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S u m m a r y  

The MRC OX-44 molecule, which is expressed on all peripheral leukocytes, identifies the subset 
of thymocytes capable of proliferating in response to alloantigens and lectins (Paterson, D. J., 
J. R. Green, W. A. Jefferies, M. Puklavec, and A. F. Williams. 1987.J. Exp. Med. 165:1). When 
we isolated monoclonal antibodies (mAbs) on the basis of their ability to activate the phos- 
phatidylinositol signaling pathway in RNK-16 cells (a rat leukemia line with natural killer activity), 
three of the resulting mAbs recognized the OX-44 molecule. Addition of these mAbs to R.NK- 
16 elicits protein tyrosine phosphorylation, generates inositol phosphates, and increases the 
concentration of cytoplasmic free calcium. These responses require the addition of intact mAb 
and are not observed with F(ab')2 fragments. One of these mAbs (7D2) is mitogenic for freshly 
isolated rat splenic T cells and synergizes with a mAb to the T cell antigen receptor in this 
activation. A 50-60-kD glycoprotein coprecipitates with the OXo44 molecule from RNK-16 
cells and rat splenic T cells. Peptide mapping and reprecipitation studies indicate that the 
coprecipitating molecule is CD2. Thus, the OX-44 molecule can couple to multiple signaling 
pathways and associates with CD2 on both RNK-16 and rat T cells. 

T he MRC OX-44 molecule is expressed on all peripheral 
T cells but only 10% of thymocytes (1). Among thymo- 

cytes, only those that express the OX-44 molecule proliferate 
in response to alloantigens or mitogenic lectins (1, 2). The 
OX-44 molecule, therefore, is a phenotypic marker for func- 
tionally mature thymocytes and may have a role in regulating 
the responses of thymocytes and peripheral T cells to a va- 
riety of mitogenic stimuli. The structure of the OX-44 mol- 
ecule and its human homologue, CD53, supports this possi- 
bility (3-6). The deduced amino acid sequences indicate that 
the OX-44 molecule and CD53 are members of a newly rec- 
ognized family of molecules whose distinctive topology is 
characterized by the presence of four transmembrane span- 
ning domains (3-6). The putative transmembrane and cyto- 
plasmic domains of the OX-44 molecule and CD53 are highly 
conserved (92% amino acid identity) suggesting that these 
regions are critical for the function of these molecules (5, 
6). These features led Bellacosa et al. (5) to suggest that the 
OX-44 molecule may have a role in signal transduction. 
Herein, we provide evidence in support of that hypothesis. 

In an effort to identify cell surface molecules capable of 

stimulating the phosphatidylinositol (PI) 1 signaling pathway 
in R.NK-16 cells (a rat leukemia line with NK cell activity), 
we screened for mAbs that stimulate the generation of ino- 
sitol phosphates (ImPs) in RNK-16 cells. This procedure led 
to the isolation of mAbs directed against only three cell sur- 
face structures: CD2, gp42, and, as described here, the OX- 
44 molecule. Perturbation of the OX-44 molecule not only 
stimulates a substantial InsP response in RNK-16 cells, but 
also leads to the appearance of tyrosine-phosphorylated pro- 
teins. These responses require the addition of intact mAbs 
and are not elicited by F(ab')2 fragments. One of the mAbs 
recognizing the OX-44 molecule (7D2) is mitogenic for freshly 
isolated splenic T cells, and it augments TCR-mediated 
proliferation. When RNK-16 cells or freshly isolated rat T 
cells are solubilized in a buffer containing 3-[(3-cholamido- 
propyl)-dimethyl ammonio]-l-propane sulfonate (CHAPS), 

1Abbreviations used in this paper: [Ca 2+ ]i, intracelluhr free calcium; GPI, 
glycosylphosphatidylinositol; InsP, inositol phosphate; PI, phosphatidyl- 
inositol. 
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a 50-60-kD glycoprotein coimmunoprecipitates with the 
OX-44 molecule. Peptide mapping and reimmunoprecipita- 
tion studies establish that the copredpitating molecule is CD2. 
Thus, the OX-44 molecule can couple to signaling pathways 
and appears to be noncovalently associated with CD2. These 
properties suggest that the OX-44 molecule may play an im- 
portant role in the activation of T cells and NK ceils. 

Materials and Methods 
Cells and Cell Culture. RNK-16 cells were adapted for in vitro 

growth and passaged as described (7). To obtain splenic T cells from 
Fisher 344 rats (Simonsen Labs, Gilroy, CA), we passed spleens 
through a no. 40 mesh (Small Parts Inc., Miami, FL). The resulting 
cell suspension was then washed three times in RPMI supplemented 
with 10% FCS and resuspended in 5 ml of medium. The cell sus- 
pension was centrifuged through 5 ml of FicoU-Hypaque at 500 g 
for 45 min. Mononuclear cells were harvested from the interface 
and incubated in a nylon wool column at 37~ for 30 min. Ceils 
eluted from the column were collected and contained •90% T 
cells (by flow cytometric analysis after staining with mAb R73). 

