsular cortex (Fig. 2 A) and with cells surrounding 
the Hassall's bodies (Fig. 2 C); however, we did not detect 
EGF-R on epithelial cells within Hassall's bodies (Fig. 2 C). 
Previous studies have shown the presence of EGF-R in normal 
human thymus, and in thymoma (42, 43). Thus, TE cells 
expressed EGF-R both in vitro and in vivo. 
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Figure 1. Expression of EGF-R by human TE cells in vitro. Flow cytom- 
etry analysis of EGF-R expression on human TE cells that were removed 
from EGF containing medium and cultured in D-MEM + 5% FCS for 
24 h before assay (A) and TE cells that were cultured continuously with 
20 ng/ml of EGF (/3). The filled peak represents reactivity with anti-EGF-R 
mAb, and the open peak represents reactivity with control antibody 
P3x63/AgS. Purified anti-EGF-R (IgG1) was used at 20 #g/ml. P3x63/Ag8 
ascites was used at a 1:500 dilution. 

Epidermal Growth Factor (EGF) Regulates Thymic Epithelial 
(TE) Cell ILdcr, ILd~, and IL6 mRNA Levels. TE cells were 
cultured with various concentrations of EGF (1.0-200 ng/ml) 
for 16 h and cytokine mRNA levels were determined using 
RNA blot analysis. Laser scanning densitometry of RNA 
blot analysis of total RNA showed that EGF at 1.0 ng/ml 
increased the level of IL-lot mRNA 1.4-fold, and IL-I/3 mRNA 
3 fold (Fig. 3 A-C). The increase in IL-la and IL-lt8 mRNA 

Figure 2. Expression of EGF-R in human thymus. Frozen sections of human thymus were fixed in acetone and stained with purified anti-EGF-R 
antibody at 20/zg/ml. (A) Thymic cortex. (B and C) Thymic medulla. Arrows indicate EGF-R positive cells. H indicates Hassall's bodies. No positive 
staining was detected with control antibody P3x63/Ag8 (data not shown). 
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Figure 3. EGF increased mtLNA levels for IL-la and 1L-I~ in a concen- 
tration dependent fashion. TE cells were treated for 16 h with various 
concentrations of EGF. TE cells were then lysed and total RNA extracted 
and analyzed for IL-la and IL-1B mRNA levels. A shows the actual mRNA 
levels of IL-lot and IL-1B (upper panel) and the levels of the 28S and 18S 
ribosomal RNA of identical lanes, stained with acridine orange (IouerpaneI). 
B and C represent scanning densitometer tracings of the densities of the 
I b l a  and II~IB bands, respectively. 

levels was maintained over EGF concentrations ranging from 
1.0 ng/ml to 100 ng/ml (Fig. 3 A-C). However, at EGF con- 
centration of 200 ng/ml the IL-lo~ mRNA levels were not 
increased, and IL-1B mRNA levels increased to a lesser de- 
gree than at lower EGF concentrations (Fig. 3 A-C). EGF 
at 1.0 ng/ml increased the IL-6 mRNA level four-fold (Fig. 
4 A and B). In contrast to IL-lc~ and IL-1B, an increase in 
the level of IL-6 mP, NA above the control level was sustained 
even at a concentration of 200 ng/ml of EGF (Fig. 4 A and 
B). As shown in Fig. 5, EGF induced a transient increase 
in mRNA levels for all three cytokines. Increases in mP, NA 
levels of IL-lc~, IL-1B, and IL-6 were observed as early as 1 h 
after the addition of EGF (Fig. 5). An optimal increase in 
IL-lot and II.-6 mRNA was observed 1 h after the addition 
of EGF, while an optimal increase in Ibl/3 levels was ob- 
served 5 h after EGF addition. By 24 h, the mRNA levels 
for the three cytokines returned to baseline levels (Fig. 5). 
In the same kinetic studies, a parallel increase in biological 
activity of IL-1 and IL-6 in TE cell culture supernatants was 
also observed (Fig. 6 A and B). IL-1 biological activity, as 
determined by the D10S proliferation assay, increased at 1 h 
and reached an optimal level 10 h after EGF addition (Fig. 
6 A). IL-1 activity returned to baseline levels after 24 h. Similar 
to Ib l  biological activity, IL-6 biological activity, determined 
by the Tl165 proliferation assay, increased at 1 h following 
EGF stimulation of TE cells. However, optimal IL-6 activity 
was achieved at 5 h, and remained elevated 24 h after the 
addition of EGF (Fig. 6 B). We also demonstrated that the 
EGF concentrations (1.0 and 5.0 ng/ml) which increased 

Figure 4. EGF increased mKNA levels for lb6. KNA blot analysis of total KNA for IL-6 mKNA levels from the same experiment described in Fig. 5. 
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Figure 5. EGF increased the levels of mRNA for I1-1c~, IblB, and I1.6 
in a transient fashion. TE cells were treated with 5.0 ng/ml of EGF for 
various time periods, the cells were then lysed and total RNA extracted 
for RNA blot analysis. 

cytokine mRNA levels and biological activities were not mito- 
genic for TE cells. A mitogenic effect of EGF on TE cells 
was observed at 10-200 ng/ml of EGF (data not shown). 