Antibodies. mAbs OX-18 (IgG1; anti-rat MHC class I antigen), 
OX-54 (IgG1; anti-rat CD2), OX-55 (IgG1; anti-rat CD2), and 
OX-44 (IgG1) were obtained from Bioproducts for Science, Inc. 
(Indianapolis, IN). mAbs OX-34 (IgG2a; anti-rat CD2), OX-8 
(IgG1; anti-rat CDS), and R73 (IgG1, anti-rat TCR) were kindly 
provided by Drs. Alan Williams (University of Oxford) and T. 
Hunig (Universitate Munchen). mAbs were purified by protein A 
chromatography. Goat antiserum against mouse Ig and fluorescein- 
conjugated goat anti-mouse Ig was obtained from Cappel Labora- 
tories (Malvern, PA). For flow cytometry, mAbs were either 
identified by a second-step antibody or directly conjugated with 
FITC according to published methods (8). F(ab')2 fragments of 
mAb 7D2 were prepared by digesting 1 mg of the mAb in 1.0 
ml of 0.1 M sodium citrate buffer (pH 3.6) for 1 h at 37~ with 
25/~g of pepsin. Remaining intact mAb was removed by protein 
A chromatography yielding highly purified fragments as assessed 
by SDS-PAGE. 

Generation of mAbs 7D2, 2D1, and 6E2. BALB/c mice were im- 
munized by an intraperitoneal injection of 107 RNK-16 cells in 
CFA. 3 d after an intravenous boost with RNK-16 cells, spleen 
cells were fused to NS-1 myeloma ceils as described (9). Superna- 
tants from the resulting hybridomas were tested initially for binding 
to RNK-167, as assessed by flow cytometric analysis after staining 
with a fluorescein-conjugated goat antiserum to mouse Ig. 169 su- 
pernatants containing binding mAbs were then tested for the ability 
to stimulate [3H]InsPs when added to [3H]inositol-labeled RNK- 
16. Hybridomas that tested positive in this assay were promptly 
subcloned, and the subclones were again screened for [3H]InsPs 
generation. This procedure led to the isolation of7D2 (IgG1), 2D1 
(IgG3), and 6E2 (IgG1). These mAbs were purified by protein A 
chromatography. 

Measurement of InsPs and IntraceUular Free Calcium (Ca2+],). 
InsPs were resolved and quantified as we have described (7), by 
labeling cells with [3H]inositol (20/xCi/ml) for 3 h before stimu- 
lation by mAb. At intervals after stimulation, aliquots of cells 
(5 x 106) were rapidly pelleted and then lysed in ice-cold 10% 
TCA. After removal of insoluble material, the supernatant was ex- 
tensively extracted with diethyl ether. Labeled InsPs were resolved 
by sequential elution using anion exchange chromatography with 
Dowex-lX8 (100-200 mesh) in formate form, as described (7). 
[Ca 2 + ], was quantified by monitoring fluorescence of cells loaded 

with the calcium-sensitive fluor, Indo-1 (Molecular Probes, Eugene, 
OR), as we have described (7). 

An@hosFhotyrosine Immunobloning. KNK-16 cells were sus- 
pended at 107 cells/ml in complete medium (RPMI, 10% FCS, 
L-glutamine [0.3 mg/ml], penicillin K [100 U/ml], and streptomycin 
sulfate [0.1 mg/ml]) at 37~ stimulated with mAb at 1/~g/106 
cells for 2 min, immediately pelleted, then resuspended for 30 min 
on ice in lysis buffer containing 1% NP-40, 50 mM NaC1, 10 mM 
Tris (pH 7.4), 50 mM NaF, 30 mM Na pyrophosphate, 0.1 mM 
NaVO~, 5 mM EDTA, and 1 mM PMSF. Postnuclear supernatants 
were mixed 3:1 with 4 • Laemmli reducing sample buffer, boiled 
for 2 rain, separated by SDS-PAGE, and transferred to polyvinyli- 
dene difluoride (PVDF) paper. The blot was blocked with 1% gelatin 
in Tris-buffered saline (TBS; 10 mM Tris, pH 8.0, and 150 mM 
NaC1) and blotted overnight at 4~ at 1/xg/ml with antiphospho- 
tyrosine mAb (IgG2b; Upstate Biologicals, Inc., Lake Placid, NY), 
in TBS with 0.05% Tween (TBST). The blot was washed four 
times in TBST and incubated with a peroxidase-conjugated goat 
anti-mouse antiserum (Boehringer Mannheim Corp., Indianapolis, 
IN), that recognizes murine antibodies of the IgG2b subclass, at 
a 1:500 dilution for 1 h at room temperature. The blot was washed 
four times in TBST and then developed using 4-chloro-l-naphthol 
(Bio-Rad Laboratories, Richmond, CA) according to manufacturer's 
instructions. 

Cytotoxicity and Proliferation Assays. Cytotoxicity assays were 
performed as described (7). For proliferation assays, 2 x 10 s nylon 
wool-nonadherent spleen cells were cultured in 200/xl of com- 
plete medium in 96-well microtiter plates for 48 h as described (10). 
mAbs were added to a final concentration of 10/zg/ml. 6 h before 
harvesting, each well was pulsed with 1 #Ci of [3H]thymidine. 
Cells were harvested and [3H]thymidine incorporation was de- 
tected as described (10). 

Su~Cace Labeling, lmmunoprecipitation, and SDS-PAGE. 4 x 107 
ILNK-16 cells were surface labeled with 1 mCi 12sI by the glucose 
oxidase method and were lysed on ice in buffers containing 20 mM 
TILLS (pH 7.5), 150 mM NaC1, 1 mM PMSF, 20 mM iodoaceta- 
mide, and either 10 mM CHAPS or 1% NP-40. Postnuclear super- 
natants were precleared with preformed complexes of Pansorbin 
(Calbiochem-Behring Corp., La Jolla, CA) and rabbit anti-mouse 
IgG antiserum before immunoprecipitation with specific mAb ad- 
sorbed to Pansorbin. Immune complexes were then washed three 
times in lysis buffer containing either 2 mM CHAPS or 0.2% NP- 
40, and the antigens were eluted with 50/~1 of Endo-F sample buffer 
(0.1% SDS, 50 mM EDTA, 1% 2-ME, and 0.1 M phosphate buffer 
[pH 6.1]). 0.2 U Endo-F (Calbiochem-Behring Corp.) was added 
to appropriate aliquots and incubated overnight at 37~ Alterna- 
tively, immunoprecipitates were treated with N-glycanase (Gen- 
zyrne, Boston, MA) according to manufacturer's instructions. An 
equal volume of twofold concentrated Laemmli sample buffer was 
added, and the samples were analyzed under reducing conditions 
by SDS-PAGE, followed by autoradiography. For reprecipitation 
studies, RNK-16 ceils were first surface labeled and lysed in a buffer 
containing CHAPS. The immune complex was then washed once 
in 2 mM CHAPS and then resuspended in 150/zl lysis buffer con- 
taining 1% NP-40 and allowed to stand at room temperature for 
30 min. The immune complex was then pelleted and the superna- 
tant harvested. The immune complex was washed once more and 
then eluted in Laemmli sample buffer. The NP-40-containing su- 
pernatant was subjected to reimmunopredpitation by specific mAbs. 
Samples were analyzed under reducing conditions on 10% poly- 
acrylamide gel by SDS-PAGE and autoradiography. 

Peptide Mapping. Immunoprecipitations from ~2sI surface- 
labeled RNK-16 cells using mAb 2D1 (which recognizes the OX44 

528 Signaling by the OX-44 Molecule 



molecule), OX-34 (which recognizes rat CD2), and OX-18 (which 
recognizes rat MHC class I molecules) were carried out as described 
above. Gel slices from Endo F-treated samples containing class I 
molecules, directly immunoprecipitated CD2, or the 42-kD pro- 
tein that coprecipitated with the OX-44 molecule were rehydrated 
and treated with V8 protease (Calbiochem-Behring Corp.) according 
to the technique of Cleveland et al. (11). Samples were analyzed 
on 15% polyacrylamide gels by SDS-PAGE and autoradiography. 

Results 

Isolation of mAbs that Stimulate PI Turnover in RNK-16 
Cells. To identify potential signal-transducing molecules on 
rat lymphocytes, we generated hybridomas from the spleens 
of BALB/c mice that had been immunized with KNK-16 
cells. The resulting hybridoma supernatants were tested ini- 
tially for binding to KNK-16. 93 supernatants containing 
binding mAbs were screened for ImPs production using a 
goat anti-mouse Ig antiserum as a crosslinking agent. Sub- 
cloning of the hybridomas that tested positive led to the iso- 
lation of 11 mAbs with agonist properties. An additional 76 
supernatants were screened in the absence of a second-step 
antiserum; this procedure led to the isolation of only one 
mAb (designated 7D2). Of  the 12 mAbs selected, three rec- 
ognized CD2, and six recognized gp42, a glycosylphospha- 
tidylinositol (GPI)-anchored protein expressed by activated 
rat NK cells. In our initial studies of the remaining three 
mAbs (7D2, 2D1, and 6E2), we found that incubation of 
RNK-16 cells with any one of these prevented the subsequent 
binding of the others, suggesting that the three mAbs bind 
near the same epitope. To characterize the molecule recog- 
nized by these mAbs, KNK-16 cells were labeled with nsI 
and then solubilized with NP-40. From the resulting lysate, 
7D2 immunoprecipitated a broad band with a mean molec- 
ular mass of 35 kD under both reducing (Fig. 1 lane A) and 
nonreducing conditions (data not shown). Treatment of the 
immunoprecipitate with N-glycanase resulted in the appear- 
ance of a single, sharp band of 23 kD (Fig. 1 B). An identical 
result was obtained with 2D1 and with 6E2. Thus, these 
mAbs recognize a single chain glycoprotein of 35 kD that 
has a protein core of 23 kD. 

As demonstrated using 7D2, the addition of these mAbs 
to [3H]inositol-labeled RNK-16 cells stimulates a substan- 
tial (four- to fivefold) and sustained (>10 min) increase in 
inositol trisphosphate (InsP3) and in its metabolites, inositol 
bisphosphate (InsP2), and inositol phosphate (InsP1) (Fig. 2 
A), confirming that these mAbs activate the PI pathway in 
KNK-16 cells. Consistent with the link between PI turnover 
and Ca 2 + fluxes, 7D2 elicits a sustained increase in the con- 
centration of [Ca2+]i in Indo-l-loaded RNK-16 cells (Fig. 
2 B). This signaling response required the Fc region of mAb. 
F(ab')2 fragments of mAb 7D2 failed to elicit an increase in 
[Ca2+]i, suggesting that interactions with Fc receptors are 
required for the agonist properties of the mAb (data not 
shown). 