Transforming Growth Factor cr (TGF-cr) Is Produced by Thymic 
Epithelial (TE) Cells, Is Regulated by Epidermal Growth Factor 
(EGF) and Can Increase TE Cell mRNA Levels of lLIcr, IL1l~, 
and 11.,6. We also demonstrated that human TE cells in vitro 
produce TGF-Ot mRNA (Fig. 5 and 7). Optimal increase in 
TGF-Ot m R N A  level was observed at 5 h after EGF treat- 
ment (Fig. 5). The level of TGF-Ot m R N A  in TE cells in- 
creased in a concentration dependent fashion when TE cells 
were treated with EGF. A three- to four-fold increase in the 
level of TGF-Ot mRNA in TE cells was obtained between 
5.0-100 ng/ml of EGF (Fig. 7 A and B). Since TGF-Ot also 
binds to EGF-R, we determined the effect of TGF-Ot on the 
levels of IL-lot, Ib l~ ,  II.-6 mRNA,  and on its own m R N A  
level in cultured TE cells. TGF-Ot induced a transient increase 
in IL-lot, IL-1B, and Ib6 mRNA levels, and as well II.,1 and 
IL-6 biological activity with kinetics similar to those observed 
with EGF (Fig. 8, Fig. 6 A and B). Increases in IL-lot, IblB,  
and Ib6 m R N A  levels were observed as early as 1 h after 
the addition of TGF-Ot. Optimal increases in m R N A  levels 
were seen at 1 h for IDlot, and at 5 h for IL-I~ and IL-6 (Fig. 
8). TGF-Ot however did not increase its own mRNA level 
in TE cells (Fig. 8). Indirect immunofluorescence assay of 
acetone-fixed frozen sections of human thymus showed that 
TGF-Ot was present in medullary TE cells and in Hassall's 
bodies of the thymus medulla (Fig. 9). 

Epidermal Growth Factor (EGF) and 7~ansforming Growth Factor 
ot (TGF-Ot) Increase mRNA Levels for IL-Iot, ILlt~, and IL6 
At A Posttranslational Level. We next determined the effect 
of EGF and TGF-Ot on the rates of transcription of IL-lot, 
IL-1/~/, and IL-6 genes. Using an in vitro nuclear transcription 
assay, we demonstrated that the rates of transcription of IL- 
lot, IL-1/$, and II~6 genes in nuclei isolated from EGF and 
TGF-Ot treated TE cells were identical to those from untreated 
TE ceils (Fig. 10). The transcription rate of the TGF-Ot gene 
was also not altered by either EGF or TGF-Ot treatment (Fig. 
10). These data indicated that EGF and TGF-Ot did not ini- 
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Figure 6. EGF and TGF-c~ induced a time dependent increase in Ib l  
(A) and II,6 (B) activity in TE cell supernatants. TE cell culture superna- 
tams were collected at various time points after the addition of EGF and 
assayed for Ib l  activity in the D10S proliferation assay, and for II-6 ac- 
tivity in the Tl165 proliferation assay. Proliferation was measured by the 
incorporation of 3H-thymidine after a 4-h pulse. All samples were mea- 
sured in triplicate. 

date new transcription, but rather suggested that EGF and 
TGF-Ot increased the steady-state levels of cytokine m R N A  
levels by a posttranscriptional mechanism involving mRNA 
stability. Therefore, we determined the effect of EGF and 
TGF-Ot on cytokine mRNA stability following treatment of 
TE cells with either EGF plus actinomycin-D or TGF-Ot plus 
actinomycin-D. If EGF and TGF-Ot regulated stability of IL- 
lot, IL-13, and IIr mRNA, we expected that the stability 
of m R N A  at two different time points in the course of EGF 
or TGF-Ot treatment would be different since EGF and TGF-Ot 
mediated increases in mRNA levels were transient. We showed 
that the stability of II.-lot and IL-13 mRNA was much higher 
at 1 h after EGF (Fig. 11 A, B, and G) or TGF-Ot (Fig. 11 
D, E, and H) treatment than at 5 h after EGF or TGF-Ot 
treatment, while optimal stability of II.-6 was obtained at 
5 h after EGF (Fig. 11 C and G) or TGF-Ot treatment (Fig. 
11 F and H). An additional increase in the IL-lot and IL-13 
m R N A  levels was also observed when TE cells were treated 
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Figure 7. Effect of EGF on the level of TGF-a. TE cells were treated with EGF at various concentrations for 5 h, the cells were lysed, total R.NA 
isolated and analyzed for TGF-a mRNA levels by RNA blot. (A) Actual levels of TGF-cx mRNA. (B) Laser scanning densitometer tracings of the 
TGF-c~ bands shown in A. 