mAb 7192 Stimulates Protein Tyrosine Phosphorflation. One 
mechanism by which cell surface receptors couple to the PI 
pathway is through the activation of protein tyrosine kinases. 
Accordingly, we determined whether the addition of 7D2 

Figure 1. 7192 immunoprecipitates a 
30-40-kD glycoprotein from 12SI-labeled 
KNK-16 that has been solubilized in lysis 
buffer with 1% NP-40. Immunoprecipitates 
using 7D2 were either untreated (lane A) or 
digested with N-glycanase (lane B) before 
analysis under reducing conditions by SDS- 
PAGE and autoradiography. 

to RNK-16 leads to the appearance of tyrosine-phosphorylated 
proteins. We compared the response to 7D2 with the response 
to pairs of mAbs against CD2. CD2 is known to stimulate 
PI turnover in KNK-16 and, in human T cells, induces pro- 
tein tyrosine phosphorylations (7, 12). As shown in Fig. 3, 
the tyrosine phosphorylation of several proteins is induced 
by 7D2, and at least two of these are also induced by 
stimulating CD2. In contrast, the addition of an isotype- 
matched mAb (OX-18) to rat MHC class I molecules does 
not lead to protein tyrosine phosphorylation. The combina- 
tion of ionomycin and phorbol myristate acetate induces the 
tyrosine phosphorylation of only the 42-kD protein, sug- 
gesting that the majority of 7D2- and CD2-mediated tyro- 
sine phosphorylations are not a consequence of PI turnover. 
Consistent with their inability to stimulate calcium signaling, 
F(ab')2 fragments of mAb 7D2 failed to stimulate protein 
tyrosine phosphorylations (data not shown). 

mAb 7D2 Inhibits Killing by RNK-16 Cells. RNK-16 cells 
spontaneously lyse the NK-sensitive target, YAC-1 (7). As 
shown in Fig. 4, the killing of YAC-1 targets is inhibited 
by 7D2 but not by isotype-matched control mAbs to MHC 
class I molecules or to CD8 (both of which are expressed 
on RNK-16). The inhibitory effect of 7D2 is comparable with 
that of the CD2 mAb, OX-34, which has been shown to 
inhibit killing by KNK-16 (7). The ability of 7D2 to inhibit 
cytotoxicity establishes that 7D2 influences a cellular response 
of KNK-16 cells. It does not necessarily implicate the 7D2 
determinant in mediating the responses of KNK-16 to YAC-1; 
by activating signaling pathways, 7D2 may desensitize RNK-16 
to target-induced signals delivered through other cell surface 
molecules. 

mAbs 71)2, 2191, and 6E2 Recognize the 0X-44 Mole- 
cule. 7D2, 2D1, and 6E2 stain virtually all mononuclear cells 
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Figure 2. mAb 7D2 stimulates increases in [nsPs 
(A) and [Ca2+], (B) within RNK-16 cells. (A) 
[3Hllnositol-labeled RNK-16 cells were incubated at 
37~ in medium alone (open circles) or stimulated with 
7D2 (closed circles; final concentration, 5 #g/ml). At 
the indicated time points cells were lysed in ice-cold 
10% TCA. [3H]InsPb [3H]lnsP2, and pH]InsP3 were 
extracted and resolved by anion exchange chromatog- 
raphy as described (7). The data represent the total 
of the indicated InsP in 5 x 106 cells at each time 
point and are representative of three separate experi- 
ments. (B) The Ca2+-sensitive fluorescence of a sus- 
pension of lndo l-loaded RNK-16 was monitored over 
time. [Ca2+], calculated as described (7), was 236 
nM in unstimulated cells. After the addition of 7D2 
(final concentration, 5 /~g/ml), [Ca2+], rose to a 
maximal level of 589 nM and then fell to plateau of 
390--400 nM. These data are representative of four sep- 
arate experiments. 

from rat spleen and lymph node as well as T cells and B cells 
purified from peripheral blood (not shown). In contrast to 
these results, the mAbs bound only a small minority (<10%) 
of thymocytes. The mass and tissue distribution of the mole- 
cule recognized by our mAbs, therefore, are similar to those 
reported for the MRC OX-44 molecule (1). Further, we ob- 
served that prior treatment of RNK-16 cells with OX-44 
blocked the subsequent binding of 7D2, whereas a control 
mAb (OX-18) to MHC class I molecules did not (Fig. 5, 
A-C). In the converse experiment, prior treatment with 7D2 
prevented the binding of OX-44 (Fig. 5, D-F). In additional 
studies, we found that OX-44 immunoprecipitated a mole- 
cule from RNK-16 cells that has the same electrophoretic 
mobility as the molecule immunoprecipitated by 7D2, and 
that preclearing lysates with 7D2 removed the molecule rec- 

Figure 3. mAbs recognizing 
CD2 (OX-54 plus OX-55) or the 
OX-44 molecule (7D2) induce 
protein tyrosine phosphorylation 
in RNK-16 cells. RNK-16 cells 
were either incubated in medium 
alone (0), or with mAbs OX-54 
plus OX-55, 7D2, O)(-18 (anti- 
MHC class I), or with the com- 
bination of ionomycin (Iono; 1 
/zM) and PMA (40 ng/ml) for 2 
min before lysis (all mAbs at 1 
#g/106 cells). Cell lysates were 
analyzed under reducing condi- 
tions on a 9% polyacrylamide gel, 
transferred to PVDF paper, and 
blotted with an antiphosphotyro- 
sine mAb. Each lane contains ly- 
sates from 2.5 x 106 calls. 

ognized by OX-44. Thus, we conclude that our mAbs and 
the OX-44 recognize the same cell surface molecule. The OX- 
44 mAb also stimulates a substantial increase in [Ca2+]i in 
RNK-16, demonstrating that this mAb has agonist effects 
similar to the mAbs isolated by our screen (not shown). 

mAb 7D2 Stimulates the Proliferation of Rat Splenic T 
Cells. To determine whether perturbation of the OX-44 mol- 
ecule activates resting T lymphocytes, we studied nylon 
wool-nonadherent splenic mononuclear cells, a population 
that is composed predominantly of T cells but that also in- 
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Figure 4. Natural killing by RNK-16 ceils is inhibited by mAbs 7D2 
and OX-34. Killing of YAC-1 target cells by RNK-16 is inhibited by the 
presence of either 7D2 or OX-34 (anti-CD2) but not by OX-18 (anti- 
MHC class I) or OX-8 (anti-CD8). RNK-16 were exposed to mAbs (1 
/~g/106 ceils)just before the addition of target cells. Killing was assessed 
in an 18-h cytotoxicity assay. Each point is the mean of triplicate samples 
(SEM <10%). These data are representative of three separate experiments. 
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Figure 5. Reciprocal inhibition 
of binding to KNK-16 by mAbs 
7D2 and OX-44. RNK-16 cells were 
either untreated (.4), treated with 
unstained mAb OX-44 (B), or 
treated with unstained mAb OX- 
18 (C) on ice for 1 h before being 
stained with FITC-conjugated 7D2 
and subjected to flow cytometric 
analysis. (D-E) RNK-1.6 cells were 
either untreated (D), treated with 
either unstained mAb 7D2 (E), or 
unstained mAb OX-18 on ice for 
1 h before staining with FITC- 
conjugated OX-44 and analysis 
by flow cytometric analysis. The 
dotted line indicates fluorescence of 
a nonbinding FITC-conjugated 
IgG1 mAb (R73). 

dudes accessory cells. The addition of 7D2 consistently stimu- 
lated proliferation, as assessed by the incorporation of 
[3H]thymidine (Tables 1 and 2), whereas other mAbs to 
OX-44 molecule (OX-44, 2D1, and 6E2) did not (data not 
shown). The proliferative response of T cells to 7D2 was sub- 
stantially less than that elicited by Con A but was somewhat 
greater than the response to optimal concentrations of mAb 
K73, which recognizes all TCK-cff/~ structures in the rat 
(Table 1) (13). The level of the proliferative responses to R73 
in these experiments agreed with previously reported studies 
using this mAb (13). Both 7D2 and K73 are BALB/c IgG1 
mAbs, indicating that the greater response to 7D2 is not a 
reflection of its isotype. Moreover, there were no kinetic differ- 
ences between the responses to the two mAbs; peak prolifer- 
ation to each mAb occurred at 48 h, and the response to 7D2 
was greater than the response to anti-TCK at 24 and 72 h 
as well (not shown). In contrast to the results obtained with 

Table 1. Proliferative Responses of Rat Splenic T Cells to 7D2 

Stimuli* 

Exp. None 7D2 K73 OX-18 OX-54 OX-55 ConA 

~ m  

1 792, 19,348 6,447 242 193 2,843 77,986 
2 865 12,046 5,466 517 1,152 1,667 67,279 
3 881 10,144 7,491 1,418 1,924 2,709 99,287 

* Nylon wool-nonadherent splenic mononuclear cells (106 cells/ml) from 
Fischer rats were cultured for 48 h in microtiter plates, mAbs and Con A 
were added to a final concentration of 10 #g/ml. [3H]Thymidine (1 
#Ci/well) was added 6 h before harvesting. Three independent experi- 
ments are shown. 
* Mean of triplicate cell samples. SEM was <15% except for the OX-55 
stimulation in Exp. 1 (SEM = 25%). 

7D2 and K73, there was no proliferative response to OX-18 
(IgG1; anti-MHC class I), and little or no response to the 
CD2 mAbs OX-54 and OX-55 when these IgG1 mAbs were 
used individually (Table 1). As previously reported, the com- 
bination of OX-54 plus OX-55 was mitogenic and elicited 
levels of [3H]thymidine incorporation similar to that of Con 
A (not shown) (14). 

T cell proliferation in response to the combination of 7D2 
and anti-TCK (R73) was greater than the sum of the individual 
responses (Table 2). There was no enhancing effect when ei- 
ther mAb was used in combination with OX-18 (not shown). 
Only a modest augmentation of the K73 response was elicited 
by the CD2 mAbs OX-55 (Table 1) or OX-54 (not shown). 
In view of the synergy observed here between 7D2 and K73, 
it is of interest that Beyers. et al. (2) had observed an en- 
hanced increase in [Ca2+]i when the OX-44 mAb and R73 
were crosslinked on a rat T cell line. 