with either EGF or TGF-c~ plus actinomycin-D (Fig. 11 A, 
B, D, E, G and H). This phenomenon, termed "superinduc- 
tion" has been described previously for interferon and for 
ILl when the cytokine producing cells were treated with the 
combination of cydoheximide and actinomycin-D (44, 45). 
Superinduction of IL-6 mRNA was not observed when TE 
cells were treated with either EGF or TGF-c~ plus actinomycin- 
D (Fig. 11 C, F, G, and H). These results confirmed that 
in human TE cells, EGF and TGF-o~ regulated the mRNA 
levels for IL-lol, IL-1B and II.-6 at a posttranscriptional level 
by increasing stability of mRNA. 

Discussion 

Although transcription is an important event in regula- 
tion of gene expression, control of cytoplasmic mRNA turn- 

over at a posttranscriptional level is also critically important 
in establishing the final level of proteins. The turnover rate 
of a given mRNA determines the steady-state level of mRNA 
in cytoplasm and is affected by mRNA stability. Stable mRNA 
species that have a long half-life often encode proteins required 
for maintaining basic cellular functions, while unstable mRNA 
species with a short half-life are inducible by internal stimuli 
or external growth conditions (27, 38, 44, 45). Stability of 
mRNA is known to play an important role in controlling 
expression of cytokine, lymphokine and proto-oncogene genes 
that are responsive to changes in growth conditions (27, 38, 
46-48). 

In this paper, we document for the first time that the po- 
tent growth factors EGF and TGF-ot affect the stability of 
mRNAs for three human TE cell-derived cytokines, IL-lol, 
ID13, and IL-6. The effect of EGF and TGF-o~ on cytokine 
mRNAs is immediate and transient with optimal response 

Figure 8. TGF-oL increased the levels 
of Ibl~,  IblB, and I1.-6 but not TGF-c~ 
in transient fashion. TE cells were 
treated with 100 ng/ml of human 
recombinant TGF-c~ for 5 h and total 
RNA analyzed for cytokine mRNA 
levels. 
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Figure 9. Detection of TGF-ot in human thymus 
by indirect immunofluorescence assay. Acetone- 
fixed frozen human thymic sections were stained 
with a purified polyclonal chicken anti-human 
TGF-ot antibody at 30 #g/ml (IgG) (,4, B, and 
C) or a purified IgG fraction from normal chicken 
serum at the same concentration (D). Arrows indi- 
cate cells stained for TGF-ot. H indicates Hassall's 
body. 

Figure 10. Effect of EGF and TGF-ot on transcription rates of IL-lol, Ibl/~, IL-6 and TGF-ot genes. Nuclei were isolated from untreated TE calls 
or cells treated with EGF (5.0 ng/ml) or TGF-ot (100 ng/ml) for 1 h and used in an in vitro nuclear transcription assay. An excess amount of plasmid 
(5.0/zgAlot) containing cDNA for IDler, IL-1B, IL-6 and TGF-a was used. 
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Figure 11. EGF and TGF-u affected sta- 
bility of II~1~, IL-1/~ and IL-6 mRNA. TE 
cells were either treated with EGF (5.0 ng/ml) 
(A, B, C, and G) or TGF-o~ (100 ng/ml) (D, 
E, F, and H) for 1 (O) or 5 (A) h followed 
by the addition of 10/~g/ml of actinomy- 
cin-D. The cells were lysed and total RNA 
was isolated at 0, 0.5, 1, 1.5, 2, 3, and 4 h 
after the addition of actinomycin-D and ana- 
lyzed by RNA blot. A-C and D--F were 
graphic presentation of G and H, respectively. 
The Y-axis represented the ratios of the levels 
of mRNA at 0.5, I, 1.5, 2, 3, and 4 h over 
the levels of mRNA at 0 h after the addition 
of actinomycin-D. 

observed between 1 and 5 h after the addition of  EGF or 
TGF-o~. Since Marzluff and Pandy (49) reported that increases 
in stability of  a number of m R N A  species correlate with cell 
cycle, we compared the concentration of  EGF required to in- 
duce TE cell proliferation with the concentration of EGF 
that affected the stability of cytokine mRNA.  The minimal 
concentration of  EGF (1.0 ng/ml) that affected the level of 
cytokine mRNAs  was 10-fold less than that which induced 
TE cell proliferation (10 ng/ml) (data not shown). Thus, the 

data strongly suggest that the effect of EGF on the levels 
of cytokines is not related to the cell cycle or TE cell growth. 