The 0X-44 Molecule Is Associated with CD2 on RNK-16 and 
Rat Splenic T Cells. Because mAb-induced perturbation of 
the OX-44 molecule transduces activation signals, and be- 
cause of the relatively small size of its cytoplasmic domains, 
we addressed the possibility that the OX-44 molecule is non- 
covalently associated with other cell surface molecules. When 
KNK-16 cells were solubilized in a l~is buffer containing 
10 mM CHAPS (but not 1% NP-40), a molecule of 50-60 
kD coprecipitated with the OX-44 molecule (Fig. 6, lanes 
1 and 3). This coprecipitation was observed with three sepa- 
rate mAbs to the OX-44 molecule (2D1, 7D2, and OX-44) 
but not with a mAb to MHC class I molecules (OX-18; not 
shown). After Endo F treatment, the coprecipitating mole- 
cule migrated as a sharp band of 42 kD (Fig. 6, lane 2). A 
band of this mass was usually observed after Endo F treat- 
ment of immunoprecipitates from NP-40 lysates (Fig. 6, lane 
4), but the intensity of the 42-kD band was variable and sub- 
stantially less than that from the CHAPS lysate (compare 
Figs. 1 and 6). It appears, therefore, that small amounts of 
the 50-60-kD molecule are present in immunoprecipitates 
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Table  2. Proliferative Responses of Rat Splenic T Cells to the Combination of 7192 and a TCR mAb 

Stimuli* 

Exp. None 7D2 R73 7D2 + [L73 7D2 + OX-55 R.73 + OX-55 Con A 

cpm 
1 918r 17,904 7,071 64,558 ND ND 138,786 

2 718 11,320 2,839 33,576 14,424 6,174 105,989 

3 516 9,928 2,611 35,931 10,758 5,676 86,451 

4 852 18,148 8,418 56,641 17,440 19,190 63,871 

" Nylon wool-nonadherent spleen cells were stimulated as described in the legend to Table 1. The results of four independent experiments are shown. 
r Mean of triplicate cell samples. SEM were <20%. 

from NP-40 lysates and that deglycosylation substantially in- 
creases detection of this molecule. 

In both glycosylated and deglycosylated forms, the co- 
precipitating molecule migrated on SDS-PAGE at the same 
mass as CD2 obtained by immunoprecipitation from RNK- 
16 lysates (not shown, but see below, Figs. 8 and 9). To de- 
termine whether the coprecipitating molecule was CD2, we 
excised the 42-kD band from the Endo F-treated im- 
munoprecipitates of the OX-44 molecule and performed pep- 
tide maps. After digestion with either staphylococcal V8 pro- 
tease (Fig. 7) or chymotrypsin (not shown), the peptide maps 
of the coprecipitating molecule were identical to those of Endo 
F-treated CD2 (Fig. 7). In contrast, a different map was gener- 
ated by digestion of Endo F-treated MHC class I molecules, 
which migrated with a similar apparent mass (43 kD) on 
SDS-PAGE (Fig. 7). 

To further confirm the identity of the 50-60-kD molecule 
as CD2, we took advantage of the differential abilities of 
CHAPS and NP-40 to permit coprecipitation. 125I-surface- 
labeled RNK-16 cells were solubilized in lysis buffer containing 

CHAPS, which allows coprecipitation, and immunoprecipi- 
tations were performed using 2D1, a mAb to the OX-44 mol- 
ecule. When the immunoprecipitates were washed in CHAPS- 
containing buffers, the 50-60-kD glycoprotein coprecipitated 

Figure 6. A 50-60-kD glycopro- 
tein coprecipitates with the OX-44 
molecule from RNK-16 cells. The 
OX-44 molecule was immunoprecip- 
itated by mAb 2D1 from 1z5I surface- 
labeled RNK-16 cells that had been 
solubilized in lysis buffer containing 
either 10 mM CHAPS (lanes 1 and 
2) or 1% NP-40 (lanes 3 and 4). Im- 
munoprecipitates were either un- 
treated (lanes 1 and 3) or digested with 
Endo F (lanes 2 and 4) before analysis 
under reducing conditions by SDS- 
PAGE using an 11% polyacrylamide 
gel followed by autoradiography. 

Figure 7. The Peptide map of CD2 is identical to that of the protein 
that coprecipitates with the OX-44 molecule. Gel slices containing Endo 
F-treated CD2 (lanes 2 and 4), Endo F-treated coprecipitating molecule 
(lanes 3 and 5), and Endo F-treated MHC class I molecule (lane I) were 
partially digested with 1/~g (lanes 2 and 3), 0.2 #g (lane 1), or 0.05/zg 
(lanes 4 and 5) Staphylococcal V8 protease and analyzed by SDS-PAGE 
and autoradiography. 12Sl-labeled RNK-16 were solubilized in buffer con- 
raining 10 mM CHAPS, and immunoprecipitations were performed using 
mAbs OX-34 (anti-CD2), 2D1 (which recognizes the OX-44 molecule), 
and OX-18 (anti-MHC class I). The immunoprecipitates were digested 
with Endo F, resolved by SDS-PAGE, and visualized by autoradiography. 
The regions containing CD2, the 42-kD protein that coprecipitates with 
the OX-44 molecule, and MHC class I molecules were excised from the 
dried gels. These gel slices were rehydrated and treated with V8 protease 
according to the technique of Cleveland et al. (11). Samples were analyzed 
by SDS-PAGE (using 15% polyacrylamide gels) followed by autoradi- 
ography. 
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Figure 8. CD2 coprecipitates 
with the OX-44 molecule from 
CHAPS lysates of RNK-16. ~I- 
labeled RNK-16 cells were soh- 
bilized in lysis buffer containing 
10 mM CHAPS, divided into 
equal aliquots, and then subjected 
to immunoprecipitation using 
2D1, a mAb to the OX-44 mole- 
cule. (Lane I) The immunopre- 
cipitate was washed in 2 mM 
CHAPS and then eluted with 
Laemmli sample buffer. Alterna- 
tively, the immunoprecipitate was 
washed once in 2 mM CHAPS 
and then resuspended in buffer 
containing 1% NP-40. After a 30- 
min incubation, the immunopre- 
cipitate was pelleted and eluted in 
Laemmli sample buffer (lane 2). 
The NP-40 incubation buffer was 
then divided and subjected to im- 

munoprecipitation using mAbs to CD2 (OX-34; lane 3) or to CD8 (OX-8; 
lane 5). (Lane 4) CD2 was immunoprecipitated directly by mAb OX-34 
from solubilized 12H-labeled RNK-16. Samples were analyzed under 
reducing conditions on a 10% polyacrylamide gel, followed by autoradi- 
ography of the dried gel. 

with the OX-44 molecule (Fig. 8, lane 1). However, if the 
2D1 immunopredpitates were incubated in a buffer containing 
1% NP-40 before SDS-PAGE, the 50-60-kD band dissociated 
from the immune complex (Fig. 8, lane 2). The dissociated 
50-60-kD molecule could then be immunoprecipitated from 

Figure 9. CD2 coprecipitates with the OX-44 molecule from rat splenic 
T cells. (a) CHAPS-containing lysates of 12Sl-labeled T cells were subjected 
to immunoprecipitation using mAbs to the OX-44 molecule (2D1; lanes 
1 and 3) or CD2 (OX-34; lanes 2 and 4). Samples were either untreated 
(lanes I and 2) or digested with Endo-F (lanes 3 and 4) before analysis 
by SDS-PAGE. (b) Peptide maps of the 42-kD deglycosylated protein in 
the 2D1 immunoprecipitate (lane I) and deglycosylated CD2 (lane 2) were 
generated using staphylococcal V8 protease. 

the NP-40 incubation buffer by mAb to CD2 (Fig. 8, lane 
3) but not to CD8 (Fig. 8, lane 5), and it comigrated with 
CD2 that was immunoprecipitated directly from the RNK- 
16 lysate (Fig. 8, lane 4). In contrast to these results, CD2 
could not be detected in immunoprecipitates of MHC class 
I molecules (not shown). 

The OXo44 molecule obtained by immunoprecipitation 
from splenic T cells migrated at a higher apparent mass (35-45 
kD) than the OX-44 molecule immunoprecipitated from 
RNK-16 cells. This difference in size was due to differential 
glycosylation; the deglycosylated molecules from RNK-16 
and from T cells have the same apparent mass on SDS-PAGE. 
To determine whether CD2 coprecipitated with the OX-44 
molecule from lysates of T lymphocytes, we surface labeled 
freshly isolated rat splenic T cells with 125I and solubilized 
these cells in a CHAPS-containing buffer. From these lysates 
2D1 immunoprecipitated a diffuse band of 35-50 kD (Fig. 
9 a, lane 1). Digestion with Endo F resulted in the appear- 
ance of the 23-kD deglycosylated OX-44 molecule. As in 
RNK-16 cells, it was associated with a 42-kD molecule that 
had the same electrophoretic mobility as deglycosylated CD2 
(Fig. 9 a, lanes 3 and 4). Peptide mapping studies confirmed 
that this coprecipitating 42-kD molecule was CD2 (Fig. 9 
b). A third band of 31 kD also appeared in the Endo F digests 
of the 2D1 immunoprecipitates (Fig. 9 a, lane 3), but this 
was not a consistent finding. The identity of this band is 
unknown. 

Discussion 

Our studies establish that the OX-44 molecule, when stimu- 
lated by mAbs, can transduce transmembrane signals. We also 
observe that CD2 coprecipitates with the OX-44 molecule, 
an indication that the two molecules are probably physically 
associated on the cell surface. Consistent with this possibility, 
we find that perturbation of the OX-44 molecule has effects 
on signal transduction and cellular responses that are similar 
to those elicited by stimulating CD2. In KNK-16 cells, each 
of the molecules can stimulate PI turnover, induce protein 
tyrosine phosphorylations, and inhibit target cell lysis. When 
stimulated by appropriate mAbs, either molecule can trigger 
the proliferation of T lymphocytes. We also find that stimu- 
lating the OX-44 molecule augments TCR-mediated prolifer- 
ation. We did not observe a comparable enhancing effect of 
mAbs to rat CD2, but synergy between mAbs to CD2 and 
TCK has been reported in human systems (15). Taken to- 
gether, these findings suggest that the OX-44 molecule may 
participate in CD2-mediated responses. 