Differences in the effect of EGF and TGF-oe on ILlol, ILI~ 
and IL6 m R N A  levels were observed in the presence of the 
R N A  synthesis inhibitor actinomycin-D. A superinduction 
effect was observed with ILlol and ILIB when TE cells were 
treated with either EGF or TGF-c~ plus actinomycin-D; how- 
ever, the combination of  actinomycin-D plus EGF or TGF-~ 
treatment did not show a superinduction effect for IL6. The 
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superinduction phenomenon has been shown for interferon 
(44) and ILl (45) by actinomycin-D and cycloheximide treat- 
ment. Cycloheximide alone has also been shown to affect 
m R N A  stability (46, 48, 50, 51). It has been postulated that 
cycloheximide affects cytoplasmic m R N A  levels by inhibiting 
protein synthesis of labile factors that promote m R N A  degra- 
dation (48, 50, 52). The similar effect of EGF or TGF-ct and 
cycloheximide on cytoplasmic m R N A  stability suggests that 
EGF or TGF-ct may also target similar labile regulatory factors 
that are involved in the regulation of I1-1oe, I1-13 and I1-6 
m R N A  stability, possibly by inhibiting the m R N A  stability 
regulatory function of these labile factors. Since EGF and 
TGF-o~ required 1 h to induce m R N A  stability for I1-1ol and 
I1-1/3 and 5 h for I1-6, the time course difference in inducing 
m R N A  stability suggests that I1-1ct, IL-13 and I1-6 are in- 
dependently regulated by at least two different factors; a la- 
bile factor that affects I1-1ct and I1-1B m R N A  stability, and 
a relatively more stable factor that affects I1-6 m R N A  stability. 

Control of m R N A  stability involves both RNA specific 
sequence and RNA binding proteins (53). A conserved A+ U 
rich sequence in the 3' untranslated region (UTR) has been 
identified among labile m R N A  for cytokines, lymphokines 
and proto-oncogenes (27, 54). It has been shown that for 
I1-6 and GM-CSF, the A+ U rich region is required for mRNA 
stability (27, 55, 56). Recently, Malter has identified a cyto- 
plasmic protein that binds specifically to the AUUUA ele- 
ment (56). The resultant RNA-protein complexes have been 
proposed to target the susceptible m R N A  for rapid cytoplasmic 
degradation (56). Whether EGF and TGF-ot mediate cytokine 
m R N A  stability by affecting the function of an AUUUA 

binding protein is not known. However, phosphorylation by 
a protein kinase has been shown to increase stability of TNF 
mKNA (57). Since both EGF and TGF-ot can induce tyro- 
sine phosphorylation via the EGF-R protein tyrosine kinase, 
it is conceivable that EGF and TGF-ot regulate TE cell-derived 
cytokine m R N A  stability by inducing tyrosine phosphory- 
lation of an RNA-binding protein, thereby inhibiting the 
formation of the RNA-protein complexes and preventing rapid 
mKNA degradation. 

The demonstration in this study that both EGF and TGF-ol 
can affect TE cell-derived I1-1c~, I1-13 and I1-6 mKNA and 
protein levels implies a critical role for EGF and TGF-oe in 
regulating intrathymic T cell growth and development. In 
humans, 1I,-1 synergizes with GM-CSF in stimulating prolifer- 
ation of immature human thymocytes (58). In both humans 
and mice, IL-1 together with I1-6 preferentially induces 
CD4 § T cell proliferation (59, 60). I1-6 by itself selectively 
induces only CD8 + T cell proliferation (61), and in combi- 
nation with IFN-3' and I1-2 induces differentiation of cyto- 
toxic T cells from immature thymocytes (62). TE cells ex- 
press EGF-R in vivo, and TGF-ot is present in vivo in medullary 
TE cells. We were unable to detect EGF in thymus by in- 
direct immunofluorescence assay using a monoclonal anti- 
body raised against human EGF (data not shown). Since 
TGF-oe is present in human thymus, and EGF is present in 
rat thymus (63), and both TGF-oe and EGF regulate the 
production of important cytokines for T cell proliferation, 
we postulate that both EGF and TGF-oe may play a critical 
regulatory role in the production of cytokines by TE cells 
in vivo during intrathymic T cell development. 
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