Our studies also indicate that the agonist properties of mAb 
7132 on RNK-16 cells depend upon the Fc region of the mAb 
and cannot be duplicated with F(ab')2 fragments. This re- 
sult suggests that signaling by the OX-44 molecule requires 
Fc receptor ligation, either as a costimulus or as a means of 
crosslinking the mAb. Recently, Spruyt et al. (16) have ob- 
served that Ca 2 + signaling by CD2 mAbs in RNK-16 (but 
not T cells) also requires Fc receptor ligation. 

The ability of mAb 7D2 to activate T cells in the absence 
of exogenous comitogens is shared by mAbs to a limited 
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number of molecules, most notably (but not exclusively) the 
TCR/CD3 complex and CD2 (14, 15). It should also be 
pointed out that our screen of nearly 200 hybridoma super- 
natants containing mAbs binding to RNK-16 led to the iso- 
lation of mAbs to only three cell surface structures: the OX-44 
molecule, CD2, and gp42. The isolation of mAb to CD2 
was anticipated, given the well-recognized ability of CD2 
to signal in T cells and NK cells and our earlier finding that 
perturbation of CD2 by mAb generates a substantial InsP 
response in RNK-16 cells (7, 14, 17, 18). gp42 is a GPI- 
anchored protein that is selectively expressed by rat NK cells 
after activation by II-2 (19, 20). The ability to stimulate PI 
turnover appears to be a general feature of GPI-anchored pro- 
teins on lymphocytes (21). 

The gene encoding the OX-44 molecule has recently been 
cloned, and the predicted amino acid sequence indicates that 
it is the rat homologne of human CD53 (3-6). These mole- 
cules are members of a newly recognized family of glycopro- 
teins that includes CD37, CD9, TAPA-1, ME491, CO-029, 
and Sm23 (3-6, 22-27). Members of this family lack a con- 
ventional leader sequence and are predicted to have four trans- 
membrane domains with both their NH2 and COOH ter- 
mini located intracdlularly (3-6, 22-27). When sequences 
for a particular family member are compared from different 
species, the putative cytoplasmic and transmembrane domains 
are highly conserved. For example, the NH2-terminal hydro- 
philic region of the OX-44 molecule is identical to that of 
human CD53 (5, 6). Similarly, the cytoplasmic domains of 
human and rat CD37 are identical at 27 of 28 residues, an 
indication that these regions of CD37 are critical for its func- 
tion (3, 4). 

Although little is known concerning the physiological func- 
tions of this family of glycoproteins, recent studies of CD9, 
ME491, and TAPA-1 suggest that these molecules have roles 
in regulating signaling processes (25, 28-30). The addition 
ofCD9 mAbs to platelets stimulates PI turnover, an increase 
in [Ca2+]i, granule secretion, and aggregation (28). Pertur- 
bation of CD9 also induces a physical association between 
CD9 and the platelet glycoprotein IIb-IIIa complex (the 
fibrinogen receptor), an event that could contribute to the 
conformational change necessary for exposure of the binding 
site for fibrinogen (29). ME491 was initially recognized on 
human melanoma cells (24). Kitani et al. (25) recently iso- 

lated a mAb (AD1) to the probable rat homologue of ME491 
by screening mAbs for the ability to inhibit IgE-mediated 
release of histamine from a rat basophilic leukemia line. Al- 
though rat ME491 is not a known component of the high 
affinity IgE receptor (FceRI), selected mAb to the FceRI 
blocked the binding of AD1, suggesting that rat ME491 is 
in close physical proximity to the FceRI (25). The ability 
of AD1 to inhibit IgE-mediated histamine release (but not 
the binding of IgE) suggests that rat ME491 may alter sig- 
naling by the FceRI (25). mAbs to TAPA-1 were derived by 
screening for mAbs that inhibited the in vitro growth of lym- 
phomas (23). These mAbs induce cell aggregation that is tem- 
perature sensitive and, therefore, may involve a TAPA-1- 
mediated signaling event (30). In certain cell lines, TAPA-1 
has been shown to associate with a complex of cell surface 
molecules that includes Leu-13 (30). Thus, three molecules 
that are related to the OX-44 molecule have the capacity to 
modulate cellular responses and appear to physically associate 
with cell surface receptors. 

Further studies are needed to determine whether the OX- 
44 molecule plays a role in the physiological activation of T 
cells and NK cells and to assess the functional importance 
of its interaction with CD2. CD2 has a large (116 amino 
acids) cytoplasmic domain, and this domain is required for 
CD2-mediated signaling (31, 32). CD2 does not signal when 
expressed in fibroblasts, suggesting that CD2 interacts with 
lineage-restricted molecules in order to transduce activation 
signals (31). It is highly probable that CD2 functionally in- 
teracts with several distinct cell surface structures. CD2- 
mediated signaling in human T cell lines is augmented by 
expression of the TCR/CD3 complex (33-35). A physical 
association between CD2 and this complex has been reported 
by some, but not other, investigators (36, 37). CD2 also ap- 
pears to interact with the tyrosine phosphatase, CD45, which 
can be chemically crosslinked to CD2 on human T cells and 
which is required for signal transduction through CD2 and 
the TCR/CD3 complex (38-41). Like CD45, the OX-44 mol- 
ecule is expressed by all mature leukocytes, suggesting that 
it is functional in cells that do not express CD2. It will be 
of interest to explore the signaling ability of the OX-44 mol- 
ecule in these cells and to determine whether it can associate 
with ligand-binding molecules other than CD2. 
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